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Abstract—Multitrack detection for shingled magnetic record-
ing (SMR) using a two-head array system is considered. The
channel suffers from intersymbol interference (ISI) in the down-
track direction and intertrack interference (ITI) in the crosstrack
direction. We propose a practical multihead/multitrack detector
that provides a low-complexity approach to adaptive estimation of
time-varying ITI. The performance of the proposed detection al-
gorithm is analyzed in terms of its minimum distance parameter,
and simulation results show that the proposed detector offers a
performance advantage in settings where complexity constraints
limit the maximum-likelihood two-track detector to use a static
ITI estimate.

I. INTRODUCTION

Shingled magnetic recording (SMR) is one of the leading

technologies proposed to achieve ultra-high areal storage den-

sity in next generation hard disk drives (HDD) [1]. In SMR,

tracks are squeezed to increase the track density, measured in

terms of tracks per inch (TPI). This goal can be achieved by

using a large writing pole-tip to sequentially overwrite a por-

tion of the previous track. In the readback process, because

the tracks are narrower, the read head can sense signals from

adjacent tracks when reading from the target track, causing

intertrack interference (ITI).

Several techniques, based on different practical require-

ments, have been proposed to resolve the ITI problem. The

performance of a single-head/single-track (SHST) system

is studied in [2]. Iterative ITI cancellation, which removes

ITI from each single-track readback signal before detection.

is explored in [3] and [4]. These SHST techniques achieve

acceptable performance when ITI is low, but suffer as ITI be-

comes severe. Multihead/multitrack (MHMT) schemes have

attracted considerable attention because of their ability to bet-

ter combat ITI. In MHMT, a group of tracks are read back by

an array of heads and jointly processed. The performance of

MHMT systems is analyzed in [5] and [6]. An iterative de-

tection/decoding scheme for a two-track channel model with

two heads is simulated in [7].

In this paper we study a linear and symmetric two-head/two-

track (2H2T) model such as that used in [4] [5] [6] [7]. One

problem associated with ITI is how to estimate the response

from an adjacent track. The authors of [2] propose a least

mean square (LMS) adaptive algorithm to estimate the off-

track interference for the SHST system. For the 2H2T case,

we reformulate this parameter estimation problem as a gain

control model, and propose a novel detector – the weighted
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Fig. 1. Schematic of a two-head/two-track recording system

sum-subtract joint detector (WSSJD) – along with a gain loop

to adaptively estimate the ITI level.

Another important issue associated with an optimal

maximum-likelihood (ML) MHMT detector is its high com-

putational complexity, which is proportional to 2Mν , where

M is the number of tracks jointly processed, and ν is the

channel memory. For a system that jointly detects many

tracks or that has a long channel impulse response, an ML

detector will be impractical. The proposed WSSJD algorithm

is amenable to a reduced-complexity implementation. Due

to space limitations, this will be presented in a subsequent

paper [8].

The paper is organized as follows. Section II introduces the

2H2T system model and reviews the optimal detector. In Sec-

tion III we present the WSSJD and analyze its performance

in terms of a minimum distance parameter. In Section IV we

describe a gain loop structure to adaptively estimate the ITI

level for use by the WSSJD algorithm. We then present perfor-

mance simulation results in Section V and conclude the paper

in Section VI.

II. TWO HEAD/TWO TRACK SYSTEM

We consider a linear and symmetric 2H2T system as shown

in Fig. 1. Track a and track b are two adjacent tracks with no

guard band between them. Let xa(D), xb(D) be the data se-

quences recorded on tracks a and b, with xi(D) = ΣN
k=0 x

i
kD

k

and xi
k ∈ {−1,+1} for i ∈ {a, b}. We assume xa(D), xb(D)

are both i.i.d. and equiprobable, and xb(D) is independent of

xa(D). We also assume that there is no phase offset during

the writing, i.e., the written patterns xa(D), xb(D) are per-

fectly aligned. Head 1 and head 2 have the same dimensions,

are placed symmetrically over track a and track b, and move

together in the down-track direction.

