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MLSE Receiver for Direct-Sequence
Spread-Spectrum Systems on a
Multipath Fading Channel

Kai Tang Member, IEEELaurence B. MilsteinFellow, IEEE and Paul H. SiegeFellow, IEEE

Abstract—To accommodate high-speed data transmissions, it prior to the despreading. The advantage of this scheme is

may be necessary to substantially reduce the processing gain of athat the chip equalizer receiver also suppresses MAI in the

direct-sequence spread-spectrum (DSSS) system. As aresult, intel-gy nchronously transmitted downlink if orthogonal spreading
symbol interference effects may become more severe. In this paper,

we present a new structure for maximume-likelihood sequence esti- Sequ_ences gre e_mplo_yed. Howev_er, .for channels with severe
mation equalization of DSSS signals on a multipath fading channel @mplitude distortion, linear equalization leads to a substan-
that performs the function of despreading and equalization simul- tial noise enhancement, which limits the application of this
taneously. Analytical upper bounds are derived for the bit-error  scheme. A RAKE maximum-likelihood sequence estimator
probability when random spreading sequences are used, and com- (MLSE) receiver has been proposed in [5]. This suboptimal
parisons to simulation results show that the bounds are quite accu- - . . .

rate. The results also show that significant performance improve- receiver COI’]SISt_S of "_’1 conventional RAKE receiver, foII_owed
ment over the conventional RAKE receiver is obtained. by an MLSE which tries to remove the ISI components in the

Index Terms—Direct-sequence spread spectrum (DSSS), fading RAKE comblne_d S|gr_1al. Its perf(_)rm_a_mce '_S evaluated in [S]
channels, intersymbol interference (ISI), maximum-likelihood se- Py computer simulations, and significant improvement over
guence estimation (MLSE). the conventional RAKE receiver is observed. In this paper, we
consider an optimal receiver structure, which is essentially an
MLSE receiver operating at the chip rate. Note that a simplified
chip-based MLSE multiuser detector was proposed in [6] and

N third-generation wireless land mobile communication sy§7].

tems, support of high-speed data transmission is requiredThe optimal receiver for estimating an uncoded signal cor-
In a wideband direct-sequence code-division multiple-accasgted by ISI and additive white noise is a Viterbi decoder which
(DS-CDMA) system, high data rates can be accommodated ftforms MLSE on the IS trellis [8], [9]. The performance
reducing the processing gain due to the spreading. When @ighe MLSE has been analyzed thoroughly in [8] for time-in-
spreading factor is sufficiently low (e.g, four), there is ofteRariant channels, and later in [10] for slowly time-varying mul-
only one high-data-rate user active in the system [1], [2]. Thergpath Rayleigh fading channels. In this paper, we show that if
fore, the multiple access interference (MAI) is low, but the inthe spreading is treated as a special operation of encoding, the
tersymbol interference (ISI) due to the multipath fading channplS signal in the presence of ISI can be modeled by a single
might cause significant performance degradation to the convéinite-state machine. The MLSE receiver operating on the com-
tional RAKE receiver, as shown in [3]. As a consequence, thesined trellis will jointly despread the signal and perform equal-
is a need for equalization of DS signals with low processirigation. The performance of the MLSE receiver can be analyzed
gain. with the help of the error-state diagram [11]. However, for DS

Several attempts have been made to solve this problesiynals with long pseudorandom spreading sequences, the la-
Since long spreading sequences are used in almost all practigss on the error-state diagram are time varying. It is shown in
CDMA systems, there is no cyclostationary property in thgis paper how to incorporate the randomness of the spreading
ISI component and a symbol-based minimum mean-squagquences into the analysis. As examples, we study both the
error (MMSE) receiver cannot be used. A linear chip equalizewo-tap and three-tap Rayleigh fading channels in detail.
described in [4], tries to invert the channel transfer function The paper is organized in the following manner. In Section I,

the system model is described. The structure of the MLSE re-
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Theory of the IEEE Communications Society. Manuscript received October I§it-error probability of the receiver are derived in Section IV. In
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Fig. 1. Trellis of DSSS signal with BPSK data symbal§, = 4.

keying (BPSK) data symbols. Using a complex, basebamdere z; £ e/t is a zero-mean complex Gaussian

equivalent model, the transmitted signal may be expressed aandom variable, with variance?? = (1/2)E{]z|*}
ot i) described by the channel multipath intensity profile
s(t) = V2Pa(t)b(t)e’" @D miP), Q2 =  diag{Q%0%,...,Q%}, and 7 is a

. : . . zero-mean complex Gaussian random variable with vari-
yvhereP |s_the signal powely,. is t_he carrier freql_Jen_cy, ang anceo? = (1/2)E{|n:|2} = N.No/2E,, whereE, = PT..
is the carrier phase. The spreading wavefai(t) is given by K
a(t) = Y ;2 aipr.(t —iT.), and the data waveforit) is
givenbyb(t) = Y07 bupr, (t—nTs), where{a;} and{b,} lll. MLSE RECEIVER
are the discrete signature sequence and discrete data sequenéessume thatV/-symbol messages are transmitted over the
respectivelyp. (¢) denotes a unit height rectangular pulse of dwshannel. The MLSE receiver [8] finds the candidate sequence of
ration 7, and7, and T}, are the chip duration and symbol duinformation symbolgb,,} *. ! that maximizes the likelihood of
ration, respectively. The spreading ratioNg = 7,/7.. For thereceived sequen@ei}?iOHL*l.This is equivalent to max-
a long spreading sequence system;} is modeled as a se-imizing the log-likelihood function which, neglecting constant
guence of independent and identically distributed (i.i.d.) randosealing factors and additive terms, reduces to the form [12]
variables taking on the values efl and+1 with equal prob-
ability. For a system with short sequences, the period of the

spreading sequence is assumed td\bei.e.,a; = a(imodn.)- J({bn}) = Z ZQR{Ti(Zlai—lbU*l/NsJ)*}

