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On the Low-Rate Shannon Limit for Binary Intersymbol Interference Channels
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Abstract—For a discrete-time, binary-input Gaussian channel this limit can even be achieved with binary signaling (e.g., see
with finite intersymbol interference, we prove that reliable com- McEliece [3, Problem 4.14]).

munication can be achieved if and only ifE;, /No > log2/Gopt, For the discrete-time, finite intersymbol interference (ISI)
for some constantG,+ that depends on the channel. To determine . . .
channel with AWGN, described by the equation

this constant, we consider the finite-state machine which represents

the output sequences of the channel filter when driven by binary in- Y

puts.We then defineG,p¢ as the maximum output power achieved Tk = Z hizrk—i +

by a simple cycle in this graph, and show that no other cycle or i=0

asymptotically long sequence can achieve an output power greater where z;, is the input, v, the noisy output,{ho,...,h,}

;[hag t?is.WetE)ro;/.ideﬁxamp:jle?hwhere the t;inarybinput clonstlr.aint_ the channel impulse response (also denotedhbp) =
eads to a suboptimality, and other cases where binary signaling is s~v 5 .7y ; ; 2
justas effectivepas reaI)/SignaIing at very low signal-to-ynoig'lse rati%s. %é;/\(;nhltﬁai, t?]réd ggp:ﬁt? %V;Nbgltgc\rl]?g/aer:f%yy ,“\I/t/;\?e\;\;i(lelliln 9
Index Terms—information rates, intersymbol interference (ISI), i.e., by distributing the input power at frequencies where the
magnetic recording, modulation coding. response is highest [1], [4]. Accordingly, (as we will also
show), if Gax IS the peak power gain (or minimum loss) of
the filter, then one should expect the low-rate Shannon limit
) ) N ) ) _to belog 2/Gmax. Naturally, one is then curious whether this
FOR the discrete-time, additive white Gaussian noisgnit changes when a binary input constraint is introduced, i.e.,
(AWGN) channel with noise varianee and a unit power whenz; e {+1}. Although tighter bounds on the channel
input constraint, Shannon proved that reliable communicati@gpacity in this case have recently been discovered [5]-[8], this

. INTRODUCTION

cannot be achieved unless the code rais less than particular question has remained unanswered.
Caw 1) 110 (14 1 1 In this letter, we prove that the low-rate Shannon limit for bi-
AWGN | 2 | = 57982 2 ) nary-input ISI channels equatss 2/ Gopt, WhereG,,,,¢ is a con-

Now, if we consider the signal-to-noise ratio (SN infor-  Stant depending on the channelimpulse response. More specifi-
mation bit defined asfZ, /N, = 1/(2Ro?), then this condition cally, as discussed in Section Il, if a finite-state machme is used
requires thatZ, /N, be greater than to.repres_ent _the ogtput sequences of the chgnnel filter when
1 driven with binary inputs, therd, is the maximum power

= (2) achieved by a simple cycle. It then follows that no cycle or
20awaN (o—_) o? asymptotically long sequence can have output power greater
By letting the noise powes? — oo, we find thatCawan —  thanGops. In Section 11, we use these results to conclude that
0, but thatyawen(c?) decreases monotonically to the limitthe low-rate Shannon limitis at ledst; 2/ Gt . To achieve this
log2 ~ —1.59 dB. Hence, we refer to this as thew-rate Vvalue, we then introduce a concatenated coding scheme con-
Shannon limitbecause reliable communicationaaty nonzero Sisting of a random outer code and an inner modulation code
rate is possible if and only ifs, /Ny > log2.1 Interestingly, based on a simple cycle with output pow&s,. Finally, we

_ _ o _note how these arguments can be extended to continuous-al-
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1//2 TABLE |
-1/0 Py OPTIMAL SIMPLE CYCLES FORSOME ISI CHANNELS
C@\’/C)D 10 Channel || Gz | Gopt | Gap (dB) 1 Input
PR4 2 2 0 +,4,--
V2 +rbr
' . ) EPR4 || 64/27 2 0.75 +,4,+,-
Fig. 1. State graph for the dicode chanhéD) = (1/v/2)(1 — D), with e
labels for input and channel filter output. The only optimal simple cycle, starting 5 LN )
from state—1, has input sequence (3,1) andG,,. = 2. E"PR4 || 27/10 | 24/10 0.51 tott
PR4: h(D) = %(1 — D?)
As an example, Fig. 1 shows the state graph for the dicode EPR4: h(D) = 31 =D)L+ D)
channel, withh(D) = (1/v/2)(1 — D). E’PR4: (D) = 75(1 - D)(1+ D)

