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Abstract—To accommodate high-speed data transmissions, it
may be necessary to substantially reduce the processing gain of a
direct-sequence spread-spectrum (DSSS) system. As a result, inter-
symbol interference effects may become more severe. In this paper,
we present a new structure for maximum-likelihood sequence esti-
mation equalization of DSSS signals on a multipath fading channel
that performs the function of despreading and equalization simul-
taneously. Analytical upper bounds are derived for the bit-error
probability when random spreading sequences are used, and com-
parisons to simulation results show that the bounds are quite accu-
rate. The results also show that significant performance improve-
ment over the conventional RAKE receiver is obtained.

Index Terms—Direct-sequence spread spectrum (DSSS), fading
channels, intersymbol interference (ISI), maximum-likelihood se-
quence estimation (MLSE).

I. INTRODUCTION

I N third-generation wireless land mobile communication sys-
tems, support of high-speed data transmission is required.

In a wideband direct-sequence code-division multiple-access
(DS-CDMA) system, high data rates can be accommodated by
reducing the processing gain due to the spreading. When the
spreading factor is sufficiently low (e.g, four), there is often
only one high-data-rate user active in the system [1], [2]. There-
fore, the multiple access interference (MAI) is low, but the in-
tersymbol interference (ISI) due to the multipath fading channel
might cause significant performance degradation to the conven-
tional RAKE receiver, as shown in [3]. As a consequence, there
is a need for equalization of DS signals with low processing
gain.

Several attempts have been made to solve this problem.
Since long spreading sequences are used in almost all practical
CDMA systems, there is no cyclostationary property in the
ISI component and a symbol-based minimum mean-square
error (MMSE) receiver cannot be used. A linear chip equalizer,
described in [4], tries to invert the channel transfer function
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prior to the despreading. The advantage of this scheme is
that the chip equalizer receiver also suppresses MAI in the
synchronously transmitted downlink if orthogonal spreading
sequences are employed. However, for channels with severe
amplitude distortion, linear equalization leads to a substan-
tial noise enhancement, which limits the application of this
scheme. A RAKE maximum-likelihood sequence estimator
(MLSE) receiver has been proposed in [5]. This suboptimal
receiver consists of a conventional RAKE receiver, followed
by an MLSE which tries to remove the ISI components in the
RAKE combined signal. Its performance is evaluated in [5]
by computer simulations, and significant improvement over
the conventional RAKE receiver is observed. In this paper, we
consider an optimal receiver structure, which is essentially an
MLSE receiver operating at the chip rate. Note that a simplified
chip-based MLSE multiuser detector was proposed in [6] and
[7].

The optimal receiver for estimating an uncoded signal cor-
rupted by ISI and additive white noise is a Viterbi decoder which
performs MLSE on the ISI trellis [8], [9]. The performance
of the MLSE has been analyzed thoroughly in [8] for time-in-
variant channels, and later in [10] for slowly time-varying mul-
tipath Rayleigh fading channels. In this paper, we show that if
the spreading is treated as a special operation of encoding, the
DS signal in the presence of ISI can be modeled by a single
finite-state machine. The MLSE receiver operating on the com-
bined trellis will jointly despread the signal and perform equal-
ization. The performance of the MLSE receiver can be analyzed
with the help of the error-state diagram [11]. However, for DS
signals with long pseudorandom spreading sequences, the la-
bels on the error-state diagram are time varying. It is shown in
this paper how to incorporate the randomness of the spreading
sequences into the analysis. As examples, we study both the
two-tap and three-tap Rayleigh fading channels in detail.

