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Abstract—Previous results suggest that the crosstalk produced
by the fiber nonlinearity in a WDM system imposes a severe limit
to the capacity of optical fiber channels, since the interference
power increases faster than the signal power, thereby limiting
the maximum achievable signal-to-interference-plus-noise ratio
(SINR). We study this system in the weakly nonlinear regime
as a multiple-access channel, and show that by optimally using
the information from all the channels for detection, the change
in the capacity region due to the nonlinear effect is minimal.
On the other hand, if the receiver uses the output of only one
wavelength channel, the capacity is significantly reduced due to
the nonlinearity, and saturates as the interference power becomes
comparable to the noise, which is consistent with earlier results.
The results hold in channels with or without memory. Every point
in the capacity region can be achieved without knowledge of the
nonlinearity parameters at the transmitters. The structures of
optimal/suboptimal receivers are briefly discussed.

Index Terms—Capacity, multiple-access channel, multiuser
detection, optical fiber nonlinearities, wavelength-division multi-
plexing (WDM).

I. INTRODUCTION

N order to achieve higher data rates in long-haul optical fiber
I systems, higher signal-to-noise ratios (SNRs) are required at
the receiver. However, as the signal intensity increases, the non-
linearities in the fiber affect the signal propagation. The domi-
nant form of nonlinearity, known as the Kerr effect, is caused by
the dependence of the index of refraction on the instantaneous
signal intensity. In a wavelength-division multiplexing (WDM)
system, this effect causes the signal centered at one frequency
to modulate the signals at all frequencies by changing the index
of refraction. The nonlinear effects can be separated into the
cross-phase modulation (XPM) effect, where the phase of each
signal is distorted as a function of the intensities of the signals
centered at other frequencies, and the four-wave mixing (FWM)
effect, which is a distortion on both the phase and the amplitude
of the signals.

It appears that the first published effort to characterize the ef-
fect of nonlinearities on the throughput of WDM systems was
the work by Mitra and Stark [1], which was later reproduced
in more detail in [2]. In that work, they estimated the capacity
for each user by modeling the crosstalk in each channel as a
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combination of multiplicative and additive noise. Their analysis
predicted that since the interference power grows faster than
the signal power, the mutual information between the input and
output will start to decrease with power when the interference
becomes comparable to the additive (optical amplifier) noise.
Hence, they declared this effect as a fundamental limit to the ca-
pacity of fiber-based systems. A number of similar results were
also obtained for different scenarios, e.g., in [3]. Ho and Kahn
made a further step in [4] and used the fact that in certain re-
gions of operation, the dominant crosstalk terms are caused by
XPM, which only depends on the signal intensities. Therefore,
by keeping the amplitudes constant and using phase modulation
at the transmitters, the distortion caused by the nonlinearities
becomes constant. However, this restriction on the modulation
format imposes a large penalty on the capacity by taking away
one degree of freedom. Moreover, this technique is ineffective
against FWM, which in contrast to XPM, depends on both the
intensity and the phase of the transmitted symbols. Among other
works, Narimanov and Mitra in [6] developed a perturbation
theory for evaluating the capacity of a single-wavelength non-
linear fiber.

In all the works mentioned above, detection in each sub-
channel was done independently from that in other channels.
Thus, any interference from other channels had to be treated
as random noise. A result by Xu and Brandt-Pearce in [5]
was the first and, to the best of our knowledge, the only work
that discussed the advantage of multiuser detection (MUD)
for this channel. They studied the practical, but restricted
case of on—off keying (OOK) modulation with square-law
detection, and showed that, by using a multiuser detector to
simultaneously detect the symbols transmitted through all
the subchannels, the bit-error probability can be significantly
improved.

In this paper, we investigate the capacity of the nonlinear op-
tical fiber channel with WDM from a multiuser point of view.
To model the channel, the Volterra series expansion of the input/
output relation derived in [7] is used. We define the weakly
nonlinear regime as the region where the first nonlinear term
in the Volterra series is significant, and the higher order terms
can be neglected. With this approximation, we show that the
change in the capacity region due to the nonlinearity is negli-
gible if the receiver optimally uses the outputs of every wave-
length-channel, which is equivalent to MUD in correlated mul-
tiuser channels. However, if the receiver uses the output in only
one wavelength-channel, the capacity experiences a large reduc-
tion due to the nonlinearity even in the weakly nonlinear regime,
which is consistent with earlier results. Consequently, optimal
multiwavelength detection (MWD) allows us to increase the
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transmit power beyond the limit dictated by the result of [1],
which translates to a higher capacity for an equal range of trans-
mission, or a longer range with the same capacity. The assump-
tion of weak nonlinearity introduces an uncertainty in the ex-
pression for the capacity, which can be estimated in terms of the
transmit power. As demonstrated in Section VI, within a range
of reasonable uncertainty, the multiuser capacity of the channel
is much higher that the capacity predicted in [1], where the in-
terference was modeled as noise.

