
1962 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 12, DECEMBER 2003

Transactions Letters________________________________________________________________

On the Low-Rate Shannon Limit for Binary Intersymbol Interference Channels
Joseph B. Soriaga, Student Member, IEEE, Henry D. Pfister, Student Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—For a discrete-time, binary-input Gaussian channel
with finite intersymbol interference, we prove that reliable com-
munication can be achieved if and only if 0 log 2 opt,
for some constant opt that depends on the channel. To determine
this constant, we consider the finite-state machine which represents
the output sequences of the channel filter when driven by binary in-
puts.We then define opt as the maximum output power achieved
by a simple cycle in this graph, and show that no other cycle or
asymptotically long sequence can achieve an output power greater
than this.We provide examples where the binary input constraint
leads to a suboptimality, and other cases where binary signaling is
just as effective as real signaling at very low signal-to-noise ratios.

Index Terms—Information rates, intersymbol interference (ISI),
magnetic recording, modulation coding.

I. INTRODUCTION

FOR the discrete-time, additive white Gaussian noise
(AWGN) channel with noise variance and a unit power

input constraint, Shannon proved that reliable communication
cannot be achieved unless the code rateis less than

(1)

Now, if we consider the signal-to-noise ratio (SNR)per infor-
mation bit, defined as , then this condition
requires that be greater than

(2)

By letting the noise power , we find that
, but that decreases monotonically to the limit

dB. Hence, we refer to this as thelow-rate
Shannon limit, because reliable communication atanynonzero
rate is possible if and only if .1 Interestingly,
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1Recall that an identical result holds for the AWGN waveform channel, in the
limit of infinite signal bandwidth [1, eq. 8.2.10]. The low-rate Shannon limit is
also related to thecapacity per unit costdefined by Verdú [2].

this limit can even be achieved with binary signaling (e.g., see
McEliece [3, Problem 4.14]).

For the discrete-time, finite intersymbol interference (ISI)
channel with AWGN, described by the equation

where is the input, the noisy output,
the channel impulse response (also denoted by

), and the AWGN with variance , it is well
known that the capacity can be achieved by “waterfilling,”
i.e., by distributing the input power at frequencies where the
response is highest [1], [4]. Accordingly, (as we will also
show), if is the peak power gain (or minimum loss) of
the filter, then one should expect the low-rate Shannon limit
to be . Naturally, one is then curious whether this
limit changes when a binary input constraint is introduced, i.e.,
when . Although tighter bounds on the channel
capacity in this case have recently been discovered [5]–[8], this
particular question has remained unanswered.

In this letter, we prove that the low-rate Shannon limit for bi-
nary-input ISI channels equals , where is a con-
stant depending on the channel impulse response. More specifi-
cally, as discussed in Section II, if a finite-state machine is used
to represent the output sequences of the channel filter when
driven with binary inputs, then is the maximum power
achieved by a simple cycle. It then follows that no cycle or
asymptotically long sequence can have output power greater
than . In Section III, we use these results to conclude that
the low-rate Shannon limit is at least . To achieve this
value, we then introduce a concatenated coding scheme con-
sisting of a random outer code and an inner modulation code
based on a simple cycle with output power . Finally, we
note how these arguments can be extended to continuous-al-
phabet, power-constrained ISI channels.

II. OUTPUT POWER OFSTATE SEQUENCES

Let us represent the input and channel filter output se-
quences with a finite-state machine, where the current state

. Note that thechannel filter output,
which we denote , is different from the channel output

. Now, we can label each edge ( , ) in the
finite-state machine with an input , a channel filter
output , or functions thereof. For a state sequence
, the length equals the number of edges, and the output

power is defined as
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Fig. 1. State graph for the dicode channelh(D) = (1=
p
2)(1 � D), with

labels for input and channel filter output. The only optimal simple cycle, starting
from state�1, has input sequence (1,�1) andG = 2.

As an example, Fig. 1 shows the state graph for the dicode
channel, with .

Definition 1: A simple cycle, i.e., a cycle in which all edges
are distinct, isoptimal if it achieves the maximum power over
all simple cycles.

In graph theory, cycles which achieve this maximum power
are also known asmaximum mean-weight cycles, and can be
found using dynamic programming techniques, e.g., Karp’s
algorithm [9]. The next two lemmas, which also arise in the
performance analysis of digital systems (e.g., see [10]), will
demonstrate the importance of optimal simple cycles.

Lemma 1: Let be the average power of an optimal
simple cycle. For any finite-length cycle, .

Proof: Consider the case whenis not simple. Specifi-
cally, for some and , , and some state,
we have . We can then divide into three segments,
where the middle segment is a cycle from time index to ,
i.e., . The remaining two segments can be con-
nected to form another cycle, .