During readback, the signal from each head is passed

through a matched filter, a sampler, and then equalized



to the target dipulse response represented by polynomial

h(D) = h0+h1D+ · · ·+hνD
ν of degree ν. The interference

from the side track is additive and formulated as a scaled

output from the ISI channel h(D). The noiseless outputs of

the 2H2T channel are given by

ya(D) = xa(D)h(D) + ǫ xb(D)h(D)

yb(D) = ǫ xa(D)h(D) + xb(D)h(D) (1)

where ǫ represents the ITI level determined by the overlap be-

tween the head and the side track. In this section, we assume

that the ITI level ǫ is static and known to the receiver when

analyzing the detector performance. Later, in Section IV, we

relax this assumption and incorporate adaptive ITI estimation

into our detection architecture.

The received signals from head 1 and head 2 are further

corrupted by the electronic noise, i.e.

ra(D) = ya(D) + na(D)

rb(D) = yb(D) + nb(D) (2)

where na(D), nb(D) are uncorrelated and i.i.d sequences, with

na
k, n

b
k ∼ N (0, σ2).

At the receiver, the ML detector makes a decision by finding

the input pair x̂a(D), x̂b(D) that maximize the log likelihood

of the received signals, i.e.

x̂a(D), x̂b(D)

= argmax
xa,xb

log Pr(ra(D), rb(D) |xa(D), xb(D))

= argmin
xa,xb

‖ra(D)− ya(D)‖2 + ‖rb(D)− yb(D)‖2 (3)

where ‖ · ‖2 denotes the squared Euclidean norm,

‖x(D)‖2 =
∑

k

x2
k.

In other words, the received sequences are jointly decoded

to the sequence pair whose noiseless channel outputs are

closest to the received signals in the output space. This can

be done by passing the received signals through a two-track

Viterbi detector. The trellis is designed to simultaneously

recover both tracks. Each trellis edge goes from an initial

state s(k − 1) = [xa
k−ν . . . x

a
k−1, x

b
k−ν . . . x

b
k−1] to a termi-

nal state s(k) = [xa
k−ν+1 . . . x

a
k, x

b
k−ν+1 . . . x

b
k] with input

label Lin = (xa
k, x

b
k) and output label Lout = (yak , y

b
k). For a

channel with memory ν, the trellis contains 22ν states each

of which is associated with 4 incoming and outgoing edges.

The ML detector needs to know the value ǫ to calculate the

noiseless output label (yak , y
b
k) given by equation (1). There-

fore, the conventional ML detector works efficiently only when

ǫ is static. For varying ǫ, the conventional ML detector has to

recalculate the output label (yak , y
b
k) whenever the value of ǫ

changes. If the channel trellis has a large number of branches

or if ǫ changes continuously, this adaptation process incurs

considerable delay. On a real hard drive, however, ǫ generally

varies spatially due to mechanical effects such as head skew

and flying height variation. Thus, adaptive estimation of ǫ will

be necessary, introducing significant detection latency.

In the next two sections, we present a novel detection ar-

chitecture that makes it possible to adaptively estimate ǫ while

keeping the efficiency of ML detection. We show that the pro-

posed approach achieves ML performance with static ITI, but

has the flexibility to efficiently work with an adaptive estima-

tor for the ITI level ǫ. The proposed detector uses a different

trellis diagram than the conventional two-track ML detector.

For convenience, we refer to the latter as the “ML trellis” even

though both detectors produce the ML output sequences.

It is well known that the error event probability of the trellis-

based ML detector can be approximated as Pe ∝ Q(dmin

2σ ),
where the Q-function is the tail probability of the standard

Gaussian distribution, dmin is the minimum distance param-

eter of the channel, and σ is the standard deviation of the

additive Gaussian channel noise. Therefore, the performance

of the detector can be accurately predicted by analyzing the

minimum distance. As given in [6], the minimum distance pa-

rameter of the ML detector on the 2H2T channel is

d2min =

{

(1 + ǫ2)d20 if 0 6 ǫ 6 2−
√
3

2(1− ǫ)2d20 if 2−
√
3 6 ǫ 6 1/2

(4)

where d0 is the minimum distance of a single track with chan-

nel polynomial h(D) when there is no ITI. When ITI is low,

the single track error events are the minimum distance error

patterns. When ITI increases, the double track error events be-

come the dominant error events. The operating point that gives

the highest minimum distance, or the best performance of the

ML detector, is at ǫ = 2−
√
3.