In an optical fiber channel with chromatic dispersion, the
group velocity (envelope velocity) is frequency (or wavelength)
dependent. This causes any two narrowband signals centered at
different wavelengths to lose their synchronism due to the un-
equal delays that they experience as they propagate in the fiber,
a phenomenon known as the relative “walk-off” effect. When
the dispersion is large, the combination of the walk-off of the
carriers with the nonlinear mixing causes the channel to have
memory, an effect which cannot be compensated passively. We
show that even in the presence of memory, the capacity region
of the optimal receiver is close to the linear case.

The rest of the paper is organized as follows. Section II de-
fines the physical properties of the channel and our discrete-time
model. In Section III, we derive the capacity region for the
low-dispersion case, where the channel is memoryless. This re-
sult is generalized to the strongly dispersive case in Section IV.
In Section V, the effect of nonlinearity on the capacity is inves-
tigated for the suboptimal receiver structure with single-wave-
length detection. Some numerical comparisons are presented in
Section VI. Section VII concludes the paper.

II. CHANNEL MODEL

A. Nonlinear Optical Fiber

For a single-mode optical fiber with chromatic dispersion and
a Kerr nonlinearity, the slowly varying complex envelope or
low-pass equivalent of the optical field, A(¢,z), at time ¢ and
distance z from the transmitter is described by the nonlinear
Schrodinger equation [8]
0A o j  0%A
= —gA+ Sk — Al A (1)
where 7 = t — 31z is the time in the reference frame of the
moving pulse. In this equation, « is the fiber loss factor, [3;
is the inverse of the group velocity, O> is the group velocity
dispersion (GVD) parameter, and +y is the nonlinearity coeffi-
cient. The last term on the right-hand side of the equation cor-
responds to the Kerr nonlinear effect. It is useful to introduce
two parameters, the effective length and the dispersion length.
The effective length Leg = (1 — e %) /a, where L is the
physical length of the fiber, is a measure of the distance where
the nonlinear effects become significant. The dispersion length
Lp = (213, BAv)~!, where B is the channel bandwidth and
Av = % is the channel spacing, is a measure of the distance
where the signals on different carriers start to “walk-off” as a
result of chromatic dispersion.
Unfortunately, except for the cases where either dispersion
or nonlinearity is negligible, no closed-form solution has been
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found for the nonlinear Schrodinger equation and approximate
or numerical methods must be used to characterize the channel.
For example, the Split-step Fourier method estimates the
crosstalk caused by the nonlinearity by numerical techniques.
However, in order to study the information-theoretic character-
istics of the channel, analytic expressions for the input—output
relation of the channel are needed. Peddanarappagari et al. used
Volterra series in [7] to derive a series expansion to arbitrary
order for the low-pass equivalent field in the frequency domain.
This method converges for small signal intensities, where
Y| AJ? Legg < 1, which is the region we are interested in. While
this is a significant limitation, it is the only known technique
that gives an analytical solution and we will use it in this work.
Fortunately, major parts of our analysis do not depend on the
exact modeling of the channel, and result from the fundamental
properties of the transmission medium.

The Volterra series solution for the Fourier transform of the
output low-pass equivalent field A (w, z), in terms of the input
low-pass equivalent field Ag(w), up to the third-order term can
be written as [7]

