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Abstract—In this work, we present a new upper bound on the
minimum distance d of linear locally repairable codes (LRCs)
with information locality and availability. The bound takes into
account the code length n, dimension k, locality r, availability
t, and field size q. We use tensor product codes to construct
several families of LRCs with information locality, and then we
extend the construction to design LRCs with information locality
and availability. Some of these codes are shown to be optimal
with respect to their minimum distance, achieving the new
bound. Finally, we study the all-symbol locality and availability
properties of several classes of one-step majority-logic decodable
codes, including cyclic simplex codes, cyclic difference-set codes,
and 4-cycle free regular low-density parity-check (LDPC) codes.
We also investigate their optimality using the new bound.

I. INTRODUCTION

Locally repairable codes (LRCs) are a class of codes
in which any symbol of a codeword can be recovered by
accessing at most r other symbols, where r is a predetermined
value [5], [10], [12]. They have received considerable attention
in recent years due to their applications in distributed storage
systems. Several groups of authors have considered construc-
tions of LRCs and bounds on their properties [3]–[7], [10],
[12], [14], [15], [17].

In addition to their symbol locality, another important
property of LRCs is their symbol availability, meaning the
number of disjoint sets of symbols that can be used to recover
any given symbol. High availability is a particularly attractive
property for so-called hot data in a distributed storage network.
More precisely, a code C has all-symbol locality r and
availability t if every code symbol can be recovered from
t disjoint repair sets of other symbols, each set of size at
most r symbols. We refer to such a code as an (r, t)a-LRC. If
the code is systematic and these properties apply only to its
information symbols, then the code has information locality r
and availability t, and it is referred to as an (r, t)i-LRC.

Several recent works have considered codes with both
locality and availability properties. In [18], it was shown
that the minimum distance d of an [n, k, d] linear (r, t)i-LRC
satisfies the upper bound

d 6 n− k−
⌈

t(k− 1) + 1
t(r− 1) + 1

⌉
+ 2. (1)

In [13], it was proved that bound (1) is also applicable
to (n, M, d) non-linear (r, t)i-LRCs, where M denotes the
codebook size and k = logq M. In the same paper, it was
shown that if a linear (r, t)i-LRC has the property that each
repair set contains only one parity symbol, then d satisfies the
upper bound

d 6 n− k−
⌈

kt
r

⌉
+ t + 1, (2)

and codes achieving bound (2) were constructed using max-
imum distance separable (MDS) codes and Gabidulin codes.
For (r, t)a-LRCs over Fq with parameters (n, M, d), it was
shown in [16] that d satisfies

d 6 n−
t

∑
i=0

⌊
k− 1

ri

⌋
. (3)

There are several constructions of LRCs with availability.
In [17], two constructions of (r, 2)a-LRCs are proposed. One
relies on the combinatorial concept of orthogonal partitions,
and the other one is based on product codes. In [11], a class of
(r, t)a-LRCs is constructed from partial geometries. A family
of systematic fountain codes having information locality and
strong probabilistic guarantees on availability were introduced
in [1].

In this paper, we consider the problem of finding funda-
mental bounds and explicit code constructions for LRCs with
availability over a fixed alphabet. In Section II, we formally
define the problem and present new bounds on the dimension
k and the minimum distance d of [n, k, d]q linear (r, t)i-LRCs,
based on the framework established in [3]. Our bound on d
explicitly takes into consideration the code length n, dimension
k, locality r, availability t, and field size q. In Section III,
we use tensor product codes to construct various families
of (r, 1)i-LRCs, some of which are proved to have optimal
minimum distance from our bound. The same construction
structure can be naturally extended to construct (r, t)i-LRCs
with t > 1. In Section IV, we study the construction of (r, t)a-
LRCs. We show that the structure of one-step majority-logic
decoding is highly related to the availability of the code. We
review several families of one-step majority-logic decodable
codes and identify the locality and availability of these codes.
We conclude the paper in Section V. Due to space limitations,
proofs of many results in the paper are omitted.

II. BOUNDS FOR LRCS WITH INFORMATION LOCALITY
AND AVAILABILITY

We begin with some basic definitions and notational con-
ventions. We use the notation [n] to define the set {1, . . . , n}.
For a length-n vector v and a set I ⊆ [n], vI denotes the
restriction of the vector v to coordinates in the set I . A
linear code C over Fq of length n, dimension k, and minimum
distance d will be denoted by [n, k, d]q, and its generator
matrix is G = (g1, · · · , gn), where gi ∈ Fk

q is a column
vector for i ∈ [n]. We define kI (C) = logq |{cI : c ∈ C}|,
and, for simplicity, we write kI instead of kI (C) when C is
known from the context.