MN,+L-1 L

The data symbol sequen¢g, } consists of independent BPSK =0 =0 )
(+1) symbols with equal probability. MN.AL-1] L
The multipath fading channel is modeled as(ar+- 1)-tap - Z Zzlai—lbt’i—l/NsJ ®)
transversal filter with tap spacing equal T. The baseband =0 l1=0
equivalent impulse response is given by If we treat the direct spreading as &iV,,1) binary
L block code, the spreading operation can be character-
h(t) = Za,(t)ej"”(t)é(t—ch) 2) ized as a time-varying trellis with perio&v;. Let o; be
=0 the state of the spreading “encoder” befoigh ; v, | is

_ ) ) transmitted. The combined trellis of the direct spreading
where the tap coeffecients, (#)e’*'("), are modeled as inde-and IS| channel can be viewed as generated by a fi-
pendent zero-mean complex Gaussian random processes, Whjdlstate machine [9], [13], whose states are giver¢ by
vary slowly in time. The received signal can be written as (033 ai_Lb); i 1b1s /1), where the data-mod-

7y g — L:L—L/NSJ-/""/ i—1V0i—1/N.]/)»
L ulated chip sequencga; rbji_r/N,|,--->ai-1bli—1/n,|}
r(t) = ./_QPZalej(w,th)a(t —IT)b(t —IT.) + n(t) (3) correspond; to a path which takes the spreading “encoder”
0 from a previous state;_;, to the present state;. Note the
) ) ~ combined trellis is also time varying with the period/¥f. The
wherey; = ¢+ ¢ —wlTe, n(t) is alow-pass equivalent, whiteye||-known Viterbi algorithm can be applied to the combined

complex Gaussian noise process With2) E[n(t1)n"(t2)] = trellis, searching recursively for the maximum-likelihood
Nob(t1 — t2).2 The dependence of the’s andi);’s on time is sequenceb,, }.
dropped to reflect the slowly fading assumption. Example 1: Consider a two-tap ISI channél, = 1) with

After down-conversion, the received signal passes througispsk data symbols. The trellis for the spreading code with
chip-matched filter with a normalizing factor of vV2P7.. The N — 4 is shown in Fig. 1. The combined trellis is shown in

ith output sample of the chip-matched filter is Fig. 2. We note the combined trellis has two states at any stage,
L with time-varying structure. Also note the label on the trellis
= Zzlai—lbLi—l/NSJ T+ (4) transition is determined by the spreading sequefic¢ and

=0 the fading channel coefficients:; }. Applying the Viterbi al-

gorithm, we only need to perform the addition—comparison—se-

IFollowing the conventional notation; represents the conjugate of the com- . . .
plex variablez, andz " represents the complex conjugate transpose of the cofction (ACS) operations at one stage in evéfy stages, and

plex vectorz. accumulate the path metrics for the remainig— 1 stages.
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Fig. 2. Combined trellis of DSSS signal with BPSK data symbols on two-tap ISI chaNinek 4.
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Fig. 3. Combined trellis of DSSS signal with BPSK data symbols on three-tap ISI chafnet, 4.

Example 2: Consider a three-tafd. = 2) ISI channel with the complexity of the MLSE receiver will be acceptable,
BPSK data symbols. The combined trellis is shown in Fig. although the Viterbi algorithm has to run at the chip rate. As a
Again, the combined trellis employs a time-varying structurepmparison, the complexity of the conventional RAKE receiver
which repeats for everyy; = 4 trellis transition stages. For oneis N, (L + 1), which grows linearly with bothV; and L.
stage out of every repeat period, when each of the two chips
stored in the ISI channel memory are modulated by a distinct
data bit, there are four states in the trellis. For all the other stages, IV. PERFORMANCEANALYSIS
there are only two states, since the two chips stored in the IEI
channel memory are modulated by the same data bit. ‘

The complexity of the proposed MLSE receiver increasesWe evaluate the bit-error probability of the MLSE receiver
with the processing gainy,, and the number of ISI channelin a slow-fading Rayleigh channel, with the assumption that
taps. The maximal number of states per chiplid—1/N-1+1 " {2 (1)} remains constant over the length of the dominant error
while the number of transition branches per chip is eithevents. The standard union bound technique can be applied.
2[L/N.1+1 or 2[L/N.1  The overall computational complexity Consider an error sequenee-= b — b between the transmitted
of the MLSE receiver is dominated by the metric compudata vectob and the detected data vectarwheres,, = 0,n <
tations, which has complexity proportional @&,2/Z/N<1. 0 orn > L., andL. is the length of the error event. The error
In other words, the complexity grows linearly witN,;, but sequence is simple, i.e., the transmitted path and detected path
exponentially with[L/N,]. If [L/Ns]| is relatively small, diverge attime 0 and remerge at tiffle. N + L)T., but do not

Eigenanalysis Bound
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remerge at any time between them. The union bound is givenwliere

(8], [12] 3
l
Py <> w(e)Pi(e)Pe(e) (6) =N+ 802 (14)
ees )\l
wheref is the set of all simple error events startingnat= 0, A= H A=\ (15)

w(e) is the number of bit errors associated with the error event

e, Py(e) is the probability thab = b — ¢ is an allowable input and{),} are eigenvalues of the matti which are assumed to
sequence, anft. (¢) is the pairwise error probability thithas pe distinct.