III. WEIGHTED SUM-SUBTRACT JOINT DETECTION

The weighted sum-subtract joint detection (WSSJD) algo-

rithm differs from the conventional ML detector in two re-

spects. First, it adds a “sum-subtract” preprocessor before the

Viterbi detector. Second, it uses weighted branch metrics in

the Viterbi detector. When we introduce the algorithm, we as-

sume ǫ to be known. This condition will be relaxed in Section

IV where we show that ǫ acts as a gain factor that can be

estimated by means of a first-order gain loop.

Instead of directly passing the received sequences ra(D)
and rb(D) to the Viterbi detector, the WSSJD first calculates

their sum r+(D) and difference r−(D), normalized by 1
1+ǫ

and 1
1−ǫ

, respectively, i.e.,

r+(D) =
1

1 + ǫ
(ra(D) + rb(D))

r−(D) =
1

1− ǫ
(ra(D)− rb(D)). (5)

Defining the sum and difference input signals by

z+(D) = xa(D) + xb(D), z−(D) = xa(D)− xb(D) (6)

and the corresponding noiseless output signals by

y+(D) = z+(D)h(D), y−(D) = z−(D)h(D) (7)



xa
k xb

k z+k z−k
1 1 2 0

1 -1 0 2

-1 1 0 -2

-1 -1 -2 0

TABLE I: mapping between (xa
k, x

b
k) and (z+k , z

−

k )

we can rewrite equation (5) as

r+(D) = y+(D) + n+(D)

r−(D) = y−(D) + n−(D) (8)

where the Gaussian noise components

n+(D) =
1

1 + ǫ
(na(D) + nb(D)),

n−(D) =
1

1− ǫ
(na(D)− nb(D)) (9)

satisfy n+
k ∼ N (0, 2σ2

(1+ǫ)2 ), n
−

k ∼ N (0, 2σ2

(1−ǫ)2 ). Furthermore,

E(n+
k n−

k ) =
1

1− ǫ2
(E(na

k
2)− E(nb

k

2
)) = 0 (10)

which implies that n+(D) and n−(D) are uncorrelated and,

therefore, independent.

We can think of r+(D) and r−(D) as the noisy outputs ob-

tained by passing each of z+(D) and z−(D) through a channel

h(D), but with different SNRs. These channels are called the

“sum channel” and the “subtract channel,” respectively. Notice

that corresponding input sequences z+(D) and z−(D) have

a three-level alphabet, B = {−2, 0, 2}. There is a one-to-one

mapping between (z+k , z
−

k ) and (xa
k, x

b
k), as shown in Table I.

Since r+(D) and r−(D) are obtained from separate chan-

nels, one can independently detect z+(D) and z−(D), and

then map (z+k , z
−

k ) to (xa
k, x

b
k) according to Table I. This

method corresponds to solving two detection problems

ẑ+(D) = argmax
z+

log Pr(r+(D) | z+(D))

= argmin
z+

‖r+(D) − z+(D)‖2

ẑ−(D) = argmax
z−

log Pr(r−(D) | z−(D))

= argmin
z+

‖r−(D) − z−(D)‖2. (11)

However, this approach is not optimal. From Table I we

see that z+(D) and z−(D) are not independent, e.g., z+k = 2
forces z−k to be 0. Independent detection ignores this correla-

tion and produces some undecodable (ẑ+k , ẑ
−

k ) pairs. Optimal

detection must jointly consider both the sum channel and the

subtract channel, determining

ẑ+(D), ẑ−(D)

= argmax
z+,z−

log Pr(r+(D), r−(D) | z+(D), z−(D)). (12)
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Fig. 2. WSSJD trellis for channel h(D) = 1 +D