We follow the conventional definitions of linear LRCs with
availability, as established in [13], [16], [18].



Definition 1. The ith code symbol of an [n, k, d]q linear code
C is said to have locality r and availability t if there exist t
pairwise disjoint repair sets R1

i , . . . ,Rt
i ⊆ [n]\{i}, such that

(1) |R j
i | 6 r, 1 6 j 6 t, and (2) for each repair set R j

i ,
1 6 j 6 t, gi is a linear combination of gu, u ∈ R j

i .

Definition 2. Let C be an [n, k, d]q linear code. A set I ⊆ [n]
is said to be an information set if |I| = kI = k.
(a) The code C is said to have all-symbol locality r and
availability t if every code symbol has locality r and availability
t. We refer to C as a linear (r, t)a-LRC.
(b) The code C is said to have information locality r and
availability t if there is an information set I such that, for any
i ∈ I , the ith code symbol has locality r and availability t. We
refer to C as a linear (r, t)i-LRC.

It is straightforward to verify that the minimum distance d
of a linear (r, t)a-LRC satisfies d > t + 1. We now develop
new upper bounds on the dimension and minimum distance,
respectively, of linear (r, t)i-LRCs.

Lemma 3. Let C be an [n, k, d]q linear (r, t)i-LRC. For positive
integers x and y j, j ∈ Z+, define A = ∑

x
j=1(r− 1)y j + x and

B = ∑
x
j=1 ry j + x. If 1 6 x 6 d k−1

(r−1)t+1 e, 1 6 y j 6 t, j ∈
[x], and A < k, then there exists a set I ⊆ [n] with |I| = B
such that kI 6 A.

Now, let k(q)`−opt[n, d] denote the largest possible dimension

of an [n, k, d]q linear code, and let d(q)`−opt[n, k] denote the
largest possible minimum distance of such a code. Applying
Lemma 3, we get the following upper bounds on k and d for
[n, k, d]q linear (r, t)i-LRCs.

Theorem 4. For any [n, k, d]q linear (r, t)i-LRC, the dimension
satisfies

k 6 min
16x6d k−1

(r−1)t+1 e, 16y j6t, j∈[x]
A<k, x,y j∈Z+

{
A + k(q)`−opt[n− B, d]

}
(4)

and the minimum distance d satisfies

d 6 min
16x6d k−1

(r−1)t+1 e, 16y j6t, j∈[x]
A<k, x,y j∈Z+

d(q)`−opt[n− B, k− A].
(5)

Remark: When t = 1, bounds (4) and (5) apply to all
linear codes with information locality r. Bounds (4) and (5)
also hold for linear (r, t)a-LRCs.

III. CONSTRUCTION OF LRCS WITH INFORMATION
LOCALITY

Tensor product codes, first proposed by Wolf in [20], are a
family of codes defined by a parity-check matrix that is the
tensor product of the parity-check matrices of two constituent
codes. As shown in [20] and later [8], tensor product codes
offer a range of error correction and detection properties,
depending on the choice of the constituent codes. In this
section, we construct several families of (r, t)i-LRCs using
tensor product constructions. We focus on binary codes with
availability t = 1, but our constructions can be extended to
non-binary codes and codes with t > 1.
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Fig. 1. An (r, 1)i-LRC using Construction A. Information symbols are in
block I, local parity-check symbols are in block II, phantom symbols are in
block III, and global parity-check symbols are in block IV.

A. Construction of (r, 1)i-LRCs

Our general framework for constructing systematic linear
(r, 1)i-LRCs is depicted in Fig 1. We first specify an [n′, k′, d′]
systematic code as a base code, Cbase. If a parity-check symbol
of a systematic code is the sum of all information symbols, it
is referred to as an information-sum parity-check symbol. For
simplicity, let us first assume that Cbase has no information-
sum parity-check symbol. The following construction, which
is depicted pictorially in Fig. 1, produces an (r, 1)i-LRC of
length n = (k′ + 1)` + n′ − k′, dimension k = k′`, and
information locality r = k′.
Construction A

Step 1: Place an ` × k′ array of information symbols in
block I.