The paper is organized in the following manner. In Section II,
the system model is described. The structure of the MLSE re-
ceiver is presented in Section III, and two upper bounds on the
bit-error probability of the receiver are derived in Section IV. In
Section V, the two-tap and three-tap ISI channels are considered,
and bounds on the performance are computed in detail. Finally,
conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a direct-sequence spread-spectrum (DSSS)
system with both binary spreading and binary phase-shift

0090-6778/03$17.00 © 2003 IEEE
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Fig. 1. Trellis of DSSS signal with BPSK data symbols,N = 4.

keying (BPSK) data symbols. Using a complex, baseband
equivalent model, the transmitted signal may be expressed as

(1)

where is the signal power, is the carrier frequency, and
is the carrier phase. The spreading waveform is given by

, and the data waveform is
given by , where and
are the discrete signature sequence and discrete data sequence,
respectively, denotes a unit height rectangular pulse of du-
ration , and and are the chip duration and symbol du-
ration, respectively. The spreading ratio is . For
a long spreading sequence system, is modeled as a se-
quence of independent and identically distributed (i.i.d.) random
variables taking on the values of1 and 1 with equal prob-
ability. For a system with short sequences, the period of the
spreading sequence is assumed to be, i.e., .
The data symbol sequence consists of independent BPSK

1 symbols with equal probability.
The multipath fading channel is modeled as an -tap

transversal filter with tap spacing equal to. The baseband
equivalent impulse response is given by

(2)

where the tap coeffecients, , are modeled as inde-
pendent zero-mean complex Gaussian random processes, which
vary slowly in time. The received signal can be written as

(3)

where , is a low-pass equivalent, white
complex Gaussian noise process with

.1 The dependence of the’s and ’s on time is
dropped to reflect the slowly fading assumption.

After down-conversion, the received signal passes through a
chip-matched filter with a normalizing factor of . The
th output sample of the chip-matched filter is

(4)

1Following the conventional notation,z represents the conjugate of the com-
plex variablez, andz represents the complex conjugate transpose of the com-
plex vectorz.

where is a zero-mean complex Gaussian
random variable, with variance
described by the channel multipath intensity profile
(MIP), , and is a
zero-mean complex Gaussian random variable with vari-
ance , where .

III. MLSE RECEIVER

Assume that -symbol messages are transmitted over the
channel. The MLSE receiver [8] finds the candidate sequence of
information symbols that maximizes the likelihood of
the received sequence . This is equivalent to max-
imizing the log-likelihood function which, neglecting constant
scaling factors and additive terms, reduces to the form [12]

(5)

If we treat the direct spreading as an binary
block code, the spreading operation can be character-
ized as a time-varying trellis with period . Let be
the state of the spreading “encoder” before is
transmitted. The combined trellis of the direct spreading
and ISI channel can be viewed as generated by a fi-
nite-state machine [9], [13], whose states are given by

, where the data-mod-
ulated chip sequence
corresponds to a path which takes the spreading “encoder”
from a previous state to the present state . Note the
combined trellis is also time varying with the period of. The
well-known Viterbi algorithm can be applied to the combined
trellis, searching recursively for the maximum-likelihood
sequence .

Example 1: Consider a two-tap ISI channel with
BPSK data symbols. The trellis for the spreading code with

is shown in Fig. 1. The combined trellis is shown in
Fig. 2. We note the combined trellis has two states at any stage,
with time-varying structure. Also note the label on the trellis
transition is determined by the spreading sequence and
the fading channel coefficients . Applying the Viterbi al-
gorithm, we only need to perform the addition–comparison–se-
lection (ACS) operations at one stage in everystages, and
accumulate the path metrics for the remaining stages.
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Fig. 2. Combined trellis of DSSS signal with BPSK data symbols on two-tap ISI channel,N = 4.

Fig. 3. Combined trellis of DSSS signal with BPSK data symbols on three-tap ISI channel,N = 4.

Example 2: Consider a three-tap ISI channel with
BPSK data symbols. The combined trellis is shown in Fig. 3.
Again, the combined trellis employs a time-varying structure,
which repeats for every trellis transition stages. For one
stage out of every repeat period, when each of the two chips
stored in the ISI channel memory are modulated by a distinct
data bit, there are four states in the trellis. For all the other stages,
there are only two states, since the two chips stored in the ISI
channel memory are modulated by the same data bit.

