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ABSTRACT
Significant advances in biochemical technologies, such as syn-
thesizing and sequencing devices, have made DNA a compet-
itive medium for archival data storage. In this paper we ana-
lyze storage systems based on these macromolecules from an
information theoretic perspective. Using an appropriate chan-
nel model for the synthesis and sequencing steps, we study the
maximum achievable information density per nucleotide for
reliable and error resilient data storage. The channel model
features the main attributes that characterize DNA-based data
storage. That is, information is synthesized onto many short
DNA strands, and each strand is copied many times. Due to the
storage and sequencing methods, the receiver draws strands
from these synthesized strands in an uncontrollable manner,
where it is possible that strands are drawn multiple times and
also that some strands are not drawn at all. Additionally, due to
imperfections, the obtained strands can be perturbed by errors.
Here we settle the question of how to achieve a recently pub-
lished upper bound on the Shannon capacity of this channel
by proposing and analyzing a decoder that clusters received
strands according to their similarity and then efficiently esti-
mates the original strands based on these clusters.

1. INTRODUCTION

Recently, DNA-based data storage has emerged to a promising
technology for long-term archival data storage. Several exper-
iments [1–6] have demonstrated the viability of digital infor-
mation storage in these macromolecules and addressed differ-
ent aspects such as random access [2, 5], portability [4] and
scalability [5]. While within these experiments, it has been
possible to successfully recover the stored data, the question
of fundamental limits on the storage and reading rate remain
unknown. Recently, several works have addressed informa-
tion and coding theoretic aspects of DNA-based data storage.
Among these, the capacity of the storage channel has been
found for the case, when there are no errors in the strands
[7] and for the case, when each DNA strand is read exactly
once [8] under presence of substitution errors. The channel
capacity when sequences are drawn randomly under the pres-
ence of substitution errors has been bounded from above in [9].
Error-correcting codes for systems, where data is stored in un-
ordered sets as in DNA-based storage systems has been dis-
cussed in [10–15]. An important aspect for decoding archives
stored in DNA is to cluster output sequence based on their
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Fig. 1. Exemplary realization of the DNA storage channel

mutual Hamming, respectively edit distance [5,16]. This tech-
nique allows to obtain information about the original input se-
quence and will be an important aspect of the decoder pre-
sented later. In this paper we show how to achieve the capacity
upper bound from [9] using a random coding argument and a
decoder that is specifically designed to the DNA storage chan-
nel. The paper is organized as follows. We first introduce the
notation and describe the channel, then state our result about
its capacity and finish by proving the achievability.

2. CHANNEL MODEL AND MAIN RESULT

Random variables are written in upper case letters, while their
realizations are depicted in lower case. We denote by P (•)
the probability of an event and byE [•] andV [•] the expected
value and variance of any random variable. Where it is clear
from the context, we abbreviate the event X = x by x. By
H(•) we refer to the entropy of a random variable and byH(p)
for 0 ≤ p ≤ 1 to the binary entropy function.

The input of the DNA storage channel are M sequences
XL

1 , . . . , X
L
M where each XL

i ∈ ΣL, i ∈ [M ] is a vector of
length L over the alphabet Σ. From these input sequences, a
total of N sequences are drawn with replacement, each uni-
formly at random, and received with errors. Denote by Ij ∈
[M ] i.i.d. uniform random draws with P (Ij = i) = 1

M for
all j ∈ [N ] and i ∈ [M ], where Ij depicts the input se-
quences which has been drawn in the j-th draw. The output
sequences Y Lj , j ∈ [N ] then satisfy Y Lj |XL

Ij
∼ BSC(p), i.e.,

each received sequence Y Lj is obtained by drawing a random
input sequenceXL

Ij
and distorting it through a binary symmet-

ric channel (BSC) with crossover probability p. For notational
convenience, we comprise all input and output sequences to
XML = (XL

1 , . . . , X
L
M ) and Y NL = (Y L1 , . . . , Y

L
N ).

Throughout the paper we will use the random variables
Di = |{j ∈ [N ] : Ij = i}|, i ∈ [M ], which count the num-
ber of times the i-th input sequence has been drawn and Qd =
|{i ∈ [M ] : Di = d}|, d = 0, . . . , N , that denote the num-
ber of input sequences that have been drawn a total of d times.