Step 2: For each row of information symbols,
(µi1, . . . ,µik′), 1 6 i 6 `, compute local parity-check
symbols pLi = ∑

k′
j=1 µi j, 1 6 i 6 `, and place them in the

corresponding row of block II.
Step 3: Encode each row of information symbols in

block I using Cbase, producing parity-check symbols
(pi1, . . . , pi,n′−k′), 1 6 i 6 `. Place these parity-check
symbols in block III. (These symbols are referred to as
phantom symbols because they will not appear in the final
codeword.)

Step 4: Compute a row of global parity-check symbols,
pG j = ∑

`
i=1 pi j, 1 6 j 6 n′ − k′, by summing the rows

of phantom symbols in block III. Place these symbols in
block IV.

Step 5: The constructed codeword consists of the symbols
in blocks I, II, and IV. 2

Note that for r|k, Pyramid codes are d-optimal (r, 1)i-
LRCs over sufficiently large field size [7]. A Pyramid code is
constructed by splitting a parity-check symbol of a systematic
MDS code into k

r local parity-check symbols. However, the
splitting operation is not guaranteed for binary codes. In
contrast, we take a different approach. We first design the local
parity-check symbols, and then construct the global parity-
check symbols.

If Cbase has an information-sum parity-check symbol, we
simply modify Step 3 of Construction A, as follows. After
encoding each row of information symbols in block I, define
the corresponding row of phantom symbols to be the computed
parity-check symbols with the information-sum parity-check
symbol excluded, and store them in block III. Then proceed
with the remaining steps in Construction A. We refer to
this modified construction as Construction A′. It is easy to



verify that the resulting code is an (r, 1)i-LRC with length
n = (k′ + 1)` + n′ − k′ − 1, dimension k = k′`, and
information locality r = k′. We now present constructions
of (r, 1)i-LRCs with specified minimum distances.

A trivial example of an (r, 1)i-LRC with d = 2 can be
constructed by choosing Cbase to be an [r + 1, r, 2] binary
single parity-check code. It is easy to see that Construction
A′ generates an (r, 1)i-LRC with parameters [n, k, d] = [(r +
1)`, r`, 2] and information locality r. From bound (5), with
x = `− 1 and y j = t = 1, j ∈ [x], d 6 d(2)`−opt[n− B, k−
A] = d(2)`−opt[r + 1, r] = 2, proving that the code is optimal
with respect to the minimum distance.

Next, we consider the family of (r, 1)i-LRCs obtained by
applying Construction A (or Construction A′, if appropriate)
to base codes Cbase with parameters [n′, k′, d′ = 3]. The
following lemma gives a lower bound on the minimum
distance of the resulting codes.
Lemma 5. If Cbase is an [n′, k′, d′ = 3] code, the (r, 1)i-
LRC produced by Construction A (or Construction A′, if
appropriate) has minimum distance d > 3.

Based on Lemma 5, we have the following theorem.

Theorem 6. Let Cbase be an [n′, k′, d′ = 3] systematic binary
code. If Cbase has an information-sum parity-check symbol and
d(2)`−opt[n

′, k′] = 3, the (r, 1)i-LRC obtained from Construction
A′ has parameters [n = (k′ + 1)`+ n′ − k′ − 1, k = k′`, d =
3] and r = k′. Its minimum distance d = 3 is optimal.

We give an example of an (r, 1)i-LRC with d = 3.
Example 1. Let Cbase be the [6, 3, 3] shortened binary Ham-
ming code, whose systematic generator matrix is

G =

 1 0 0 1 1 1
0 1 0 1 1 0
0 0 1 1 0 1

 .

Cbase has an information-sum parity-check symbol and
d(2)`−opt[6, 3] = 3. From Theorem 6, the (r, 1)i-LRC generated
by Construction A′ has parameters [4`+ 2, 3`, 3] and r = 3.
Its minimum distance d = 3 is optimal.

Now, we generalize the [6, 3, 3] code in Example 1. Let C
and Cs be systematic binary Hamming codes and shortened
binary Hamming codes, with parity-check matrices H and
Hs, respectively. Hs is obtained by puncturing H: 1) find all
information coordinates of H on which the values of the first
row of H are 0, and 2) delete these coordinates of H. As
a result, Cs is systematic and has an information-sum parity-
check symbol. We have the following lemma on Cs.
Lemma 7. Cs has parameters [2m−1 + m − 1, 2m−1 − 1, 3],
and its minimum distance 3 is optimal.