The complexity of the proposed MLSE receiver increases
with the processing gain, , and the number of ISI channel
taps. The maximal number of states per chip is ,
while the number of transition branches per chip is either

or . The overall computational complexity
of the MLSE receiver is dominated by the metric compu-
tations, which has complexity proportional to .
In other words, the complexity grows linearly with , but
exponentially with . If is relatively small,

the complexity of the MLSE receiver will be acceptable,
although the Viterbi algorithm has to run at the chip rate. As a
comparison, the complexity of the conventional RAKE receiver
is , which grows linearly with both and .

IV. PERFORMANCEANALYSIS

A. Eigenanalysis Bound

We evaluate the bit-error probability of the MLSE receiver
in a slow-fading Rayleigh channel, with the assumption that

remains constant over the length of the dominant error
events. The standard union bound technique can be applied.
Consider an error sequence between the transmitted
data vector and the detected data vector, where

or , and is the length of the error event. The error
sequence is simple, i.e., the transmitted path and detected path
diverge at time 0 and remerge at time , but do not
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remerge at any time between them. The union bound is given by
[8], [12]

(6)

where is the set of all simple error events starting at ,
is the number of bit errors associated with the error event

, is the probability that is an allowable input
sequence, and is the pairwise error probability thathas
a larger metric than the transmitted sequence. The pairwise
error probability is represented by

(7)

where

(8)

Conditioned on the channel vector , the
pairwise error probability is given by [12]

(9)

where , and is the squared
Euclidean path distance, given by [10]

(10)

Here, the path distance matrix ,
and , where the error vector is defined as

.
Assuming independence between the fading coefficients,
, of different paths, the pairwise error probability can be

obtained in a closed form. Define the normalized channel
vector , where . Equation (10)
can be written as [14]

(11)

where

(12)

Averaging over the normalized channel vector, the pairwise
error probability is shown in [14] to be

(13)

where

(14)

(15)

and are eigenvalues of the matrix, which are assumed to
be distinct.

The union bound in (6) requires the calculation of an infinite
series. In practice, the series needs to be truncated at an appro-
priate point. In addition, since the matrix

is determined by both the error sequence, and the random
spreading sequence , the randomness of has to be taken
into consideration. The analysis is illustrated in the examples in
Section V.

B. Numerical Bound

The bound in the last subsection is analytically tractable, and
provides useful insights into the system. However, the results
from the bound may be loose [10]. Due to the lack of time di-
versity, the probability of longer error events does not diminish
as fast as on a fast-fading channel, and there is no dominant error
event for the slow-fading channel. The approach considered in
this subsection limits the conditional bit-error probability before
averaging over the channel vector[15]. This approach does not
involve the truncation of the sum over the simple error events,
and may yield tighter results. The disadvantage of this method
is that numerical integrations are required.

Assuming the channel vectoris fixed, the conditional bit-
error probability can be bounded using the transfer function of
the error-state diagram [11]. Let be the transfer func-
tion given by , where is the
number of error events that have squared Euclidean distance
and data bit errors. Then the Bhattacharyya bound can be used
for the conditional bit-error probability [16]

(16)

where is the minimal squared Euclidean distance.
We can also use an alternate form of the Gaussian-function

[17] to evaluate the exact transfer function bound on the bit-error
probability conditioned on the fading channel, as demonstrated
in Appendix II. Note the transfer function is dependent
on the channel vector. A tight bound is obtained by limiting
the conditional union bound below before averaging over
the channel vector [15], yielding

(17)

where is the probability density function of the channel
vector. Due to the minimization, the integration has to be carried
out numerically.
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Fig. 4. Reduced error-state diagram of DSSS signal with BPSK data symbols
on two-tap ISI channel,N = 4.