a larger metric than the transmitted sequehcd&he pairwise
error probability is represented by

P.(e) =Pr{J(b) > J(b)}

=Pr{AJ(e) < 0} @)
where
AJ(e) =J(b) — J(b)
L.N,+L-1 L
= (2§R {77? Z 210i_1€ i1/ N, | }
1=0 =0
L 2
+ Zzlai—laL'i—l/NSJ (8)
=0
Conditioned on the channel vecto& [20, 21, ..,21]T, the
pairwise error probability is given by [12]
A2
P, = A — 9
w-o([Z) e

whereQ(z) £ (1/v2n) [ e=**/2dt, andA? is the squared
Euclidean path distance, given by [10]

LeNs+L-1| L
A2 — Z Zzlai_lELi—l/NsJ
1=0 =0
ézHEZ. (10)

£ i TTEG),

e;ell, where the error vectoe; is defined as
H
< ai—LgLi—L/NSJ]

Here, the path distance matrik
and F ()
laiei/N,]> Gic1€[im1/N, |+ -

Assuming independence between the fading coefficients,

The union bound in (6) requires the calculation of an infinite
series. In practice, the series needs to be truncated at an appro-
priate point. In addition, since thed. + 1) x (L + 1) matrix
E is determined by both the error sequerecand the random
spreading sequende; }, the randomness df has to be taken
into consideration. The analysis is illustrated in the examples in
Section V.

B. Numerical Bound

The bound in the last subsection is analytically tractable, and
provides useful insights into the system. However, the results
from the bound may be loose [10]. Due to the lack of time di-
versity, the probability of longer error events does not diminish
as fast as on a fast-fading channel, and there is no dominant error
event for the slow-fading channel. The approach considered in
this subsection limits the conditional bit-error probability before
averaging over the channel vecidi 5]. This approach does not
involve the truncation of the sum over the simple error events,
and may yield tighter results. The disadvantage of this method
is that numerical integrations are required.

Assuming the channel vectaris fixed, the conditional bit-
error probability can be bounded using the transfer function of
the error-state diagram [11]. L&YW, I) be the transfer func-
tion given byT(W, 1) = ZtAzﬂ-WAZI”", whereta: ; is the
number of error events that have squared Euclidean distahce
ands data bit errors. Then the Bhattacharyya bound can be used
for the conditional bit-error probability [16]

&E, d3E,
Py(z) < Q T R
or E, B

z1, of different paths, the pairwise error probability can be
obtained in a closed form. Define the normalized channwhered? is the minimal squared Euclidean distance.

vectorg = [go, 91, - --,9.]T, whereg, = z,/Q;. Equation (10)
can be written as [14]

A’ =glFg (11)
where
F=0Q"EQ. (12)
Averaging over the normalized channel vegiothe pairwise
error probability is shown in [14] to be

L
Pe)= 3 3 A1 —m) (13)
=0

We can also use an alternate form of the Gaus@idanction
[17] to evaluate the exact transfer function bound on the bit-error
probability conditioned on the fading channel, as demonstrated
in Appendix Il. Note the transfer functidh(W, I) is dependent
on the channel vectar. A tight bound is obtained by limiting
the conditional union bound beloiy/2 before averaging over
the channel vector [15], yielding
1

A< [win]3.00)] o) 17)

where f(z) is the probability density function of the channel

vector. Due to the minimization, the integration has to be carried
out numerically.
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WB51/2 the squared Euclidean distances is

w—1
Wﬂo+ﬁ1+/32+ﬁ3+34 |:1(Wﬂ5 +Wﬁ6)Wﬂ1+,@2+ﬂ3
2

w—1
_ Z w—1 21—1UWP,36+(W—1—P),95+w(,31+,32+,33)+#90+,34
— p
p=0

6
Wi (18)
Fig. 4. Reduced error-state diagram of DSSS signal with BPSK data symbalfierep is the number of times the error event taksas its
on two-tap ISI channel, = 4. feedback branch. Sing¢; = zE;z,j = 0,...,6, the path
distance matrix of the error event with bit errors and a speci-
TABLE | fied value ofp, denoted by (w, p), is given by
ELEMENTS OF BRANCH DISTANCE MATRIX E; FORBPSK SrmBOLS
OVER A TWO-TAP ISI CHANNEL, ASSUMING N, = 4. NOTE FOR A E(w,p) =pEs+ (w—1—-p)E5

SHORT SPREADING SEQUENCE a4 = ag 4 w(El + Fy + E3) +Ey+ Ey

L,1) | (1,2) [ (2,2 —4 wi U(w,p) (19)
Eo/4 | |aol* 0 0 U*(w,p)  wN;
Ei/4 | |a1]* | aoal | |aol?
Elf e whereU/(w, p) = wC(1) + (w1~ 2p)ax, 145, andC(1) =
E2/4 a2 T, af ool Zi:*“o_2 a;a;,  isthe discrete aperiodic autocorrelation function
E3/4 8 20 3 a2 = of the short spreading sequengavith an offset one [18]. The
E4/4 — T a3 ™ probability P; () associated with the error event, denoted by

5 4 304 3 P i
Es/4 | las|® | —asaj | |as|? 1(w,p). 18
Pi(w,p) = (“’; 1) gl—w. (20)