The following corollary is a direct result of Theorem 6 and
Lemma 7.
Corollary 8 Let Cbase be the shortened binary Hamming code
Cs in Lemma 7. The (r, 1)i-LRC obtained from Construction
A′ has parameters [2m−1`+ m− 1, (2m−1 − 1)`, 3] and r =
2m−1 − 1. Its minimum distance 3 is optimal.

Next, we give a construction of (r, 1)i-LRCs with d = 4.
We start with the following lemma.

Lemma 9. If Cbase is an [n′, k′, d′ = 4] code, the (r, 1)i-
LRC produced by Construction A (or Construction A′, if
appropriate) has minimum distance d > 4.

Based on Lemma 9, we have the following two theorems.

Theorem 10. Let Cbase be an [n′, k′, d′ = 4] systematic binary
code. If Cbase has no information-sum parity-check symbol
and d(2)`−opt[n

′ + 1, k′] = 4, the (r, 1)i-LRC obtained from
Construction A has parameters [n = (k′ + 1)`+ n′ − k′, k =
k′`, d = 4] and r = k′. Its minimum distance d = 4 is optimal.

Theorem 11. Let Cbase be an [n′, k′, d′ = 4] systematic binary
code. If Cbase has an information-sum parity-check symbol and
d(2)`−opt[n

′, k′] = 4, the (r, 1)i-LRC obtained from Construction
A′ has parameters [n = (k′ + 1)`+ n′ − k′ − 1, k = k′`, d =
4] and r = k′. Its minimum distance d = 4 is optimal.

The following example is an (r, 1)i-LRC with d = 4.

Example 2. Let Cbase be the [8, 4, 4] extended binary Ham-
ming code, whose systematic generator matrix is

G =


1 0 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1

 .

Cbase has no information-sum parity-check symbol and
d(2)`−opt[9, 4] = 4. From Theorem 10, the (r, 1)i-LRC
generated by Construction A has parameters [5` + 4, 4`, 4]
and r = 4. Its minimum distance d = 4 is optimal.

We generalize Example 2 using the following lemma on
expurgated and extended binary Hamming codes.

Lemma 12. For m > 4, a [2m − 1, 2m − 2−m, 4] systematic
expurgated binary Hamming code has no information-sum
parity-check symbol, and d(2)`−opt[2

m, 2m − 2 − m] = 4. For
m > 3, a [2m, 2m − 1 − m, 4] systematic extended binary
Hamming code has no information-sum parity-check symbol,
and d(2)`−opt[2

m + 1, 2m − 1−m] = 4.

Using expurgated binary Hamming codes and extended
binary Hamming codes as base codes, we get the following
constructions of (r, 1)i-LRCs from Theorem 10.

Corollary 13 Let Cbase be a [2m − 1, 2m − 2 − m, 4] sys-
tematic expurgated binary Hamming code, where m > 4.
The (r, 1)i-LRC obtained from Construction A has parameters
[(2m − 1 − m)` + m + 1, (2m − 2 − m)`, 4] and r = 2m −
2−m. Its minimum distance 4 is optimal.

Corollary 14 Let Cbase be a [2m, 2m − 1 − m, 4] systematic
extended binary Hamming code, where m > 3. The (r, 1)i-
LRC obtained from Construction A has parameters [(2m −
m)` + m + 1, (2m − 1 − m)`, 4] and r = 2m − 1 − m. Its
minimum distance 4 is optimal.

Next, we give a construction of (r, 1)i-LRCs for d > 5.
For simplicity, in the following, we assume Cbase has no
information-sum parity-check symbol. Our construction can
be easily modified for Cbase with an information-sum parity-
check symbol. We give a new construction by using two rows
of global parity-check symbols as follows.
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Fig. 2. An (r, 1)i-LRC using Construction B.