Note that insertion, deletion errors and non-binary alphabets
are not discussed here. The latter extension for symmetric
channels however is directly obtained using similar methods
as in this paper and is omitted for brevity. An error-correcting
code for this channel is a set C ⊆ ΣML and we define its rate
to be R = log |C|

ML . With these definitions, the Shannon capac-
ity can be defined as usual as the supremum over all achievable
rates. Here we show that the capacity upper bound from [9] is
tight by proving its achievability. In particular, our main result
is stated in Theorem 1.

Theorem 1. Let N = cM , and M = 2βL for some fixed
constants 0 < c, 0 ≤ p < 1

8 and 0 < β < 1−H(4p)
2 . Then, the

Shannon capacity is given by

C =

∞∑
d=0

pc(d)Cd − β(1− e−c), (1)

where pc(d) = e−ccd

d! is the probability mass function of the
Poisson distribution and Cd denotes the capacity of the bino-
mial channel with d draws and error probability p

Cd = 1 +

d∑
k=0

(
d

k

)
pk(1− p)d−k log

1

1 + pd−2k(1− p)2k−d
.

3. PROOF OF ACHIEVABILITY
Before proving the achievability rigorously, we first explain
the idea of the proof. First note that the achievability of the
upper bound is non-trivial as the DNA-storage channel does
not fall under classical discrete (memoryless) channels. We
will analyze the error probability of a decoder using a ran-
dom codebook [17] and a special decoder that is suitable for
the DNA-storage channel. The decoder first combines the re-
ceived sequences Y NL to clusters ẐM̂ = (Ẑ1, . . . , ẐM̂ ) of se-
quences with a maximum Hamming distance of roughly 2pL,
i.e., d(Y Li , Y

L
j ) . 2pL for all Y Li , Y

L
j ∈ Ẑk. We then assign

a measure of typicality between a codeword XML ∈ ΣML

and clusters ẐM̂ by counting the number of sequences XL
i

that could potentially be the unique origin of a cluster Ẑk. If,
for a codeword, the number of matches is larger than roughly
M(1 − e−c), which corresponds of the number of expected
non-empty clusters, the decoder will decide for this codeword.
The analysis shows that the decoder decides for the correct
codeword with high probability and for any other codeword
with very small probability.

To start with, we summarize some standard bounds on the
conditional probability, which will be used several times later.

Lemma 1. For any events A ,ℬ, P (A |ℬ) satisfies

P (A )−P (ℬc) ≤ P (A |ℬ) ≤ P (A )

P (ℬ)
.

Let in the following δ = p+ ε, α = 2δ+ ε and γ = 2α+ ε
be constants for some ε > 0. Consider Algorithm 1, which
greedily picks the first output sequence and then adds other
output sequences, such that their maximum distance is less
than αL. These sequences are combined to a cluster ẑ1 and
all elements in ẑ1 are removed as candidates for succeeding

Algorithm 1 Clustering algorithm
1: Input: N received sequences yNL; cluster radius αL
2: Output: M̂ Clusters ẑ1, . . . , ẑM̂
3: M̂ ← 0
4: S ← [N ]
5: while S 6= ∅ do
6: M̂ ← M̂ + 1
7: for j ∈ S do
8: if d(yLj , y

L
k ) < αL ∀ k ∈ ẑ

M̂
then

9: ẑ
M̂
← ẑ

M̂
∪ {j}

10: S ← S \ ẑ
M̂

clusters. The procedure successively continues to form clus-
ters ẑ2, . . . , ẑM̂ on the remaining sequences with the same
procedure until no more sequences are present.

Based on Algorithm 1, we now define the following de-
coder dec(C, yNL) that decodes yNL into a code C ⊆ ΣML.
We first introduce the notion of typicality between a cluster
of d received sequences zd = {yL1 , . . . , yLd } and an input se-
quence xL ∈ ΣL. Let XL = (X1, . . . , XL) be a uniform
random vector with P

(
XL = xL

)
= 2−L for all xL ∈ ΣL.

Further, for d ∈ N0 let Zd = {Y L1 , . . . , Y Ld } be the output of
the binomial channel with d draws, where Y Li |XL ∼ BSC(p)
are independent realizations of the BSC with the same input
XL. Abbreviate by P

(
xL, zd

)
= P

(
XL = xL,Zd = zd

)
the joint distribution of the binomial channel (cf. [18]) and by
P
(
xL
)

and P
(
zd
)

the marginal distributions. Based on this
distribution, we define jointly typical sequences (cf. [17]) by

Adε =

(xL, zd) :

∣∣− logP
(
xL
)
−H(XL)

∣∣ < εL,∣∣− logP
(
zd
)
−H(Zd)