A(w,2) = Hy (w, 2) Ao(w) +//H3(w1,w2,w — w1 +ws,2)
Ao(wl)AS (a)z)Ag(w — W1 + wg)dwldwz (2)

where H; and Hj, given in Appendix II, are the linear and
cubic terms of the channel response, respectively. Although the
Fourier transforms are originally performed with respect to 7,
the solution in terms of the time ¢ of the receiver reference frame
has exactly the same form, since 7 and ¢ differ only by a constant
delay. In the absence of nonlinearity, the signal experiences at-
tenuation from absorption and scattering, as well as dispersion.
Linear dispersion results in a relative walk-off between different
carriers, and quadratic dispersion produces phase and ampli-
tude distortion. At the receiver, these effects can be compen-
sated by using an optical amplifier for the attenuation and dis-
persion compensation fiber (DCF) or electronic equalization for
the dispersion. However, in the presence of both dispersion and
nonlinearity, the DCF cannot compensate for their joint effect.
The amplification introduces spontaneous emission noise that is
well approximated for large amplifier gains as a signal-indepen-
dent additive white Gaussian noise (AWGN) in the optical do-
main. In practice, this effect dominates all other sources of noise
in the channel, including signal-dependent shot noise, which is
present in a standard Poisson channel. Fortunately, the equiv-
alent low-pass linear frequency response of the channel has a
constant amplitude over the frequency band that we consider, so
that the equalization does not change the power spectral density
of the signal and noise. Hence, we can assume that the additive
optical noise remains white after the DCF.

By examining the expression for the cubic and fifth-order
terms of the Volterra series in [7], we observe that the ratios
of the magnitudes of these terms are, respectively, order O(§)
and order O (62), where § = | A|? Legr. The parameter § is a
small and dimensionless number and is a measure of the total
phase shift in the signal due to the nonlinearity. In this paper,
we confine our analysis to the region 6 < 1, and neglect all
terms smaller than or comparable to §? in magnitude, leaving
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only the linear and cubic terms listed in (2). Consequently, the
results will have a relative uncertainty of O(6?). We will esti-
mate the uncertainty on the capacity due to this approximation
in Section VL.

Remark 1: In this paper, the “big-O” notation implies a
stronger meaning than its standard definition in asymptotic
analysis. We write

f(z)=0((2), zeD 3)
if there is a constant £ > 0 such that
If( <~wlgz)l,  zeD )
and
k¥ 1. 4)

In other words, | f(z)| is smaller than or comparable to |g(z)|. In
this paper, unless otherwise stated, the ordering arguments are
in terms of 6, i.e., z = 6, in the region D = {6 < 1}.

B. Wavelength-Division Multiplexing

We consider a WDM system with K users transmitting in dif-
ferent subchannels with identical signal spectrum, and we study
two cases for the receiver. In the first case, which corresponds
to a multiple-access channel model, a single receiver has access
to the fiber output in all frequency bands. In the second case,
each user only has access to his own subchannel, thus making
the system an interference channel. The multiuser model we use
is also valid for current point-to-point (single-user) WDM sys-
tems where no cooperation or coding is performed between the
subchannels. We further assume that frame synchronism and
symbol synchronism among the users is achieved at the receiver,
since the walk-off effect of linear dispersion can be compen-
sated. However, as a result of this walk-off along the fiber and
the instantaneous nature of the nonlinearity, each symbol will
be modulated not only by the other symbols transmitted during
the same symbol period, but also by the previous and past sym-
bols of other channels, which cannot be compensated by a linear
equalizer. Moreover, quadratic dispersion may produce linear
intersymbol interference (ISI) within a single subchannel by
broadening the transmitted pulses in time. Although the linear
IST can be compensated, the nonlinearity results in intermod-
ulation between consecutive symbols of each channel. Conse-
quently, the coupling between dispersion and nonlinearity pro-
duces memory in the channel. In order to gain insight, we first
neglect the relative walk-off of the subchannels by assuming that
the dispersion is weak, or there is sufficient guard time between
the consecutive symbols of each user. In this case, the channel
is memoryless, because during each symbol period only one
symbol from each user contributes to the output signal. In Sec-
tion IV, we will generalize the problem to the case with memory
and show that channel memory does not reduce the capacity, al-
though it makes the optimal receiver more complicated.

The frequency-domain input to the fiber during the nth
symbol period can be written as

Ap(w) = nguk (n)V(w — kAw) (6)
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where ui(n),n = 1,..., N is the channel-coded symbol se-
quence of the kth user, with N being the block length, g is
a complex constant for normalizing the input power and phase
bias of the kth transmitter, and V' (w) is the Fourier transform of
the band-limited pulse shape v(t), normalized to have unit total
energy. To simplify the equations, we define z1(n) = grur(n)
as the equivalent discrete-time channel inputs. The coded sym-
bols satisfy a statistical and temporal average power constraint

1 N
¥ 3B [lum)P] < 1. %)
n=1

In other words, the kth user transmits with an average energy
per symbol duration upper-bounded by |gx|?. For brevity, we
drop the index n in the analysis of the memoryless case.