Construction B Let Cbase be an [n′, k′, 5] systematic binary
code. Follow Steps 1, 2, and 3 of Construction A to get the
local parity-check symbols and phantom symbols. Let C ′base =
{c[k′+w] : c ∈ Cbase}, i.e., restrict Cbase to k′ information
coordinates and w parity-check coordinates, where w is chosen
properly such that C ′base has minimum distance at least 3. As
shown in Fig. 2, all phantom symbols are divided into two
parts: w columns in block III(a) and the rest of the columns
in block III(b). Then, we compute the global parity-check
symbols in block IV: First, we use Step 4 of Construction A
to get the first row (pG11 , · · · , pG1,w , pG1,w+1 , · · · , pG1,n′−k′

).
Second, we use a Reed-Solomon (RS) code to encode the
phantom symbols in block III(a) to get the second row
(pG21 , · · · , pG2,w). Each row in block III(a) is considered as
a symbol in F2w . Let α be a primitive element in F2w , and
` 6 2w − 1. Then, a parity-check matrix for the RS code is

H =

[
1 1 1 · · · 1 1 0
1 α α2 · · · α`−1 0 1

]
.

Thus, the `+ 2 rows in block V form an [`+ 2, `, 3] MDS
codeword and any two erased rows can be corrected. Note
that an alternative to the RS code is an EVENODD code [2].
A codeword of the constructed (r, 1)i-LRC consists of the
symbols in blocks I, II, and IV.

With Construction B, we have the following theorem.
Theorem 15. The (r, 1)i-LRC obtained from Construction B
has parameters [n = (k′ + 1)`+ n′ − k′ + w, k = k′`, d > 5]
(` 6 2w − 1) and information locality r = k′.

Example 3. Let Cbase be a [2m − 1, 2m − 1 − 2m, 5] binary
double-error-correcting BCH code where m > 4. It can be
shown that it does not have an information-sum parity-check
symbol. For the case of m = 4, exhaustive search shows that
we can choose w to be 4. For ` 6 15, the (r, 1)i-LRC from
Construction B has parameters [n = 8`+ 12, k = 7`, d > 5]
and r = 7. An upper bound on d from bound (5) is 8. For the
case of m = 5, exhaustive search shows that we can choose
w to be 6. For ` 6 63, the (r, 1)i-LRC from Construction B
has parameters [n = 22`+ 16, k = 21`, d > 5] and r = 21.
An upper bound on d from bound (5) is 8.

The (r, 1)i-LRCs constructed in this subsection are sum-
marized in Table I, where the upper bound du on d is from
bound (5). Similarly, the same construction can be extended
to get (r, 1)i-LRCs with larger minimum distance. We omit
the details here due to space limitations.
B. Construction of (r, t > 1)i-LRCs

The previous constructions can all be modified to construct
(r, t)i-LRCs with t > 1. The idea is to add more local parity-

TABLE I
CONSTRUCTED (r, 1)i -LRCS IN SECTION III-A

Codea n k d r du

C1 2m−1`+ m− 1 (2m−1 − 1)` 3 2m−1 − 1 3
C2 (2m − 1−m)`+ m + 1 (2m − 2−m)` 4 2m − 2−m 4
C3 (2m −m)`+ m + 1 (2m − 1−m)` 4 2m − 1−m 4
C4 8`+ 12 (` 6 15) 7` (` 6 15) > 5 7 8
C5 22`+ 16 (` 6 63) 21` (` 6 63) > 5 21 8

aC1 , C2 , and C3 are from Corollaries 8, 13, and 14. C4 and C5 are from Example 3.
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Fig. 3. An (r = 4, t = 2)i-LRC with d = 4. The diagonal local parity-check
column in block II provides availability.

check symbols to obtain availability. Here, we only give one
example to illustrate the main idea.
Example 4. Consider an ` × 4 information array. We use
the [8, 4, 4] extended binary Hamming code as Cbase. As
shown in Fig. 3, the main difference from Construction A
in Fig. 1 is that we add one more diagonal local parity-
check column in block II to obtain availability: pD j =

∑
3
i=0 u[

4b j−1
4 c+1+i

]
,
[(

( j−1)mod4+i
)

mod4+1
], 1 6 j 6 ` and

4|`. The constructed (r, t)i-LRC has parameters [6`+ 4, 4`, 4]
(4|`) with r = 4 and t = 2. It can be verified that the minimum
distance d is 4. Note that we can add one more vertical local
parity-check column to further increase availability.

IV. CONSTRUCTION OF LRCS WITH ALL-SYMBOL
LOCALITY AND AVAILABILITY

In this section, we study (r, t)a-LRCs based on one-step
majority-logic decodable codes [9].
Definition 16. An [n, k, d]q linear code C is said to be a one-
step majority-logic decodable code with t orthogonal repair sets
if the ith symbol, i ∈ [n], has t pairwise disjoint repair setsR j

i ,
j ∈ [t], such that the ith symbol is a linear combination of all
symbols inR j

i , for each j ∈ [t].