V. EXAMPLES AND DISCUSSION
To obtain a similar result for a random spreading sequence,
A. BPSK Data Symbols on a Two-Tap ISI Channel we need a vectop = [py, pa, .. ., pw_1]? to record the choice
We revisitExample from Section IIl. This is an ISI channel of the feedback branches in order. The sequengg =] is
with one interfering symbol, and the combined trellis is showtefined as

in Fig. 2. Following the steps of the analysis on ISI channels {+17 if 35 is chosen

—1, if Bgis chosen.

in [11], the reduced error-state diagram for a short spreading Pn =

sequence withV, = 4 is obtained and shown in Fig. 4. The
squared Euclidean distance and the number of data bit errbte path distance matrix of the error event witlbit errors and
associated with each branch are represented as the exponerasspicified vectop, denoted byF (w, p), is expressed as

W and!. The squared Euclidean distangg,j = 0, ...,6, are

(21)

represented in the following as quadratic forms in the channel E(w,p) =4 [UI(UNS : U(U]f\-}p)} (22)
vectorz, where the branch distance matrices associated with the w,p Wiks
quadraticformF;, j = 0,...,6, are shown in Table I. Since theywhere
matrices are Hermitian, only the upper triangular elements are W —2 w1
tsted. Uwp)= Y waia+ Y Pty rahy,
. i=0 n=1
/60 :4|a020|2 _ ZHEOZ (i+1)mod Ns#0
b1 =4|a120 + apz1|? = 2" Bz and the associated probability of the error everftjitw, p) =
21w,

ﬂz :4|a2z0 + CLlZl|2 = ZHEQZ

Next, the randomness of the spreading sequémgeis taken
/33 :4|a320 + a221|2 = ZHE3Z P g d em)qe

into consideration. A new sequence of binary random variables,

Bs =A|asz|* = 2" Eyz {c;}, is defined by
— 2 _  Hp. _
Bs =4|aszo + a3z1|2 = ZHEOZ [ty if (i + 1) mod N, # 0 ’s
ﬂﬁ :4|a4z0 — CL3Zl| =Z EGZ. Ci = pnanstlaerS? |f i = ’I’LNS 1. ( )
With the help of the error-state diagram, we can obtain tifnce{a;} is a sequence of i.i.d. binary random variables on

path distance matrig, the squared Euclidean distanaé = {£1}, {ci} is also a sequence of i.i.d. random variables on
z" Ez, and the associated probabili#§; (¢), for any simple {#1}. The random variabl&(w, p) can be written as
error sequence. Consider an error event wittnformation bit wN. 2

errors. From Fig. 4, we know it passes through the feedback U(w,p) = Z ¢i. (24)
branchesf; or 8g) w — 1 times. The enumerating function of ’ o
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The path distance matrik(w, p) is fully determined byw and
U through (22), and is denoted y(w, U). Correspondingly,
the associated probability; is also determined by andU via

Py(w,U) = <wN;1— 1) gl-wN,

m =0,1,...,wNs — 1 (25)

wherem = (wN; — 1 — U/2) denotes the number ef's in
the sum of (24) that take the value of 1".

; ; ; g. 5. Modified error-state diagram taking the randomness of the spreading
Now (6) (15) can be applled to obtain the union bound ds:rjequencelnto account, BPSK data symbols on two-tap ISI chaNne}; 4.

the bit-error probability. For the special case of flat MIP, i.e.,

Q = diag{1/v2,1/v/2}, we have

error-state diagram is depicted in Fig. 5, with the labels defined

F(w,U) = Q" E(w,U)Q by
1
:§E(w, U). (26) 60 =4a?
The eigenvalues oF (w, U b =dof
e eigenvalues of (w,U) are 8y =4 (a2 + 2apay cos 0 + a?)
1 =2(wN; +|U]) 63 =4 (o — 2apa1 cos b + ) .

A
A2 = 2(wN;s — |U)). .
2 (w v By symmetry, the relative phadecan be treated as a random

If N, is an even number, we havé # 0 and\; # \,. The Vvariable uniformly distributed in the range ¢d,7/2]. The

pairwise error probability is given by transfer function of this diagram can be shown to be
BN (W)Wt ]
P, U) =5 A1 (1= ) + Ax(1 = )] TV =55 i (28)
1 wN; N.—1 s0+61
Ay == + o 0 BN-=L(W)W
2 " 2] o7 W Dlr=1 = T EAUBE (29)
1  wN;
Az “27 20 where
wherey; and s, are given by (14). The union bound on the B(W) £ %(Wéz + W), (30)

bit-error probability is given by
Using (16), the conditional bit-error probability is upper

co wNg—1
P, < Z Z < ) 9l—wN, bounded by

w=1 m=0
Py( ) <
< Po(w,wNo — 1 —2m). (27) Trleoon?