As a result of nonlinear effects, each subchannel experiences
spectral broadening. A practical assumption that simplifies the
analysis is that the spacing between the carrier frequencies Av
is large enough with respect to the bandwidth of the signals B,
so that the spectrum of each subchannel after nonlinear mixing
does not overlap that of any other subchannel. With the current
technology, channel spacing is several times the bandwidth of
each channel because of practical limitations in the frequency
stability and bandwidth of optical filters. On the other hand,
from (2), we see that the nonlinear term in the output is a triple
convolution of transmitted signals in the frequency domain, so
its bandwidth is strictly less than three times the bandwidth of
the linear term. In fact, the effective bandwidth is much smaller,
e.g., if the pulses are Gaussian, the effective bandwidth of the
crosstalk will be \/5 times that of the original signal. Hence, for
current systems, the assumption about carrier spacing does not
impose any constraint on the system. Moreover, for future more
spectrally efficient systems, the capacity-achieving interference
cancellation scheme that we study in Section III-C can perform
well even if the spectra of the subchannels overlap due to non-
linearity. Therefore, we believe that the overlap of subchannels,
although making the equations much more complicated, does
not change the results significantly.

The first step in analyzing the capacity of the system is to de-
rive a discrete-time equivalent model for the channel. This can
be done by finding a complete set of orthonormal basis func-
tions for the space containing all the possible received signals,
and then projecting the received signal along each of the basis
functions. In the absence of nonlinearity, it is optimal to choose
as the basis functions the responses of the channel (including the
possible dispersion compensator) to the waveforms transmitted
by the K users, i.e., to use a bank of K electrical matched fil-
ters, each followed by a sampler. An equivalent diagram of this
structure is shown in Fig. 1. The down-conversion can be ei-
ther homodyne or heterodyne and is done by adding a locally
generated tone to the received signal and passing it through a
square-law detector. If a balanced receiver is used and the local
oscillator is strong enough, this process results in a frequency
shift in the received signal, without changing the characteristics
of the signal and the noise.

For the nonlinear optical fiber channel, the number of filters
required for spanning the space of the received signal is more
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Fig. 1. Equivalentreceiver structure (MF denotes the electronic matched filter).

than the number of subchannels, K. However, since we are as-
suming that the crosstalk is much smaller than the signal term,
almost all the useful information can be provided by the outputs
of the K matched filters. In Appendix I, the optimality of this
structure to the first order of approximation is shown for both
the memoryless case and the case with channel memory. There-
fore, we use the structure of Fig. 1 for the (weakly) nonlinear
channel.

We initially assume that the first-order dispersion is weak,
so that the channel can be considered memoryless. In this case,
using (2) and (6), the output of the sth branch tuned to the +th
user’s signal can be written as

K K K
yizl’ri-zzz:f mTEL] T + Ny ®)

k=11=1 m=1

where {n;} are the additive noise terms modeled as independent
and identically distributed (i.i.d.) circularly symmetric complex
Gaussian random variables with zero mean and variance o2
in both the real and imaginary dimensions. In this equation,
the triple summation corresponds to the crosstalk terms coming
from the Kerr nonlinearity. The crosstalk coefficients f k.lm A€
proportional to v L.g, and can be calculated from (2) and (6).
Since the frequency bands are nonoverlapping, & ,(C% m 18 only
nonzero when k — [ + m = i. Details on the derivation of this
model are presented in Appendix II. In Section IV, where we
study the effect of memory on the capacity, we will discuss how
this model can be generalized.