From Definition 16, it is evident that if C is a one-step
majority-logic decodable code with t orthogonal repair sets,
and if all repair sets have the same size r, then C has all-
symbol locality r and availability t. Moreover, referring to
a well known result [9, Theorem 8.1], we can see that for
an [n, k, d]q one-step majority-logic decodable code with t
orthogonal repair sets, all of the same size r, its availability t
satisfies

t 6
⌊n− 1

r
⌋
. (6)

Note that for a cyclic code, once t repair sets are found for
one symbol, the repair sets for any symbol can be determined
correspondingly due to the cyclic symmetry of the code. For
this reason, most one-step majority-logic decodable codes
found so far are cyclic codes. Some representative one-step
majority-logic decodable codes are: doubly transitive invariant



TABLE II
DIFFERENCE-SET CODES

C n k d r t tu du

m = 2 21 11 6 4 5 5 6
m = 3 73 45 10 8 9 9 12
m = 4 273 191 18 16 17 17 31
m = 5 1057 813 34 32 33 33 80

(DTI) codes, cyclic Simplex codes, cyclic difference-set codes,
and 4-cycle free regular linear codes. First, we present two
families of one-step majority-logic decodable cyclic codes, and
also give their locality and availability.
Example 5. Consider a cyclic binary Simplex code with
parameters [n = 2m − 1, k = m, d = 2m−1] [9]. The one-
step majority-logic decoding structure of this code shows that
it has all-symbol locality r = 2 and availability t = 2m−1− 1.
This code has the optimal minimum distance, due to the
Plotkin bound. Note this locality and availability property of
the Simplex codes is also observed independently in [19].

Example 6. Consider a cyclic binary difference-set code with
parameters [n = 22m + 2m + 1, k = 22m + 2m − 3m, d =
2m + 2] [9]. From the one-step majority-logic decoding struc-
ture of this code, we can verify it has all-symbol locality
r = 2m and availability t = 2m + 1. For the codes with
2 6 m 6 5, Table II gives the upper bound tu on t from
bound (6) and the upper bound du on d from bound (5).

Another important class of one-step majority-logic decod-
able codes is 4-cycle free linear codes that have a parity-check
matrix H with constant row weight ρ and constant column
weight γ. Obviously, such codes have all-symbol locality
r = ρ− 1 and availability t = γ. In particular, 4-cycle free
(ρ,γ)-regular low-density parity-check (LDPC) codes have
this property [9]. Based upon this observation, a family of
codes with all-symbol locality and availability are constructed
using partial geometries in [11]. Lower and upper bounds
on the code rate are derived, but the exact dimension and
minimum distance of these codes are not known.

Many 4-cycle free regular LDPC codes have been con-
structed by leveraging different mathematical tools [9], e.g.,
finite geometries, algebraic methods, and block designs. Here
we consider a family of such codes based on Euclidean
Geometries (EG), and we give explicit expressions for their
code length, dimension, and minimum distance, as well as
their locality and availability.

Example 7. Consider the class of binary 4-cycle free reg-
ular LDPC codes, called the two-dimensional type-I cyclic
(0, m)th-order EG-LDPC codes, with parameters [n = 22m −
1, k = 22m − 3m, d = 2m + 1] [9]. From the structure
of their parity-check matrices, they have all-symbol locality
r = 2m − 1 and availability t = 2m. For the codes with
2 6 m 6 5, Table III gives the upper bound tu on t from
bound (6) and the upper bound du on d from bound (5).

V. CONCLUSION

In this work, we investigated a variety of linear LRCs with
availability and studied their optimality with respect to the
minimum distance using our new bound. Several interesting

TABLE III
TWO-DIMENSIONAL TYPE-I CYCLIC (0, m)TH-ORDER EG-LDPC CODES

C n k d r t tu du

m = 2 15 7 5 3 4 4 5
m = 3 63 37 9 7 8 8 12
m = 4 255 175 17 15 16 16 30
m = 5 1023 781 33 31 32 32 80

problems remain open. It is unclear whether the new upper
bound is tight in general. It will be of interest to explore (r, 1)i-
LRCs based on tensor product codes for larger minimum
distance d > 5. In addition, further study of other one-step
majority-logic decodable codes is also an interesting direction.
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