) —1)63(E, /4No) BNs—1(g=(Es/4No))

Alternatively, the numerical bound can be applied to esti¢/ ( 2N, (1 = BN (e~ (B./AN0) )2

mate the bit-error probability. Conditioned on the channel vector

{z1 = oqyed?¥1}, the labels on the branches of the error-state dia- (31)
gram (Fig. 4) are given by
where

/80 :4(13 2

3, =4 (ag + 2001000 cos 0 + a%) df =6p+ 61+ (Ns — 1)d3. (32)

Bo =4 (af + 2a1a20001 cos § + o) Finally, the bit-error probability is upper bounded by

By =4 (a% + 2asa30gay cosf + a%) o o x/2 1

By =40 P, < / / / min |:_7Pb(a07a179):|

1 9 9 ap=0Ja1=0.J6=0 2
Bs =4 (o + 2azasapoy cosf + af) X fy (00) fy (1) fo(8)dBd v dag  (33)

Bs =4 (a% — 2aza4090y cos B + a%) - _ )
where f,,,(«;) and fo(6) are the probability density functions

wheref = 1, — 1) is the relative phase. of the Rayleigh fading amplitudes,, and the relative phaske
Note {a;a;+1} are independent random variables taking respectively.

with equal probability of 1/2. This randomness can be reflectedIn Fig. 6, the two upper bounds on the bit-error probability

in the error-state diagram by splitting the branche@0f = are shown, together with the simulation results for the two-tap

1, 2, 3, 5, 6. In addition, the four branches obtained by splittin§l channel. The eigenanalysis bounds are shown with the infi-

the branche@s; and3s can be merged into two. The modifiednite sum ovemw truncated at different values (., = 5, 25, or
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Fig. 6. Comparison of the analytical bounds and simulation results for MLS /4
receiver for DS-BPSK signal, two-tap ISI channel, random spreading sequen

*  Simulation

— — Numerical Bound
Eigen Bound, wmax=5

Eigen Bound, w__ =25 |
Eigen Bound, wma)(=50

to

20 25

15
E/N,(dB)

N, = 4.

- RAKE/MF, ISI
—— RAKE-MLSE
* MLSE
RAKE/M

1179

WBSI/2

Fig. 8. Reduced error-state diagram of DSSS signal with BPSK data symbols
on three-tap ISI channely, = 4.

TABLE I
ELEMENTS OF BRANCH DISTANCE MATRIX E; FORBPSK SrmBOLS OVER A
THREETAP ISI CHANNEL, ASSUMING N, = 4. NOTE FOR A SHORT
SPREADING SEQUENCE a4 = ag, 45 = a3

TG [ LI (G0 ] &3 [GI)
Eo/di[JaoP | O 0 0 0 0
Ei/4 ]| |a1)?* | aoa} 0 aol? 0 0
E>/4 | |az2)® | ajab aopa} a1l® | aoa} aol?

az|®* | aqa} aa} as® | aia} a1]?
E4/4 0 0 0 as 2 a2a§ ao 2
Es/d| 0 0 0 0 0 | las?
Eg/4 | |aa)® | asza} aza} azl® | aza} as|?
Ez/4 ]| las|* | asal azal as|? | asaj} as|?
Eg/4 | laa|® | —asa} | —a2a} | |as|® | a2a} as|?
Eg/4 | |as|? | asa | —aszal | |a4|? | —asza} | |as)?

receiver can recover almost all the loss due to ISI. In addition,
it is found that the proposed MLSE receiver outperforms the
RAKE-MLSE receiver by a small margin.

B. BPSK Data Symbols on a Three-Tap ISI Channel

Both the analytical bounds can be extended to BPSK data
symbols on a three-tap ISI channel. The combined trellis is il-
lustrated in Fig. 3. The reduced error-state diagram for a short
spreading sequence wifii; = 4 is shown in Fig. 8. Note the
brancheg’, andf; correspond to the transitions from state
toos, and from state to o, in Fig. 3, respectively. The squared
Euclidean distances on each branch are given below. The matrix

Fig. 7. Comparison of the performance of MLSE receiver with thd’; iS shown in Table II. Since the matrik;’s are Hermitian,

conventional RAKE receiver (with or without ISI) and the RAKE-MLSEonly the upper triangular elements are listed.
receiver, DS-BPSK signal, two-tap ISI channel, random spreading sequence,
N, = 4.

50). Since the results do not change much when increasing the
Wmax from 25 to 50,w,,,.x = 25 seems to be sufficient for com-
puting the eigenanalysis bound. The bound based on numerical
integration is tighter than the eigenanalysis bound, especially at
low Ey /Ny values, and it is within 2 dB of the simulation re-

sults.

In Fig. 7, the performance of the MLSE receiver is com-
pared to that of the conventional RAKE receiver, both with and
without ISI. The bit-error rate (BER) curves for the conven-
tional RAKE receiver are generated by using the characteristic

Bo =4|aozo|* = 2" oz

B =4layzo + apz1|* = 27 E1z

B2 =4|aszo + a1z1 + aozz|2 =zH Fyz
B3 =4|azzo + azz1 + a122|* = 27 B3z
By =4|azz1 + apz|? = 27 Eyz

Bs =4|azz|? = 2z Esz

B =4|aszo + a3z + a222|2 = zH Fyz
Br =4laszo + agz1 + a3Z2|2 =z"Eqz
Bs =4lagzo — azzy — azza|? = 2z Eyz
Bo =4laszo + agz1 — a322|2 = zH Eyz.

function method [19], with a sample average over 1000 realiza-

tions of the random spreading sequences. The performance dsimilar to the two-tap ISI channel, we can obtain the path
the RAKE-MLSE receiver in [5], obtained from simulation, isdistance matrix? and the associated probabiliy (¢) for any
also shown in the figure. It can be seen that while ISl introducesnple error sequence. An error event withinformation bit

an error floor for the conventional RAKE receiver, the MLSEerrors has to pass the feedback branchigsdz or 8s/8y) w—1
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times. Letp denotes the number of times the error event také®te the sequencdsg; } and{c¢;c; 11} can be considered as the
Bs/ P9 as its feedback branches. Then the path matrix is giverput and output sequence of & D encoder. Correspondingly,

by my andms is the input and output weight of the encoder, respec-
tively. In Appendix I, we derive the joint input—output weight
wN;  Ui(w,p)  Us(w,p) enumerating function (IOWEF) of the+ D encoder. Letting
E(w,p) =4 | U{(w,p)  wNy  Ui(w,p) A,,.» represent the number of codewords with output weight
Us(w,p) Uff(w,p)  wN, generated by input words of weight the associated probability
where with w, mq, mo is given by

Ui(w,p) =wC(1) 4+ (w — 1 —2p)ay, 104
Us(w,p) =wC(2) + (w — 1 — 2p)(an,—205 + an,—107).