The effects that give rise to the interference terms in (8) are
often classified in the literature into three categories. If k = [ =
m = 1, then the corresponding term is caused by self-phase
modulation (SPM). XPM produces the terms for which k = [
and m = 7, or k = 7 and [ = m, and the rest of the terms are
FWM terms. Of these classes, FWM is suppressed in a strongly
dispersive fiber, since the signals at different frequencies travel
at different group velocities and hence walk-off too rapidly to
interact. Therefore, with a strongly dispersive fiber, i.e., where
Lp < Les, as is the case for practical systems, FWM is much
smaller than XPM, and it can be neglected. However, as men-
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tioned before, strong dispersion also introduces memory into the
channel.
Now we can rewrite (8) as

Yi = T; + K +@; +n; )
where
= DD &Lt (10)
k#i#Em
contains the FWM terms and
K
Ri= (fz(ﬂ e k) || (11)
k=1

contains the SPM and XPM terms
By computing the coefficients f b1, and f ». to obtain {r; },
it can be observed that both have neghglble real parts for any
and k. Hence, (11) can be rewritten as

K
k=1

_j(kkz fzkk)

is a real constant. This means that in the signal space, SPM and
XPM are orthogonal to the signal term and therefore they act
as phase distortions on the signal to the first order of approx-
imation. This directly results from the symmetry between any
two users and the fact that the energy loss in the fiber is only a
function of « and the fiber length, hence the total energy at the
receiver is not affected by dispersion or fiber nonlinearity.

Throughout the paper, we assume that channel parameters,
i.e., all the gains and crosstalk coefficients, are known at both
the transmitter and the receiver.

(12)

where
IR

III. CAPACITY REGION OF THE MEMORYLESS CHANNEL

In this section, we study the capacity region of the memory-
less system described by (8) up to the first order of approxima-
tion, i.e., by neglecting all terms of order O(42). Particularly,
all the terms resulting from the square of crosstalk are negli-
gible compared to the square of the linear (signal) term, but are
not negligible with respect to the square of noise in the absence
of the linear term. This is a valid approximation, since the non-
linear terms become significant at high signal-to-noise values,
where the magnitude of the crosstalk, even though much smaller
than the linear term, may be comparable to or even larger than
the additive optical noise.

We group the inputs and outputs of the channel into two real

T
— [,T 71T _ |, T T
2K x 1 vectors X = [gl . gk] andY = [gl . QK] ,
where z;, = [zF 2]]7 and Y, = [yE y[]T are vector represen-
tations of complex samples, zj, and y;, with superscripts R and

I denoting the real and imaginary parts, respectively. Now, we
can rewrite (8) in a vector form
Y=X+06+Z (13)

where © and Z contain the crosstalk and noise terms,
respectively.
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The following proposition gives the capacity region of the
channel when each user k transmits with an average energy per
symbol duration upper-bounded by Py, i.e.,

Proposition 1: To the first order of approximation of the non-
linearity, the capacity region of the memoryless coherent WDM
channel described by (8) is

{(Ry,....Rg):Vk=1,...,K,

0 < Ry, <log (1+ Px/20%)}. (14)

Remark 2: Note that (14) is the same as the capacity region
of the linear channel. In other words, Proposition 1 states that,
to the first order of approximation, nonlinearity does not affect
the capacity region of the channel.

Proof: We will prove the proposition in two steps. We will
first show that (14) is an outer bound on the capacity region, and
then show that this bound is achievable.

A. Outer Bound on the Capacity Region

Since the gains {g;} are known at both the transmitters and
the receivers, the {; } are sufficient statistics for the coded sym-
bols {u;}. Now, from the capacity region of the multiple-access
channel [10, pp. 389-390], we have

VSc{l,...,K}:0<> R < I(Xs;V|Xs) (15

€S

where S’ is the complement of S with respect to the reference set
{1,..., K}, and V4 for any vector V and set A is a subvector of
V obtained by keeping only the elements corresponding to users
whose indices belong to A. When evaluating I(Xg; Y| Xg/), we
refer to users with indices in S’ as inactive users, as their rate
of transmission is not a concern. For the right-hand side of (15),
using the chain rule for mutual information, we can write

I(Xs,Y|XS/) = I(Xs;Y5|XS/> +I(X5;YS/|XS/7YS).
(16)

This is the total amount of information that can be transferred
if only the users in S are communicating through the channel.
We characterize the first term on the right-hand side, and in Ap-
pendix IIT we show that the second term is O(6?), and therefore
can be neglected. This means that looking at the outputs of chan-
nels corresponding to inactive users does not provide any extra
information, even if the inactive users collaborate by transmit-
ting deterministic signals.

By expanding the first term on the right-hand side of (16) we
obtain

I(Xs;Ys|Xsr) = W(Ys| Xsr) = h(Ys]|X) (17

where h denotes the differential entropy. Since the interference
terms are deterministic functions of {x;}, the second term re-
duces to

h(Zs) = % log ((27re)2|5‘ |det (£
=15 log (2mec?)