TABLE I
ELEMENTS OF BRANCH DISTANCE MATRIX E FOR BPSK SYMBOLS

OVER A TWO-TAP ISI CHANNEL, ASSUMINGN = 4. NOTE FOR A

SHORT SPREADING SEQUENCE, a = a

V. EXAMPLES AND DISCUSSION

A. BPSK Data Symbols on a Two-Tap ISI Channel

We revisitExample 1from Section III. This is an ISI channel
with one interfering symbol, and the combined trellis is shown
in Fig. 2. Following the steps of the analysis on ISI channels
in [11], the reduced error-state diagram for a short spreading
sequence with is obtained and shown in Fig. 4. The
squared Euclidean distance and the number of data bit errors
associated with each branch are represented as the exponents of

and . The squared Euclidean distance, , are
represented in the following as quadratic forms in the channel
vector , where the branch distance matrices associated with the
quadratic form, , are shown in Table I. Since the
matrices are Hermitian, only the upper triangular elements are
listed.

With the help of the error-state diagram, we can obtain the
path distance matrix , the squared Euclidean distance

, and the associated probability , for any simple
error sequence. Consider an error event withinformation bit
errors. From Fig. 4, we know it passes through the feedback
branches ( or ) times. The enumerating function of

the squared Euclidean distances is

(18)

where is the number of times the error event takesas its
feedback branch. Since , the path
distance matrix of the error event withbit errors and a speci-
fied value of , denoted by , is given by

(19)

where , and
is the discrete aperiodic autocorrelation function

of the short spreading sequence, with an offset one [18]. The
probability associated with the error event, denoted by

, is

(20)

To obtain a similar result for a random spreading sequence,
we need a vector to record the choice
of the feedback branches in order. The sequence is
defined as

if is chosen
if is chosen.

(21)

The path distance matrix of the error event withbit errors and
a specified vector , denoted by , is expressed as

(22)

where

and the associated probability of the error event is
.

Next, the randomness of the spreading sequenceis taken
into consideration. A new sequence of binary random variables,

, is defined by

if
if . (23)

Since is a sequence of i.i.d. binary random variables on
, is also a sequence of i.i.d. random variables on
. The random variable can be written as

(24)
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The path distance matrix is fully determined by and
through (22), and is denoted by . Correspondingly,

the associated probability is also determined by and via

(25)

where denotes the number of’s in
the sum of (24) that take the value of “1”.

Now (6)–(15) can be applied to obtain the union bound on
the bit-error probability. For the special case of flat MIP, i.e.,

, we have

(26)

The eigenvalues of are

If is an even number, we have and . The
pairwise error probability is given by

where and are given by (14). The union bound on the
bit-error probability is given by

(27)

Alternatively, the numerical bound can be applied to esti-
mate the bit-error probability. Conditioned on the channel vector

, the labels on the branches of the error-state dia-
gram (Fig. 4) are given by

where is the relative phase.
Note are independent random variables taking1

with equal probability of 1/2. This randomness can be reflected
in the error-state diagram by splitting the branches of
1, 2, 3, 5, 6. In addition, the four branches obtained by splitting
the branches and can be merged into two. The modified

Fig. 5. Modified error-state diagram taking the randomness of the spreading
sequence into account, BPSK data symbols on two-tap ISI channel,N = 4.

error-state diagram is depicted in Fig. 5, with the labels defined
by

By symmetry, the relative phasecan be treated as a random
variable uniformly distributed in the range of . The
transfer function of this diagram can be shown to be

(28)

(29)

where

(30)

Using (16), the conditional bit-error probability is upper
bounded by

(31)

where

(32)

Finally, the bit-error probability is upper bounded by

(33)

where and are the probability density functions
of the Rayleigh fading amplitudes, , and the relative phase,
respectively.

In Fig. 6, the two upper bounds on the bit-error probability
are shown, together with the simulation results for the two-tap
ISI channel. The eigenanalysis bounds are shown with the infi-
nite sum over truncated at different values ( 5, 25, or
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Fig. 6. Comparison of the analytical bounds and simulation results for MLSE
receiver for DS-BPSK signal, two-tap ISI channel, random spreading sequence,
N = 4.

Fig. 7. Comparison of the performance of MLSE receiver with the
conventional RAKE receiver (with or without ISI) and the RAKE-MLSE
receiver, DS-BPSK signal, two-tap ISI channel, random spreading sequence,
N = 4.