Again,C(1) andC(2) are the discrete aperiodic autocorrelation
function of the short spreading sequence, with offset one and”*
two, respectively, and the associated probability is the same as

that given in (20).
For random spreading sequence, we also define a vpdtor
record the choice of the feedback branches in order

a [ +1, if Bg/Br7is chosen _
p"_{—17 if B3/ is chosen n=5L2. . ,w-1
(34)
The path distance matrix is expressed by
sz Ul(w7 p) UZ(w7 p)
where
wNg—2 w—1
Ul(w'/p) £ Z aia;'k+1 + Z pnanNs—la;kst
(7'+1)mi?|1\r3¢0 n=1
wNz;—3
Us(w,p) £ Z ;4o
(1+2)1nic:|0N5:,t0,1
w—1
+ Z Pn (anNs—ZaZNs + a’ﬂNs_la’TLNs'i‘l)
n=1

and the associated probabilityi% (w, p) = 2'7%.

Defining a new sequence of i.i.d. binary random variables

{c;} as in (23), we have

wN;—2

Ul(w7p): Z Ci
i=0
wN,—3
Uy(w,p) = Z CiCit1-
i=0

The path distance matrik(w, p) is fully determined byw,
Uy, andU,. For a given value ofy, U; andUs are functions
of the i.i.d. binary random variabldg; }, and their joint density
function is determined as follows. Let; andm, be the number
of “—1" terms in the summation of/; and U,, respectively.
Equivalently

U1 :ng —1- 2m1
U2 :U)NS —2— 2m2.

ol-whs (36)

Pl(w7m17m2) = Aml;mQ

The union bound on the bit-error probability is given by

oo wNg;—1wN;—2

<Y YD wAp, 2N Pu(w, Uy, Us)

w=1 m;=0 m>=0
(37)

where P, (w,U;,Us) is the pairwise error probability deter-
mined by (12)—(15), with the matrik’ given in (35).

The numerical bound can also be applied for the three-tap
ISI channel. Given the channel vectas; = a;e/¥! }2_, define
the relative phase®, = ¢, — 1y andfy = s — b9, Which
can be modeled as two independent random variables uniformly
distributed in[0, 7]. By using the definition of ¢; } in (23) with
pn defined in (34), the labels on the branches of the error-state
diagram (Fig. 8) can be written as

Bo :404%
(1 =4 (oz(?) + a% + 2cpagary cos 91)
(o =4 (oz(z) + a% + a% + 2¢1 g cos b
+2cparag cos s + 2¢pc apa cos(f2 — 61))
(3 =4 (a% + a% + a% + 2co0garq cos By

P

+2c1a1a cos by + 2¢1capar cos(fz — 01))
By =4 (a% + a3 + 2coa1az cos 92)
Bs =4aj
Be =4 (oz(?) + a% + a% + 2c3agoey cos by

+2coa1 a9 cos s + 2¢ac3py cos(fa — 61))
Br =4 (a% + a% + a% + 2c4090uq cos By

+2c3a1ap cos By + 2¢escapary cos(fz — 01))
(s =4 (ag + a% + a% + 2c30gaey cos by

+2coa1a9 cos o + 2¢ac3py cos(fa — 61))
By =4 (ozg + a? + a3 4 2ci000 cos by

+2c3aan cos by + 2escqapay cos(fa — 1)) .

Note the labelgls andgy are the same as the labélsand g,
respectively, because the difference in sign has been absorbed
into the random variable . The error-state diagram can be mod-
ified to take into account the randomnesgofFor example, the
branch ofg, is split for two possible values af). Conditioned

on ¢y (which becomes the state in the error-state diagram), the
branch of3, can take two possible values, accordingitor hus,
states between the branches are introduced in the diagram. The
modified error-state diagram, which depicts a trellis structure, is
shown in Fig. 9. Note that the exponentialdBfof the branches
connecting nonzero states are denoted,as,, wheres and

o, are the symbols (“1”, 4", “ —", or “2") of the starting and
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..........

“x Simulation
- — Numerical Bound
o E!gen Bound, W 15
_ EigenBound,w__ =

Fig. 9. Modified error-state diagram taking the randomness of the spread
sequence into account, BPSK data symbols on three-tap IS| cha¥inet, 4.

ending states of the branches, respectively. The branch label
the diagram are defined as

p1y =4 (a% + a% + 2091 cos 01)

12 14 16 18 20

9 9 0 2 4 8 10
P1— =4 (Olo + a7 — 20(00[1 COS 91) Eb/No(dB)
— 2 2 2
P+ =4 (O‘O + o1 + aj + 2a0a; cos by Fig. 10. Comparison of the analytical bounds and simulation results for
+2a1 a9 €08 B + 209 un cos(92 _ 01)) MLSE receiver for DS-BPSK signal, three-tap ISI channel, random spreading