∣∣ < εL,∣∣− logP
(
xL, zd

)
−H(XL,Zd)

∣∣ < εL


for d > 0. Further we set A0

ε = ∅ such that empty clusters
cannot be typical with any input sequence. Note that the first
condition is always fulfilled, as − logP

(
xL
)

= H(XL) =
L. Let ẑM̂ = (ẑ1, . . . , ẑM̂ ) be M̂ ∈ N0 clusters, where each
cluster ẑi ⊆ ΣL is a multi-set of sequences of length L. Using
the joint typicality between an input sequence and a cluster, we
can define the bipartite graphGtyp(xML, ẑM̂ ) withM vertices
on the left and M̂ vertices on the right, where two vertices i
and k are connected if (xLi , ẑk) ∈ A|ẑk|ε . The graph naturally
induces a measure of typicality between xML and ẑM̂ by the
size of its largest matching ν(Gtyp(xML, ẑM̂ )). Abbreviate
the joint typicality by T((xML, ẑM̂ )) , ν(Gtyp(xML, ẑM̂ ))

in the following. T((xML, ẑM̂ )) can be viewed as the number
of clusters that can be matched to a unique input sequence that
is typical with respect to the multi-draw channel. With this
measure, we define a measure of typicality between M input
sequences and N output sequences by

Aε = {(xML, yNL) : T(xML, ẑM̂ ) ≥M(1− e−c − ε)},

where ẑM̂ is the result of Algorithm 1 with input yNL.
Define now a decoder that decodes received sequences

yNL to codewords, that are typical with the transmitted



word dec(C, yNL) = {xML ∈ C : (xML, yNL) ∈ Aε}.
The decoder outputs the unique codeword dec(C, yNL),
if |dec(C, yNL)| = 1 and fails otherwise. We are now
ready to compute the average error probability over all code-
books under this decoder. We evaluate the average error
probability using a random coding argument. Let C =
{XML(1), . . . , XML(2MLR)} be a random codebook, where
each codeword XML(w) is chosen uniformly and indepen-
dently with probability distribution

P
(
XML(w) = xML

)
= 2−ML,

for all xML ∈ ΣML and w ∈ [2MLR]. Let W ∈ [2MLR]
be the message, chosen uniform at random. The average error
probability is then given by

P (E) = P (E|W = 1) .

due to the symmetric nature of the random codebook. Let now
Y NL be the result of transmitting XML(1) over the channel
and define the event Jw = {(XML(w), Y NL) ∈ Aε}. Addi-
tionally, we omit the index for the first codeword for simplicity
and thus write, e.g., XML instead of XML(1) in the follow-
ing. The average error probability is then given by

P (E|W = 1) = P (J c
1 ∪ J2 ∪ · · · ∪ J2MLR |W = 1)

≤ 1−P (J1|W = 1) +P (J2 ∪ · · · ∪ J2MLR |W = 1) .

We start by bounding P (J1|W = 1) from below. Let in the
following ZM = (Z1, . . . ,ZM ) with Zi = {Y Lj : Ij = i}
be the clusters of sequences with the same origin and ẐM̂ =

(Ẑ1, . . . , ẐM̂ ) with Ẑ1, . . . , ẐM̂ ⊆ ΣL be M̂ disjoint clus-
ters, i.e., Ẑk1 ∩ Ẑk2 = ∅ for all k1 6= k2. For now, think of
these as arbitrary clusters, however later these will be the out-
put of Algorithm 1. Consider now the tripartite layered graph
Glay(XML, ZM , ẐM̂ ) with M vertices on the left, M − Q0

vertices in the middle and M̂ vertices on the right. We con-
nect a vertex i on the left with a vertex j in the middle, if
(XL

i ,Zj) ∈ A
|Zj |
ε . We further connect a vertex j in the mid-

dle with a vertex k on the right, if Zj = Ẑk. In the following,
we call a cluster Ẑk correct, if the degree of k in the above
graph is at least 1, i.e., it contains exactly all sequences that
originate from one input sequence. Let H be the size of the
largest matching between vertices on the left and the middle
and G be the number of correct clusters, i.e., the number of all
vertices on the right that have degree at least 1. The following
lemma establishes a connection between G,H and the joint
typicality of input sequences and clusters T(XML, ẐM̂ ).

Lemma 2. The joint typicality of XML and ẐM̂ is at least

T(XML, ẐM̂ ) ≥ H +G− (M −Q0).

Conversely, the joint typicality is bounded from above by

T(XML, ẐM̂ ) ≤ M̂ −G+H.