50). Since the results do not change much when increasing the
from 25 to 50, 25 seems to be sufficient for com-

puting the eigenanalysis bound. The bound based on numerical
integration is tighter than the eigenanalysis bound, especially at
low values, and it is within 2 dB of the simulation re-
sults.

In Fig. 7, the performance of the MLSE receiver is com-
pared to that of the conventional RAKE receiver, both with and
without ISI. The bit-error rate (BER) curves for the conven-
tional RAKE receiver are generated by using the characteristic
function method [19], with a sample average over 1000 realiza-
tions of the random spreading sequences. The performance of
the RAKE-MLSE receiver in [5], obtained from simulation, is
also shown in the figure. It can be seen that while ISI introduces
an error floor for the conventional RAKE receiver, the MLSE

Fig. 8. Reduced error-state diagram of DSSS signal with BPSK data symbols
on three-tap ISI channel,N = 4.

TABLE II
ELEMENTS OFBRANCH DISTANCE MATRIX E FOR BPSK SYMBOLS OVER A

THREE-TAP ISI CHANNEL, ASSUMINGN = 4. NOTE FOR A SHORT

SPREADING SEQUENCE, a = a , a = a

receiver can recover almost all the loss due to ISI. In addition,
it is found that the proposed MLSE receiver outperforms the
RAKE-MLSE receiver by a small margin.

B. BPSK Data Symbols on a Three-Tap ISI Channel

Both the analytical bounds can be extended to BPSK data
symbols on a three-tap ISI channel. The combined trellis is il-
lustrated in Fig. 3. The reduced error-state diagram for a short
spreading sequence with is shown in Fig. 8. Note the
branches and correspond to the transitions from state
to , and from state to in Fig. 3, respectively. The squared
Euclidean distances on each branch are given below. The matrix

is shown in Table II. Since the matrix ’s are Hermitian,
only the upper triangular elements are listed.

Similar to the two-tap ISI channel, we can obtain the path
distance matrix and the associated probability for any
simple error sequence. An error event withinformation bit
errors has to pass the feedback branches ( or )
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times. Let denotes the number of times the error event takes
as its feedback branches. Then the path matrix is given

by

where

Again, and are the discrete aperiodic autocorrelation
function of the short spreading sequence, with offset one and
two, respectively, and the associated probability is the same as
that given in (20).

For random spreading sequence, we also define a vectorto
record the choice of the feedback branches in order

if is chosen
if is chosen

(34)
The path distance matrix is expressed by

(35)

where

and the associated probability is .
Defining a new sequence of i.i.d. binary random variables

as in (23), we have

The path distance matrix is fully determined by ,
, and . For a given value of , and are functions

of the i.i.d. binary random variables , and their joint density
function is determined as follows. Let and be the number
of “ 1” terms in the summation of and , respectively.
Equivalently

Note the sequences and can be considered as the
input and output sequence of a encoder. Correspondingly,

and is the input and output weight of the encoder, respec-
tively. In Appendix I, we derive the joint input–output weight
enumerating function (IOWEF) of the encoder. Letting

represent the number of codewords with output weight
generated by input words of weight, the associated probability
with is given by

(36)

The union bound on the bit-error probability is given by

(37)
where is the pairwise error probability deter-
mined by (12)–(15), with the matrix given in (35).

The numerical bound can also be applied for the three-tap
ISI channel. Given the channel vector , define
the relative phases and , which
can be modeled as two independent random variables uniformly
distributed in . By using the definition of in (23) with

defined in (34), the labels on the branches of the error-state
diagram (Fig. 8) can be written as