9 9 9 sequenceN, = 4.
pr— =4 (ao + o] + a5 — 2apa cos bp

+2a1 g cos by — 290 cos(bz — 61)) 10

- = RAKE/MF, ISI
—4— RAKE-MLSE
* MLSE
RAKE/MF, no ISI |/

p—g =4 (ag + a2 + a2 4 2apa; cos by

—2a1ap cos by — 2aga cos(f2 — 61)) 107%

p—— =4 (ozg + oz% + oz% — 2ageq cos b
—2ajai cos by + 2a9as cos(fy — 61)) 10°
py2 =4 (a% + a% + 201 g COS 92)

p—2 =4 (Ol% + Ol% — 20{10[2 CcOSs 92) . §10_

The transfer function can be found for the modified error-sta
diagram. The upper bound on the conditional bit-error prob '©
bility Py (v, a1, a2, 01, 62) is obtained in Appendix II. Finally,
the bit-error probability is upper bounded by the equation shov  44-
at the bottom of the page, whelfg,(«;) and fy,(6;) are the
probability density functions of the Rayleigh fading amplitude: ,
a;, and the relative phase, respectively. 0 2 4 6

In Fig. 10, the two upper bounds on the bit-error probability
are compared With the SimUIation results for the_ thr_ee-tap Iﬁb 11. Comparison of the performance of MLSE receiver with the
channel. The eigenanalysis bound results remain virtually thg@wentional RAKE receiver (with or without ISI) and the RAKE-MLSE
same when increasingmax from 15 to 50, suggesting thatreceiver, DS-BPSK signal, three-tap ISI channel, random spreading sequence,
wmax = 15 is sufficient for computing the eigenanalysis bound:® ~ +
The bound based on numerical integration falls almost on top of )
the eigenanalysis bound; though it is tighter at very Iy N, ISI case. However, the MLSE receiver can recover almost all of
values, since it performs the truncation before averaging. Tihe loss caused by the I1SI with the conventional RAKE receiver.
bounds are within 1 dB of the simulation results, tighter than dloreover, the gain of the MLSE receiver over the RAKE-MLSE
the two-tap 1SI channel. receiver is more obvious than in the two-tap 1SI case, reaching

In Fig. 11, the performance of the MLSE receiver is corfd-8 dB forBER = 1.0 x 10~
pared with that of the conventional RAKE receiver and simula- i
tion results of the RAKE-MLSE receiver in [5]. Comparing withC- Discussion
the analytical results of the RAKE receiver, we observe that theln Sections V-A and B, two methods are given to evaluate the
error floor introduced by the 1Sl is higher than in the two-taperformance of the MLSE for CDMA signals. The first method,

12 14 16 18 20

10
E,/N,(dB)

oo oo oo iy iy . 1
P, < / / / / / min [57 Py(ao, a1, 02,01, 0) | oo (@0) fo, (1) fo, (61) fo, (62) b dO>dasdac daxg
Jag=0. Jay=0.J6,=0J60,=0

a;=0



1182 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 7, JULY 2003

the eigenanalysis method, evaluates the pairwise error probawifiere A, ;, represents the number of codewords with output

ities of simple error events on the fading channel by the eigemeight » generated by input words of weight The IOWEF

value decomposition of the path distance matrix, and sums tten also be represented by the conditional output weight enu-

contributions from a set of simple error events. Usually, theerating function (OWEF)

sum is truncated after a certain number of the terms, and so

the result is not a strict upper bound. To apply this method to AW, H) = ZA(’W»H)WU)

the system with random spreading sequences, the joint density w

of the random elements in the path distance matrix (&lg., \where

and U, in Section V-B) is required, which may be a lengthy

process for large values df. However, this method allows a A(w,H) = ZAw,hHh.

clear understanding of the contributions to errors from different h

error events. In addition, this me_tho_d can be extended toa ti_%r the trivial cases of

varying fading channel by considering the correlation function

of the fading coeffecients [20]. A0, H) =H°
The second method evaluates the conditional bit-error prob- A(N, H) = 7O

ability by the transfer function of the error-state diagram, and ’ '

finally, the conditioning is removed by a series of numerical in- oyr derivation follows closely the approach in [21]. Let the
tegrations. Usually, &L + 1)-fold numerical integration is re- g)|-zero sequence be the reference codeword, and consider an
quired for an ISI channel with+1 taps, and this method cannot,correct codeword caused by an input word with weighEor

be extended to time-varying fading channels. However, a ng¥&1 1 D encoder, define a suberror event in the input word as a
form of the Gaussiar-function allows the exact evaluationstring of consecutive ones, separated from other suberror events
of the transfer function, and the randomness of the spreadifgat |east one zero. Each suberror event will contribute two to
sequence is nicely incorporated. The results obtained are tryjg output weight:, unless the event is at the edge of the code-

upper bounds since no truncation of the sum is performed, aggrd. An input sequence can be uniquely decomposedinto
the results may be tighter than those obtained by the eigzp— w—1

analysis method, due to the minimization of the conditiongfSiointsuberrorevent;, i = 1,...,m.Therearq =
bit-error probability. Finally, the numerical bound can be easilgistinct decompositions of a sequence of ones with length
extended to fading channels with amplitude distributions otherto m subsequences, each of length at least one. The number
than Rayleigh. of configurations in which these subsequences can occurin a
word of length/V, with consecutive subsequences separated by
V1. CONCLUSION at least one position, is given yN — v f 1) However, we
An MLSE receiver has been proposed for DS signals Qfeed to consider three cases corresponding to the placement of

a multipath fading channel. The receiver employs a ViterBybsequences with respect to the leading and trailing edges of

decoder which operates on the combined trellis formed by th& word.

spreading and the ISI channel, and performs the function 9; No subsequence is on the edge.