Proof. We start with the observation that each correct cluster
Ẑk, whose corresponding original cluster Zj is jointly typi-
cal with an input sequence XL

j , accounts for one element in
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Fig. 2. Illustration of the graph Glay(XML, ZM , ẐM̂ ). The
solid lines highlight edges, which contribute to the joint typi-
cality T(XML, ẐM̂ ).

T(XML, ẐM̂ ). Let G be the vertices in the middle which
belong to the largest matching between the middle and right
vertices and let H be the vertices in the middle which belong
to the largest matching between the middle and left vertices.
With this definition,

ν(Gtyp(XML, ẐM̂ )) ≥ |H ∩ G| = |H|+G− |H ∪ G|
(a)

≥ |H|+G− (M −Q0)
(b)
= H +G− (M −Q0),

where in inequality (a) we used that H and G contain only
clusters, which have at least 1 sequence and thus |H ∪ G| ≤
M−Q0. Equality (b) follows from the fact thatH = H , since
all vertices in the middle have right-degree at most 1, since
Ẑk1 6= Ẑk2 for any k1 6= k2 ∈ [M̂ ] by the definition of the
clusters ẐM̂ . On the other hand

T(XML, ẐM̂ ) ≤ H + M̂ −G,

since the number of correct clusters, which can be matched to
an input sequence is at most the size of the largest matching on
the left H . Finally, there are M̂ −G incorrect clusters, which
potentially could also add to the joint typicality.

We continue by analyzing Algorithm 1 and bound the
number of correct clusters it produces from below. To do so,
we require the following entities. Denote by U ⊆ ΣL the ran-
dom variable which holds all output sequences, which were
received with an untypical amount of errors, i.e., U = {Y Lj :

j ∈ [N ], |d(XL
Ij
, Y Lj ) − pL| > εL}. Further denote by S the

event that d(XL
i , X

L
j ) ≥ γL for all i, j ∈ [M ] with i 6= j.

Lemma 3. Let Y NL be the result of XML. Then, given the
event S , Algorithm 1 produces at least G ≥ M − Q0 − 2|U|
correct clusters. Further, the total number of clusters is at
most M̂ ≤M −Q0 + |U|.

The proof follows from a careful analysis of the clustering
algorithm and is omitted for brevity. Hence, by Lemma 2 and
3, given S , Algorithm 1 produces at least H − 2|U| typical



clusters. We obtain

P (J1|W = 1) = P
(
(XML, Y NL) ∈ Aε

)
≥ P

(
(XML, Y NL) ∈ Aε|S

)
P (S )

≥ P
(
H − 2|U| ≥M(1− e−c − ε)|S

)
P (S )

Note that the random variables H and |U|, are in general sta-
tistically dependent as sequences with an untypical amount of
errors relate to untypical clusters. However, we circumvent
this obstacle as follows.

P
(
H − 2|U| ≥M(1− e−c − ε)|S

)
≥ P

(
H ≥M(1− e−c − ε/2) ∧ |U| ≤Mε/4|S

)
= 1−P

(
H < M(1− e−c − ε/2) ∨ |U| > Mε/4|S

)
(a)

≥ 1−P
(
H < M(1− e−c − ε/2)|S

)
−P (|U| > Mε/4)

(b)

≥ P
(
H≥M(1− e−c − ε/2)

)
−P (S c)−P (|U|>Mε/4) ,

where we used in inequality (a) that |U| only depends on the
realizations of the errors from the BSC and thus is independent
of S and in (b) we used Lemma 1. We now compute P (S ).

Lemma 4. Let 2β < 1−H(γ). For any ε > 0 and large L,

P (S ) ≥ 1− ε.

The proof uses standard counting arguments and is omitted
for brevity. Next, we bound the probability of having many
pairs of jointly typical input sequences and output clusters.

Lemma 5. For any ε > 0 and for sufficiently large M

P
(
H ≥M(1− e−c − ε/2)

)
≥ 1− ε.

Proof. Let H ′ = |{i ∈ [M ] : (XL
i ,Zi ∈ ADi

ε )}| be the
number of clusters that are jointly typical with their original
input sequence. Using H ′ ≤ H and P

(
(XL

i ,Zi) ∈ Adiε
)
→

1 due to the joint asymptotic equipartition property [17, Thm.
7.6.1] of the binomial channel yields the lemma.