Definition 1: A simple cycle, i.e., a cycle in which all edges
are distinct, isoptimalif it achieves the maximum power OVer| ihe last inequality,,y, is the smallest output power among

all simple cycles. S .
In graph theory, cycles which achieve this maximum powélrII edges. Dividing through bi(s) gives

are also known asmaximum mean-weight cycleand can be G(s) < Gope + L(Go ¢ — Gnin)-

found using dynamic programming techniques, e.g., Karp’s - (s

algorithm [9]. The next two lemmas, which also arise in thene jghtmost term is always positive, but it can be made arbi-
performance analysis of digital systems (e.g., see [10]), W{}Iar“y small by makings sufficiently long. 0

demonstrate the importance of optimal simple cycles.
Lemma 1:Let G, be the average power of an optimal
simple cycle. For any finite-length cycte G(c) < Gopt.
Proof: Consider the case whanis not simple. Specifi- A. Binary Input ISI Channels
cally, forsomei andj, 0 <i < j < L =I(c),andsomestai& e now state the main result of this paper.
we haver; = c; = a. We can then divide into three segments,  Theorem 1:For a binary-input, finite 1SI channel, consider
where the middle segment; is a cycle from time indexto j,  the finite-state machine that represents output sequences from

I1l. L ow-RATE SHANNON LIMIT

i.e.,ur = (¢, ..., ¢;). Theremaining two segments can be conthe channel filter. Reliable communication can be achieved if
nected to form another cycle@y = (co, .- -, i ¢jt1,---,¢L).  and only if 5, /N > 10g 2/Gopt, WhereG,,, is the maximum
The output power ok can now be described in terms of theyytput power over all simple cycles in this state graph.
output powers ofi; andu, Before we proceed with the proof, let us consider some exam-
I(uy) I(ug) ples. For the dicode channel with,,., = 2 (Fig. 1), an optimal
G(c) = I(c) G(uy) + I(c) G(uz). ®) simple cycle has?,,; = Gmax, and inputs (1-1). However,

. . ) Table | shows some channels with,,; < Gunax, and hence
Notice thatG(c) is a weighted average betwe€f{(u;) and pinary signaling can impose a penalty. Also, unlike PR4 and
G(uz), becausd(ui) + I(uz) = I(c). Consequently, either popry EPR4 has several optimal simple cycles.
G(u1) > G(c) or G(uy) > G(c) or G(wy) = G(uz) = G(e). Proof: Since our channel is an indecomposable fi-
S_o Iet us set’ to the derived cycle with _Iarger (_)utput POWeryite.state channél, we know that its capacitypsi(1/0?)
which is at least as large &&(c). If we continue this decOmpo- gyigts and that reliable communication is possible if and only
sition onc’, etc., always choosing the derived cycle with larggg R < Cpisi(1/0?) [1, p. 178]. Of course, this condition is the
output power, we will eventually obtain a simple cyelewith (0 o requiring that, /N, be greater than
G(c) < G(c') < G(cs) < Gopt- O
Lemma 2:For anye > 0, there exists amg such that, vpisi(0?) = 1 )
G(s) < Gopt + € for any sequence of lengthn > ng. 2Cps1 (57) 02
Proof: We can always concatenate another segmetiot Therefore, we only need to prove that
the end ofs, so that the combined sequence becomes a cycle '
(this is also referred to as “terminating”). Since the state is de-
termined by the last inputs, we can choose this such that
[(u) < v. From Lemma 1, we know that this newly formed ) . ] )
cycle cannot have a larger average power tfiap.. Using an e do this by showing thanf ysisi(o) > log2/Gope, and

log 2
Gopt

4)

inf ~psi(o”) =
02>0

T 2 .
expansion similar to (3) we can express this as thatlim,z oo vB1s1(0°) < log2/Gop.
(Lower Bound)As a consequence of Lemma 2, we can never
[(u) (u) I(s) G(3) < Gopt. make our codelength arbitrarily long while maintaining an
l(u) +1(s) I(u) +I(s) - output power greater tha@,:. If we consider the channel

filter as part of the source, then we equivalently have an AWGN

Rearranging terms ) : .
channel with power constraif? < G,p¢, and an additional

l(S)G(S) < (l(u) + l(S)) GOpt - l(u)G(u) input constraint. Thu@BISI(l/O% < OAV\,'GN(Gopt/O'Q).
- Z<S)G°pt + l(u) (Gor’t B G(u)) 2Although Gallager only addresses channels with discrete alphabets, his re-
<I(8)Gopt + V(Gopt — Gmin). sults can be extended to our case.
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This also implies that B. Extensions to Larger Alphabets