Note the labels and are the same as the labelsand ,
respectively, because the difference in sign has been absorbed
into the random variable . The error-state diagram can be mod-
ified to take into account the randomness of. For example, the
branch of is split for two possible values of . Conditioned
on (which becomes the state in the error-state diagram), the
branch of can take two possible values, according to. Thus,
states between the branches are introduced in the diagram. The
modified error-state diagram, which depicts a trellis structure, is
shown in Fig. 9. Note that the exponentials ofof the branches
connecting nonzero states are denoted as , where and

are the symbols (“1”, “ ”, “ ”, or “2”) of the starting and



TANG et al.: MLSE RECEIVER FOR DIRECT-SEQUENCE SPREAD-SPECTRUM SYSTEMS ON A MULTIPATH FADING CHANNEL 1181

Fig. 9. Modified error-state diagram taking the randomness of the spreading
sequence into account, BPSK data symbols on three-tap ISI channel,N = 4.

ending states of the branches, respectively. The branch labels in
the diagram are defined as

The transfer function can be found for the modified error-state
diagram. The upper bound on the conditional bit-error proba-
bility is obtained in Appendix II. Finally,
the bit-error probability is upper bounded by the equation shown
at the bottom of the page, where and are the
probability density functions of the Rayleigh fading amplitudes,

, and the relative phases,, respectively.
In Fig. 10, the two upper bounds on the bit-error probability

are compared with the simulation results for the three-tap ISI
channel. The eigenanalysis bound results remain virtually the
same when increasing from 15 to 50, suggesting that

15 is sufficient for computing the eigenanalysis bound.
The bound based on numerical integration falls almost on top of
the eigenanalysis bound; though it is tighter at very low
values, since it performs the truncation before averaging. The
bounds are within 1 dB of the simulation results, tighter than on
the two-tap ISI channel.

In Fig. 11, the performance of the MLSE receiver is com-
pared with that of the conventional RAKE receiver and simula-
tion results of the RAKE-MLSE receiver in [5]. Comparing with
the analytical results of the RAKE receiver, we observe that the
error floor introduced by the ISI is higher than in the two-tap

Fig. 10. Comparison of the analytical bounds and simulation results for
MLSE receiver for DS-BPSK signal, three-tap ISI channel, random spreading
sequence,N = 4.

Fig. 11. Comparison of the performance of MLSE receiver with the
conventional RAKE receiver (with or without ISI) and the RAKE-MLSE
receiver, DS-BPSK signal, three-tap ISI channel, random spreading sequence,
N = 4.

ISI case. However, the MLSE receiver can recover almost all of
the loss caused by the ISI with the conventional RAKE receiver.
Moreover, the gain of the MLSE receiver over the RAKE-MLSE
receiver is more obvious than in the two-tap ISI case, reaching
0.8 dB for .

C. Discussion

In Sections V-A and B, two methods are given to evaluate the
performance of the MLSE for CDMA signals. The first method,
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the eigenanalysis method, evaluates the pairwise error probabil-
ities of simple error events on the fading channel by the eigen-
value decomposition of the path distance matrix, and sums the
contributions from a set of simple error events. Usually, the
sum is truncated after a certain number of the terms, and so
the result is not a strict upper bound. To apply this method to
the system with random spreading sequences, the joint density
of the random elements in the path distance matrix (e.g.,
and in Section V-B) is required, which may be a lengthy
process for large values of. However, this method allows a
clear understanding of the contributions to errors from different
error events. In addition, this method can be extended to a time-
varying fading channel by considering the correlation function
of the fading coeffecients [20].

The second method evaluates the conditional bit-error prob-
ability by the transfer function of the error-state diagram, and
finally, the conditioning is removed by a series of numerical in-
tegrations. Usually, a -fold numerical integration is re-
quired for an ISI channel with taps, and this method cannot
be extended to time-varying fading channels. However, a new
form of the Gaussian -function allows the exact evaluation
of the transfer function, and the randomness of the spreading
sequence is nicely incorporated. The results obtained are truly
upper bounds since no truncation of the sum is performed, and
the results may be tighter than those obtained by the eigen-
analysis method, due to the minimization of the conditional
bit-error probability. Finally, the numerical bound can be easily
extended to fading channels with amplitude distributions other
than Rayleigh.