The WSSJD provides a practical trellis-based algorithm for

solving this problem. The WSSJD trellis has the same num-

ber of states as the ML trellis. Each branch connects an initial

state s(k − 1) = [z+k−ν . . . z
+
k−1, z

−

k−ν . . . z
−

k−1] to a terminal

state s(k) = [z+k−ν+1 . . . z
+
k , z

−

k−ν+1 . . . z
−

k ] with input label

Lin = (z+k , z
−

k ) and output label Lout = (y+k , y
−

k ). Fig. 2 shows

a WSSJD trellis for the channel h(D) = 1 +D. The text to

the left of each state lists the branch labels in the form of in-

put/output. Note that, unlike the ML trellis, the WSSJD trellis

is independent of ǫ.

Since the sum channel and the subtract channel have dif-

ferent noise powers, the WSSJD computes a weighted sum

of their individual distance metrics, ‖r+(D) − y+(D)‖2 and

‖r−(D) − y−(D)‖2. The optimal choice of the weights is

found by evaluating equation (12):

ẑ+(D), ẑ−(D)

= argmax
z+,z−

log Pr(r+(D), r−(D)|z+(D), z−(D))

= argmax
z+,z−

log Pr(r+(D)|z+(D)) + log Pr(r−(D)|z−(D))

= argmin
z+,z−

‖r+(D)− y+(D)‖2
2σ2/(1 + ǫ)2

+
‖r−(D)− y−(D)‖2

2σ2/(1− ǫ)2

= argmin
z+,z−

(1 + ǫ)2‖r+(D)− y+(D)‖2

+ (1− ǫ)2‖r−(D)− y−(D)‖2. (13)

Let Mk−1(s) denote the survivor path metric for state s at

time k − 1. Then equation (13) suggests that the path metric

corresponding to the extension along a branch from state s to

state s′ at time k is

Mk(s
′) = Mk−1(s) + (1 + ǫ)2(r+k − y+k )

2

+ (1− ǫ)2(r−k − y−k )
2 (14)

where (y+k , y
−

k ) is the output label of the branch. The term

m(s, s′) = (1+ ǫ)2(r+k − y+k )
2+(1− ǫ)2(r−k − y−k )

2 is called

the weighted branch metric.

Since the transformation in the sum-subtract preprocessing
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is bijective, we have

Pr(r+(D), r−(D)|z+(D), z−(D))

= Pr(ra(D), rb(D)|xa(D), xb(D)). (15)

Therefore WSSJD gives the ML solution, so the minimum

distance parameter governing its estimated performance is the

same as the ML detector, shown in equation (4). The detector

that ignores the weighting factors, i.e., that uses

m(s, s′) = (r+k − y+k )
2 + (r−k − y−k )

2 (16)

as the branch metric, is suboptimal. We refer to this as sum-

subtract joint detection (SSJD). The performance loss incurred

by SSJD is reflected in its minimum distance parameter, which

is given by

d2min(SSJD) =
(1 + ǫ)2(1− ǫ)2

1 + ǫ2
d20. (17)

In contrast to WSSJD, the minimum distance of SSJD is dom-

inated by single-track error events for all ǫ ∈ [0, 0.5]. Fig. 3

shows the squared minimum distance as a function of ǫ for

WSSJD and SSJD, as well as for two single track detectors

[9] included for comparison purposes.

The properties of WSSJD are summarized as follows. First,

WSSJD is ML equivalent. Second, the WSSJD trellis is inde-

pendent of ǫ, which only affects the noise components in the

independent sum and subtract channels and is taken into ac-

count by suitably weighting their respective branch metrics.

This independence is the key to combining WSSJD with adap-

tive estimation of ǫ.