[Zs2s™]) |)
(18)
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where we have used the fact that the elements of 7, i.e., noise
terms, are Gaussian i.i.d. random variables. This expression
is independent of the distribution of {x;}, hence to maximize
the mutual information it suffices to maximize the first term in
(17) with respect to the probability distribution of X . This term

satisfies
Z h Yi |XS’
1€S

with equality if {y; } are independent. Furthermore, for each i €
S we have [10, p. 234]

h(yilXs:) = Ex [h(yil X5 = x)]
<E, B log ((27re)2 det (cov [gi|X5: = X} ))}
(20)

h(Ys|Xsr) < (19)

with equality if y. is a Gaussian 2-vector given Xg.
To simplify the expressions, we introduce the notations

PR 2 B[], of & (arla)?, 2 BLR)/OR, @)
respectively, for the power, standard deviation and normalized
mean of z1*, and similarly p!, v}, and uI for 2. Also, we define

¢ = cov[xl ,xl]/v (22)

to denote the correlation coefficient of xﬁ and z!. Due to the

power constraint, we have
pit+pi <P (23)

Following the steps in Appendix IV, the determinant in (20) can
be expanded as

det (cov [QAXS’ = XD (pfz +o02_ ) (pL +o24¢ )
— [(0f)*(v qZ +qiO(P?6)]
— [ ()P} + nlfO(P?6)]
— () @])’pf + uiO(P?6)]
(24)
where
ciéE[x xpt)|x|] (25)

and sz), as used in (12), is the SPM coefficient for the ith
channel. Using the inequality of arithmetic and geometric means
(AM-GM inequality) and (23), the first term on the right-hand
side of (24) can be upper-bounded by

(pf+ 0 —ci) + (o] + 0 + i)
2

< (P/2+0%)° (26)

with equality if pF = pf = P;/2,and ¢; = 0. The next step is to
lower-bound the three bracketed expressions on the right-hand
side of (24). All these expressions are of the form

az? + O(ad)z, a>0 (27)
where z, respectively, denotes ¢;, /if, and u{ in these expres-
sions. Expression (27) is positive for |z| > 6, and equals zero
for |z| = 0. Also, for |z| = O(8), (27) becomes O(ad?),
or equivalently, O(P?§?), which is negligible compared to the

largest term in (24), which is pf*p!. Hence, to the first order of
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approximation, all the three bracketed expressions in (24) are
lower-bounded by zero. This observation along with (26) yields

det (cov [gi|X5/ - XD <(Pj2+o®)?. (29
Substituting this in (20) gives
h(y;| Xs') < log (2me (Pi/2 4+ 07)) . (29)

This result can be combined with (15)—(19) to conclude that

0<> R <Y log (14 P/20%), VSC{l,... K}

i€s i€s

(30)

which can be rewritten in the form of (14), as an outer bound on
the capacity region.

This bound implies that the introduction of crosstalk cannot
improve the achievable rates of any user even if the other users
transmit deterministic signals. This is due to the fact that making
the real and imaginary parts of the symbols independent and
zero-mean to maximize the entropy also makes all the FWM
terms uncorrelated with the linear term, so they cannot change
the mean signal power. The other essential property used in this
analysis is that all the SPM and XPM coefficients are imaginary;
hence they do not affect the signal magnitude.

B. Achievability of the Bound

To show the achievability of the bound, we first look at the
general case where SPM, XPM, and FWM are present. Starting
from (15), we select the sequence of the channel coded symbols
generated by eachusers = 1,..., K,i.e., {u;}, tobei.i.d. circu-
larly symmetric complex Gaussian random variables with zero
mean and variance 1/2 per complex dimension. Multiplying by
a constant g; only changes the variance of the symbols, such that
o and 2! will become i.i.d. and Gaussian with variance P;/2
and vanishing odd moments. Hence, we have

pl=pi=q;=0 (31)

and also

B o8l o0 fai2] = o (B [(oF)2al] + B [oF(a])?]) =0.
(32)
Using (31) and (32) in (24) makes (28) an equality.

Now to achieve equality in (19) and (20), we must show
that the received samples y;, «+ € S are independent complex
Gaussian random variables, given {z;, j € S'}.