VI. CONCLUSION

An MLSE receiver has been proposed for DS signals on
a multipath fading channel. The receiver employs a Viterbi
decoder which operates on the combined trellis formed by the
spreading and the ISI channel, and performs the function of
despreading and equalization simultaneously. To evaluate the
performance of the receiver, two upper bounds on the bit-error
probability have been derived, one using the eigenanalysis
method, and the other based upon a numerical technique. Both
methods are applied to a multipath Rayleigh fading channel
with one or two interfering symbols, when random spreading
sequences are used. Comparisons with simulation results
show that the analytical bounds are quite accurate. The results
also show that significant performance improvement over the
conventional RAKE receiver is obtained.

APPENDIX I

DERIVATION OF THE IOWEF OF ENCODER

In this appendix, we will derive the IOWEF of the
encoder. The input sequence to the encoder is a sequence of
i.i.d. binary bits with length : . The output binary
sequence, , is related to the input sequence by

. The IOWEF is defined by

where represents the number of codewords with output
weight generated by input words of weight. The IOWEF
can also be represented by the conditional output weight enu-
merating function (OWEF)

where

For the trivial cases of , we can easily verify that

Our derivation follows closely the approach in [21]. Let the
all-zero sequence be the reference codeword, and consider an
incorrect codeword caused by an input word with weight. For
the encoder, define a suberror event in the input word as a
string of consecutive ones, separated from other suberror events
by at least one zero. Each suberror event will contribute two to
the output weight , unless the event is at the edge of the code-
word. An input sequence can be uniquely decomposed into

disjoint suberror events, , . There are

distinct decompositions of a sequence of ones with length
into subsequences, each of length at least one. The number
of configurations in which these subsequences can occur in a
word of length , with consecutive subsequences separated by

at least one position, is given by . However, we

need to consider three cases corresponding to the placement of
subsequences with respect to the leading and trailing edges of
the word.

1) No subsequence is on the edge.
The output weight ,

, and there are possible positions for
subsequences. The conditional OWEF is given by

2) Only one subsequence is on the edge.
The output weight ,

, and there are
possible positions for subsequences not on the edge.
The conditional OWEF is given by

3) Two subsequences are on the edges.
The output weight ,

, and there are
possible positions for subsequences not

on the edge. The conditional OWEF is given by



TANG et al.: MLSE RECEIVER FOR DIRECT-SEQUENCE SPREAD-SPECTRUM SYSTEMS ON A MULTIPATH FADING CHANNEL 1183

Note the two trivial cases are not included in the three cases
above. Putting everything together, we obtain the conditional
OWEF as

and the IOWEF is given by

APPENDIX II

CONDITIONAL TRANSFER FUNCTION BOUND

FOR THETHREE-TAP ISI CHANNEL

In this appendix, we derive the transfer function bound on
the conditional bit-error probability for
the MLSE receiver of the random spread signal on a three-tap
ISI channel. The transfer function of an error-state diagram with

states is given by [22]

where

Here, the th element of the row vector and the column
vector identify the branch weights of the transition
from state 0 to state and from state to state 0, respectively.
Similarly, the element, , of the matrix

is associated with transition from stateto state . To numer-
ically evaluate the transfer function bound of the bit-error prob-
ability, an explicit expression for is given
in [22]

where , , and are the values of ,
, and evaluated at , and , ,

and are obtained by taking the partial derivatives of
, , and with respect to and then

evaluating at .
The modified error-state diagram in Fig. 9 can be further sim-

plified to a four-state diagram by preserving the bold-circled
states only. The vectors and the matrix are given by

where is the transfer matrix of a simple crossover trellis,
given by

Note these equations can be applied to arbitrary values of,
provided that .

It was shown by Craig [17] that the Gaussian-function can
be defined by

(38)

Using this representation, the upper bound on the bit-error prob-
ability conditioned on the channel vector is given by [22]

where .
The final integral can be efficiently approximated with a

Gauss–Chebyshev quadrature formula [23], leading to the
following:

where and is the remainder term. It was
shown in [23] that as for some constant

, and usually provides sufficient accuracy.
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