despreading and equalization simultaneously. To evaluate the The output weight, = 2m, m = 1,2, ..

performance of the receiver, two upper bounds on the bit-error w— 1) il

probability have been derived, one using the eigenanalysis

method, and the other based upon a numerical technique. Both

methods are applied to a multipath Rayleigh fading channel A I _(N-w-1 w—1 72m

with one or two interfering symbols, when random spreading 1(w, H,m) = m m—1 '

sequences are used. Comparisons with simulation results )

show that the analytical bounds are quite accurate. The resfis©ONly one subsequence is on the edge.

also show that significant performance improvement over the ~ 1h€ output  weight h = 2m = 1,
m = 1,2,...,min(w, N — w), and there ar&V — w — 1

conventional RAKE receiver is obtained. ) o
possible positions fom — 1 subsequences not on the edge.
The conditional OWEF is given by

= 0, N, we can easily verify that

.,min(w, N —
, and there aré&V — w — 1 possible positions fom
subsequences. The conditional OWEF is given by

APPENDIX |
A( H )_2 N—’lU—l w—1 H2m,1
DERIVATION OF THE IOWEF OF 1 + D ENCODER 20, M, m) = m—1 m—1 ’
In this appendix, we will derive the IOWEF of the+ D 3y Tyo subsequences are on the edges.

encoder. The input sequence to the encoder is a sequence of The output  weight % _ om - 2
i.i.d. binary bits with lengthV: {z;};*5*. The output binary m = 2.3..... min(w, N — w + 1), and there are
sequence{y}; ", is related to the input sequence by = N —w — 1 possible positions fom — 2 subsequences not
zi—1 ® z;. The IOWEF is defined by on the edge. The conditional OWEF is given by

_ w rrh _ _ _
AW, H) =" Ay ) W*H Ay(w, H,m) = (N w 1) (w 1>H2m2.

w,h m — 2 m—1
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Note the two trivial cases are not included in the three cas#B W, I)

above. Putting everything together, we obtain the conditional 0 0 [TN572](1,1) [TN—2 12
OWEF as B 0 0 [TN572]<271) [TNS 2] )
min(w, N —w—1) [Tl [T]ao] 0 0
A(w, H) = > Ay (w, H,m) [Tl [T?22)! 0 0

m=1 whereT (W) is the transfer matrix of a simple crossover trellis,

min(w,N—w)

iven b
+ Z AZ(w7 H7 m) g y
m=1 1| WeP++ WeP+-
min(w,N—w-+1) TW) =3 [WP+ Wﬂ}
+ Z As(w, H,m) . _ _
m—p Note these equations can be applied to arbitrary valueé, pf
d the IOWEE is qi b provided thatv, > 2. ' ' .
andthe 's gven by It was shown by Craig [17] that the Gaussi@rfunction can
iy be defined b
AW, H) =W°H® + WNH® + " A(w, H)W™. y
w=1 1

/2 22
Q(‘T) T /0 €xp <_m> do, x> 0. (38)

Using this representation, the upper bound on the bit-error prob-
ability conditioned on the channel vector is given by [22]

APPENDIX I

CONDITIONAL TRANSFER FUNCTION BOUND

FOR THE THREE-TAP ISI CHANNEL 1 (™2 9
. . . . Pb < - / WT(W I)|W":exp(—'yc/4 sin? ¢),I:1d¢
In this appendix, we derive the transfer function bound on ™ Jo

the conditional bit-error probability’, (o, a1, a2, 01, 62) for  wherey, = E./N.Np.
the MLSE receiver of the random spread signal on a three-taprhe final integral can be efficiently approximated with a
ISI channel. The transfer function of an error-state diagram withauss—Chebyshev quadrature formula [23], leading to the

q States is given by [22]

following:

T(W, 1) = X(W, )G(W, )Y (W, I)

where

GOW, 1) = S HI(W, 1) = [1 — H(W, D"

=0

1 =9
B, < % Jz_; aT(Wv I)|VV:0xp(—'yC/4sinZ ¢;),I=1 + R,

whereg; = (25 — 1/4v)m andR, is the remainder term. It was
shown in [23] thatR,| < k2" asy. — oo for some constant

k, andv = 5 usually provides sufficient accuracy.

Here, theith element of the row vectd (W, T') and the column
vector Y (W, I) identify the branch weights of the transition
from state O to staté and from state to state 0, respectively.
Similarly, the elementH]; j), of the(¢ — 1) x (¢ — 1) matrix
H is associated with transition from stat® statej. To numer-
ically evaluate the transfer function bound of the bit-error prob- [2]
ability, an explicit expression fofd/0I)T (W, I)|;=1 is given
in [22]
BT D)y = X (W)GW)Y (W)

+X(W)G(W)H' (W)G(W)Y (W) + X(W)G(W)Y' (W)

whereX(W), G(W), andY (W) are the values oX (W, I),
G(s,I),andY (W, T) evaluated af = 1, andX(W ), H(W’,
and Y (W)’ are obtained by taking the partial derivatives of
X(W,I), H(W,I), and’Y (W, I) with respect tol and then
evaluating at/ = 1.

The modified error-state diagram in Fig. 9 can be further sim-
plified to a four-state diagram by preserving the bold-circled [l
states only. The vectors and the matrix are given by

(1]

(3]

(4]
(5]

(6]

Livsotore 1 Lypsoto .

X(W, 1) = | Wit _wo+r-1,0,0
1 485 Lirp_atss 9

Y(W,I) = 0,07§WP+2 ,37§Wp 2+08s
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