IV. ADAPTIVE ITI LEVEL ESTIMATION

A. ITI Sensitivity

To evaluate the sensitivity of the various detectors to a small

change in the ITI level, we introduce a small offset into our
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performance simulations. Suppose the nominal level is ǫ0, with

offset ∆ǫ. The noiseless readback signals are then given by

ya(D) = xa(D)h(D) + (ǫ0 +∆ǫ)xb(D)h(D)

yb(D) = xb(D)h(D) + (ǫ0 +∆ǫ)xa(D)h(D). (18)

Fig. 4 shows the simulated bit error rate (BER) as a func-

tion of the ITI mismatch ∆ǫ for the ML, WSSJD, and SSJD

detectors on the channel h(D) = 1 + D at SNR = 10dB,

with ǫ0 = 0.1 and ǫ0 = 0.3, respectively. We also notice that

the BER curves are not symmetric about ∆ǫ = 0. Further-

more, the minimum BER points occur at offsets with opposite

polarity for ǫ0 = 0.1 and ǫ0 = 0.3.

Fig. 3 suggests that the observed behaviors are due to mini-

mum distance properties of the mismatched detectors. To con-

firm this, we conducted an exhaustive search for the minimum

distance of the mismatched system at ǫ0 = 0.1 and ǫ0 = 0.3,

with offsets ∆ǫ ∈ [−0.1, 0.1]. The results are plotted in Fig. 5.

For ǫ0 = 0.1, a positive offset in this range tends to give

higher minimum distance than a negative offset of the same

magnitude. For ǫ0 = 0.3, this situation is reversed, and in a

small range of negative offsets, ∆ǫ ∈ [−0.02, 0], the mismatch
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doesn’t reduce the minimum distance of the system. These re-

sults are consistent with the observed BER performance.

The explanation for the asymmetry about ∆ǫ = 0 is that the

mismatch affects distance properties of the single-track error

events and the double-track error events differently. For the

ML detector on the h(D) = 1 + D channel, the minimum

distance of the single-track error events is

d2s =







8(1+ǫ20−2∆ǫ)2

1+ǫ2
0

if ∆ǫ > 0
8[1+ǫ20+(2+2ǫ0)∆ǫ]2

1+ǫ2
0

if ∆ǫ < 0
(19)

while the minimum distance of the double-track error events

is given by

d2d =

{

16[(1− ǫ0)− 2∆ǫ]2 if ∆ǫ > 0
16(1− ǫ0)

2 if ∆ǫ < 0.
(20)

The overall minimum distance of the system is

d2min = min {d2s , d2d} (21)

which matches the plot in Fig. 5.

B. Gain Loop

Recall that in the sum-subtract preprocessing, ǫ appears in

the gain factors that normalize signals r+(D), r−(D). We

rewrite equation (5) as

r+(D) = g+ (ra(D) + rb(D))

r−(D) = g− (ra(D)− rb(D)) (22)

where g+ = 1
1+ǫ

, g− = 1
1−ǫ

are the gain factors. We use the

LMS adaptive algorithm to estimate these parameters. For ĝ+,

the updating rule is given by

r̂+k = ĝ+k−1 (r
a
k + rbk) (23)

ek = ŷ+k − r̂+k (24)

ĝ+k = ĝ+k−1 + β ŷ+k ek (25)
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Fig. 7. Adaptive estimation of g+ and g− over one sector of 4096 bits on
channel h(d) = 1 +D at SNR = 10dB.

where β is the step-size parameter and ŷ+k is the instantaneous

decision fed back from the Viterbi detector. The step-size pa-

rameter β controls the convergence speed. A large β makes

the loops converge faster, but also results in larger variance.

One can also introduce a small delay m > 1 to get more

accurate tentative decisions. In this case, equation (24) and

equation (25) become

ek−m = ŷ+k−m − r̂+k−m (26)

ĝ+k = ĝ+k−1 + β ŷ+k−m ek−m (27)

The estimates ĝ+k , ĝ
−

k will be used in the next iteration, and

also in the Viterbi detector path metric calculation equation

(14), i.e.,

Mk(s
′) = Mk−1(s) + ĝ+k

2(r+k − y+k )
2 + ĝ−k

2(r−k − y−k )
2.