The output power of can now be described in terms of the
output powers of and

(3)

Notice that is a weighted average between and
, because . Consequently, either

or or .
So let us set to the derived cycle with larger output power,

which is at least as large as . If we continue this decompo-
sition on , etc., always choosing the derived cycle with larger
output power, we will eventually obtain a simple cyclewith

.
Lemma 2: For any , there exists an such that,

for any sequenceof length .
Proof: We can always concatenate another segmentto

the end of , so that the combined sequence becomes a cycle
(this is also referred to as “terminating”). Since the state is de-
termined by the last inputs, we can choose this such that

. From Lemma 1, we know that this newly formed
cycle cannot have a larger average power than . Using an
expansion similar to (3) we can express this as

Rearranging terms

TABLE I
OPTIMAL SIMPLE CYCLES FORSOME ISI CHANNELS

In the last inequality, is the smallest output power among
all edges. Dividing through by gives

The rightmost term is always positive, but it can be made arbi-
trarily small by making sufficiently long.

III. L OW-RATE SHANNON LIMIT

A. Binary Input ISI Channels

We now state the main result of this paper.
Theorem 1: For a binary-input, finite ISI channel, consider

the finite-state machine that represents output sequences from
the channel filter. Reliable communication can be achieved if
and only if , where is the maximum
output power over all simple cycles in this state graph.

Before we proceed with the proof, let us consider some exam-
ples. For the dicode channel with (Fig. 1), an optimal
simple cycle has , and inputs (1, 1). However,
Table I shows some channels with , and hence
binary signaling can impose a penalty. Also, unlike PR4 and

, EPR4 has several optimal simple cycles.
Proof: Since our channel is an indecomposable fi-

nite-state channel,2 we know that its capacity
exists, and that reliable communication is possible if and only
if [1, p. 178]. Of course, this condition is the
same as requiring that be greater than

Therefore, we only need to prove that

(4)

We do this by showing that , and
that .

(Lower Bound)As a consequence of Lemma 2, we can never
make our codelength arbitrarily long while maintaining an
output power greater than . If we consider the channel
filter as part of the source, then we equivalently have an AWGN
channel with power constraint , and an additional
input constraint. Thus, .

2Although Gallager only addresses channels with discrete alphabets, his re-
sults can be extended to our case.
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This also implies that

(5)

which equals , because decreases
monotonically to .

(Upper Bound)Let us now consider a concatenated coding
system which achieves . First, let

denote the data bit to be modulated, and denote an
optimal simple cycle. It has a starting state , input sequence

, and output sequence . Also,
let be a length input sequence which puts
the channel in state .

The inner modulation code is then defined as follows. To
transmit , we send

(6)

That is, we force the channel into state (or ), and
then transmit . This results in the channel output,

, where the components of are AWGN terms with
variance . Also, the latter symbols of are always equal
to . The first symbols, however, depend on , which
determines the channel state prior to sending (6).

To demodulate, we use the vector,

(7)

with the received sequence to form
. As a result, is an AWGN noise term with

variance . Notice that we discarded information about the
forcing sequence .

Clearly, this inner modulation scheme results in a binary-
input AWGN channel with capacity . This im-
plies that the overall capacity of theconcatenated systemis

, and thus, we can achieve reliable
communication at any greater than

(8)

where . But, according to McEliece
[3, Problem 4.14], the low-rate Shannon limit of the AWGN
channel can be achieved with binary signaling, i.e.,

as . Consequently, the limit in (8) equals
.

Furthermore, if we replace in (6) with repetitions
of , and correspondingly extend in (7), then our con-
catenated system can achieve reliable communication for any

.
Of course, the capacity of the concatenated system lower

bounds , by the data processing theorem [1, p. 80].
Hence, we can conclude that, for any

If we combine this with (5), then the conclusion (4) fol-
lows when . Of course, this also implies that

.

B. Extensions to Larger Alphabets

Theorem 1 can easily be extended to finite input alphabets of
the form , because sym-
metric alphabets allow us to construct an inner (binary) mod-
ulation system which can achieve . Of course,
now corresponds to the finite-state machine for a channel filter
driven by symbols in .

In the case of real-valued signaling with unit power, the
output power of the channel filter can never exceed .
Hence, by reasoning similar to that in the proof of Theorem 1,
we find that reliable communication on ISI channels always
requires . As for the inner modulation
code, rather than using long truncations of a periodic binary
sequence, we can instead truncate , where

is a peak frequency of the channel filter. Since
this sequence asymptotically realizes an output power of ,
our concatenated system will achieve reliable communication
for any .

IV. CONCLUSION

We prove that reliable communication on a discrete-time,
binary-input finite ISI channel can be achieved if and only if

, where is the maximum output
power of a simple cycle in the finite-state machine that represents
the channel filter output sequences. We begin by showing that no
cycle and no asymptotically long sequence can have an output
power greater than , and from this result we prove that the
low-rate Shannon limit must be at least . We then
provide a semiconstructive method to achieve the limit, using
a modulator/demodulator based on simple cycles with output
power . We show by example that binary signaling may
or may not incur a penalty. Finally, we explain how the proof
may be extended to continuous-alphabet, power-constrained ISI
channels, for which the low-rate Shannon limit is .
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