Theorem 1 can easily be extended to finite input alphabets of
: the formAy, = {—an, ..., —a1,a1,...,ap}, because sym-
7 5 metric alphabets allow us to construct an inner (binary) mod-
< g ) (5) ulation system which can achieleg 2/G,,,¢. Of course Gt

Gopt now corresponds to the finite-state machine for a channel filter
which equals log 2/G,,:, becauseyawan(o?) decreases driven by symbols irfy; . o _ .
monotonically tolog 2. In the case of real-valued §|gnallng with unit power, the

(Upper Bound)Let us now consider a concatenated codin@UtPut power of the channel filter can never exceg..
system which achieveB, /Ny > log2/Gop:. First, letay, € Hen(_:e, by reasoning similar to thz?\t in the proof of Theorem 1,
{%1} denote the data bit to be modulated, ang, denote an we find that reliable communication on ISI channels always

optimal simple cycle. It has a starting statg;, input sequence re%uwesﬁ’:,/Ntoh 2 log 2/?max'tAS fo[' the mfner qucljJ.Iath?n
Xopt = (Topt.1s- -« Tope.r.), @nd OULPUL SEQUENQE,¢. AlSO, code, rather than using long truncations of a periodic binary

letu = (uq,..., u,) be a lengthv input sequence which puts>€94€Nce: We can instead truncaf@ cos(wmaxn), where
the channei in étateo N Wmax € [-m, 7] isa peak_ frequengy of the channel filter. Since
The inner modulalzion code is then defined as follows 11h|s sequence asymptotlcally reallz_es an o_utput powéirngg‘,.(, :

. - 18ur concatenated system will achieve reliable communication
transmita;,, we send for any By /No > 108 2/Gmas.
. 7$01)t,L)- (6)
That is, we force the channel into statg,. (or —s,p¢), and
then transmit,x,p¢. This results in the channel outpuy, =
aryr +ng, where the components af, are AWGN terms with bi
variances?. Also, the latterl, symbols ofy, are always equal E
t0 yopt. The firstr symbols, however, depend aen_,, which

1
inf

>
s Gop
7*>0262C swan ( -”)

inf vps1(a?)
a2>0

inf 1
n AWGN
02>0 Gopt K

apX = ag - (Uh -5 Uy, Topt, 1, - -
IV. CONCLUSION

We prove that reliable communication on a discrete-time,
nary-input finite ISI channel can be achieved if and only if
»/No > log2/Gopt, WhereGop, is the maximum output
_ A ! power of asimple cycle in the finite-state machine that represents
determines the channel state prior to sending (6). the channelfilter output sequences. We begin by showing that no

To demodulate, we use the vector, cycle and no asymptotically long sequence can have an output
* _ 1 (0 ) @) power greater thav,,;, and from this result we prove that the

v/ LGopy ~—~— low-rate Shannon limit must be at ledst; 2/G,,¢. We then
v zeros provide a semiconstructive method to achieve the limit, using

with the received sequence to form ri(y”) a modulator/demodulator based on simple cycles with output
v LGopiar + nj.. As aresultp, is an AWGN noise term with power Gi,,,,;. We show by example that binary signaling may
variances?. Notice that we discarded information about ther may not incur a penalty. Finally, we explain how the proof
forcing sequence. may be extended to continuous-alphabet, power-constrained ISI

Clearly, this inner modulation scheme results in a binarghannels, for which the low-rate Shannon limikig 2/ G ax.-
input AWGN channel with capacitﬂb(LGopt/(f?). This im-
plies that the overall capacity of thmoncatenated systeim
(1/(L + v))Cy(LGopt /0?), and thus, we can achieve reliable
communication at any;, /N, greater than

i L+v i L+v o2
m ————— = lim )
02 —00 20() (Ligpt) o2 02—00 LGopt " LGopt

y

— T _
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