(28)

Fig. 6 shows a complete block diagram for WSSJD with

adaptive gain estimation. The system contains two separate

gain loops for ĝ+k and ĝ−k . While a combined loop for esti-

mating ĝ+k and ĝ−k can provide a better estimate for ǫ, using

separate loops achieves similar performance and is more effi-

cient.

In our simulations, ĝ+0 and ĝ−0 are initially set to 1. At time

k, rak + rbk and rak − rbk are normalized by the previously esti-

mated gain factors ĝ+k−1 and ĝ−k−1, respectively. The resulting

signals r̂+k and r̂−k are sent to the Viterbi detector. The path

metric of each trellis state is evaluated and scaled by ĝ+k−1

and ĝ−k−1. After comparing the path metrics, the Viterbi de-

tector picks the most likely path, and feeds back its decision on

ŷ+k−m and ŷ−k−m. The error signal is calculated to update ĝ+k
and ĝ−k . Note that SSJD can also work with these gain loops,

without feeding ĝ+k and ĝ−k to the path metric evaluation.

Fig. 7 shows the behavior of the g+k and g−k gain loops in

one sector of length N = 4096 bits on the channel h(D) =
1 + D at SNR = 10dB with step-size β = 0.005 and delay

m = 5. For channels with longer memory, a larger delay m
may be adopted.
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Fig. 8. BER vs. SNR of different detectors with (a) ǫ = 0.1 and (b) ǫ = 0.3.

V. SIMULATION RESULTS

We simulate WSSJD and SSJD with gain control on the

2H2T system with channel polynomial h(D) = 1+D. In both

cases we set β = 0.008 and m = 5. The initial values of gain

factors g+0 and g−0 are obtained by passing training samples

through the system. The SNR is defined as

SNR(dB) = 10 log
‖h(D)‖2

2σ2

We first test the performance of the gain control loops when

ǫ is fixed. Fig. 8 compares bit error rate (BER) vs. SNR of

the ML detector, WSSJD, and SSJD, for ǫ = 0.1 and ǫ = 0.3.

The frame size is 4096 bits. We assume that the ML detector

knows the value ǫ, while WSSJD and SSJD adaptively esti-

mate ǫ as in Fig. 6. The static ML detector provides a lower

bound for optimal BER performance. It can be seen that adap-

tive WSSJD performs very close to the static ML detector. As

expected from the minimum distance plots in Fig. 3, the per-

formance of the SSJD is more severely degraded when ǫ = 0.3
than when ǫ = 0.1. The measures of frame error rate (FER) vs.

SNR correlate well with the BER curves in the simulations.

Next, we test the performance of the detectors with a dy-

namic ITI model in which ǫ changes slowly with respect to

the location k in a sector. Specifically, we set

ǫ(k) = ǫ0 + 0.1 sin(4π(k/N))

where N = 4096 is the frame size and ǫ0 is the mean ITI

value. The ML detector again uses the static value ǫ0, while

WSSJD and SSJD adaptively estimate ǫ(k). The simulation

results, shown in Fig. 9, suggest that the adaptive algorithms

outperform the static ML detector by about 0.3-0.5dB at high

SNR.

VI. CONCLUSION

In this paper we propose a novel two-track detector on a

two-head, two-track (2H2T) channel with intertrack interfer-

ence (ITI). The proposed weighted sum-subtract joint detector
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Fig. 9. BER vs. SNR of different detectors with ǫ slowly varying about the
mean value (a) ǫ0 = 0.1 and (b) ǫ0 = 0.3.

(WSSJD) contains a sum-subtract preprocessing step and uses

weighted branch metrics from the constituent sum and sub-

tract channels. We use minimum distance analysis to explain

the observed behavior of WSSJD under ITI mismatch condi-

tions. The WSSJD separates the ITI level from its trellis struc-

ture, so, unlike the traditional joint-track ML detector, WSSJD

can be efficiently combined with control loops that adaptively

track the ITI level. Simulation results demonstrate the effec-

tiveness of the adaptive WSSJD system with first-order loops

in the presence of slowly varying ITI.
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