Finally |U| is a binomial distribution withN trials and suc-
cess probability P

(
|d(XL

Ij
, Y Lj )− pL| ≥ εL

)
≤ e−Lε

2/2 →
0 for large L and thus P (|U| > Mε/4) ≤ ε for large enough
M . Putting everything together, for large enough M ,

P (J1|W = 1) ≥ (1− 3ε)(1− ε)

and thus P (J1|W = 1)→ 1 for M →∞.

Now we turn to bound P (J2 ∪ · · · ∪ J2MLR |W = 1)
from above. Denote by U = {U : |U| ≤ εM} the event that
the number of sequences in U is less than εM . Then,

P (J2 ∪ · · · ∪ J2MLR |W = 1)

(a)

≤ P (J2 ∪ · · · ∪ J2MLR |W = 1,S ,U) +P (S c ∪Uc) .

where (a) follows from Lemma 1. Denoting by Q the event
from [9, Lemma 2], we obtain

P (J2 ∪ · · · ∪ J2MLR |W = 1,S ,U)

≤
2MLR∑
w=2

∑
dM∈Q

P
(
Jw|W=1,S , DM=dM ,U

)
P
(
dM
)
+P (Qc) .

Combining Lemma 2 and Lemma 3 we obtain for any w ≥ 2

P
(
Jw|W = 1,S , DM = dM ,U

)
= P

(
T(XML(w), ẐM̂ ) ≥M(1− e−c − ε)|S , DM=dM ,U

)
≤ P

(
H + 3|U| ≥M(1− e−c − ε)|S , DM = dM ,U

)
≤ P

(
H ≥M(1− e−c − 4ε)|S , DM = dM ,U

)
(a)

≤
P
(
H ≥M(1− e−c − 4ε)|DM = dM

)
1−P (S c)−P (Uc)

,

where we used Lemma 1 in inequality (a) to resolve the depen-
dency on the events S and U . We continue by discussing the
distribution of H with the help of the following experiment.
Let the clusters ZM be given and choose a random codeword
XML(w). Each XL

i (w) of XML(w) is an independent ran-
dom sequence, that can be jointly typical with one of the clus-
ters. Abbreviate M ′ ,M(1− e−c− 4ε) and letM⊆ [M ] be
the set of indices such that |M| = M ′ and 0 < di ≤ dj for all
i ∈ M and all j ∈ [M ] \M. Further let ℋ be the event that
there are at least M ′ positions i ∈M, where XL

i (w) is jointly
typical with Zi. The probability of ℋ is at most

P
(
ℋ |DM=dM

)
≤
M−q0∑
j=M ′

(
M−q0
j

)∏
i∈M

P
(
(XL

i ,Zi)∈Adiε
)
.

Since both XL
i and Zi are independent and have the marginal

distributions of the input, respectively output of the bino-
mial channel with di draws, the probability of joint typicality
is given by P

(
(XL

i ,Zi) ∈ Adiε
)
≤ 2−L(Cdi

−3ε) [17, Thm.
7.6.1]. Consequently, for large enough M

P
(
ℋ |DM=dM

)
≤ 2M2−L

∑
i∈M(Cdi

−3ε),

where we used that the binomial sum is trivially at most 2M .
For the exponent, for dM ∈ Q we obtain∑
i∈M

(Cdi − 3ε)
(a)

≥
∑
i∈M

(Cdi − 3ε) +
∑

i/∈M,Di>0

(Cdi − 1)

≥
∑

i:Di>0

Cdi − 8Mε
(b)

≥ M

N∑
d=1

pc(d)Cd − 9Mε

where (a) follows from Cdi ≤ 1 for any di ≥ 0 and (b)
follows from the fact that qd/M → pc(d) (and in particular
q0/M → e−c) for all dM ∈ Q as proven in [9, Lemma 2].
By the definition of ℋ only the joint typicality of an input
sequence XL

i with its corresponding cluster Zi has been con-
sidered. Since any permutation of the input sequences is also
possible, we obtain for large enough M

P
(
H ≥M ′|DM = dM

)
≤MM−q0P

(
ℋ |DM = dM

)
(a)

≤ 2−LM(
∑N

d=1 pc(d)Cd+10ε)+M(1−e−c) logM = 2−LM(C+10ε),

where (a) follows again from the Poissonization of q0. Putting
everything together, we obtain

P (J2 ∪ · · · ∪ J2MLR |W = 1) ≤ 2−LM(C−R+10ε) + 3ε

for large enough M . Since we can choose ε as small as we
want, there exists a code family with R < C, such that the
error probability tends to 0, which proves the achievability.
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