1) Negligible FWM: Let us first assume that SPM and XPM
are the dominant crosstalk terms. While this assumption is not
realistic for the memoryless channel, the result obtained for this
scenario can be directly applied to derive the capacity of the
more realistic strongly dispersive channel, where FWM is in fact
negligible.

Neglecting the FWM terms, for an arbitrary channel : we have

Yi = U; + Ny (33)
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where v;, defined as
K .
v Bty oy sl
k=1
K .
=i (1 + Zp$>|wk|2> : (34)
k=1

contains the signal and crosstalk terms, and is independent of the
Gaussian noise n;. Since X is given, we can treat {z;, j €
S’} as constants. We first prove that v; has a complex Gaussian
distribution, which makes y; Gaussian. Since { p,(;)} are real, the
second term inside the parentheses in (34) becomes imaginary.
Hence, the magnitude of v; is equal to

o\ 1/2

vil = |z | 1+

K -
PO
k=1

= |z (35)
where we have neglected the square of the crosstalk, which is
second order. Hence, |v;| has the same distribution as |z;|, i.e.,
Rayleigh. Let arg(z) € [0, 27) be the phase of a complex vari-
able z. From (34)

K
arg(v;) = arg(z;) @ arg (1 +j Z pl(:)|xk|2> (36)

k=1

where @ denotes addition modulo 27. Since x; has a uniform
phase distribution, independent of its absolute value, the same
is true for v;, as well. This follows from the fact that the first
term in (36) is independent of the second term, and has the uni-
form distribution on [0, 27). As a result, since the magnitude and
phase of v; are independent, and, respectively, have Rayleigh
and uniform distributions, v; is Gaussian.

To prove that {v; } are mutually independent, it is sufficient
to show that the phases and magnitudes of {v; } are all mutually
independent. Similar to the previous argument, we see from (35)
and (36) that each |v;| only depends upon |z;|, and arg(v; ) is in-
dependent of |xy| for every k and arg(xy,) for k # 4. This, along
with the mutual independence of phases and absolute values of
{x;}, verifies the mutual independence of {v; }, and since each
v; has a Gaussian distribution, they are jointly Gaussian. Finally,
{yi } are jointly Gaussian, as the noise terms are jointly Gaussian
and independent of {v;}. This completes the proof of achiev-
ability for this case.

To observe the effect of FWM, we assume for simplicity that
FWM is the dominant term, and also that the dependent FWM
terms (defined in Appendix IV) are negligible, so that FWM in
each y; becomes independent of the linear term, z;. In this case,
we can write

Yi = T + i + 1y (37)
where ¢;, as defined in (10), contains the FWM terms. The three
terms on the right-hand side are independent, and the first and
the third are Gaussian. Hence, we need ¢; to be Gaussian, as
well, in order for y; to become Gaussian. While this is not true
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in general, it will be shown in Section V that the distribution of
@, 1s asymptotically Gaussian as the number of users increases.

The next step is to show that {y; } are mutually independent.
Since all {x;} and {n;} are mutually independent, we also need
each ¢; to be mutually independent of {z;, j # i}. However,
this is not true, since ¢; is a deterministic function of the set
{z;, j # i}. This means that {y;} are not independent, and
hence the outer bound cannot be achieved with the previous ap-
proach. In the next subsection, we present a more general anal-
ysis to achieve the bound, which applies to the case where SPM,
XPM, and FWM all exist.

2) General Case: Now, we show the achievability of (14) in
the general case by using a simple and generally suboptimum
interference cancellation scheme. Given the vector of received
samples, Y, we use y; as an estimate of x; for each ¢, and use
these estimates to cancel the crosstalk in the outputs. Then, we
detect each x; again, from the corresponding sample, assuming
that the other users’ symbols are random.

To explain this method and its performance, let us assume
that user ¢ is the user of interest. Recall the expression (8) for
the channel output samples. Now, we form the test statistic

K K K

=SS .

k=11=1 m=1

(38)

and use it as the only reference for detecting x; (and/or w;),
throwing away all the extra information in {yy, } . Expanding (38)
using (8), and neglecting all the higher order terms, we obtain

K K K

i =T +n;— ZZZEHW (ng + )z T

k=11=1 m=1
K

Mw
Mx

i

11=1

5kzmxk nj + 07 )rm

?,
Il
Il
=

5k1m$k$z (nm + 0m) (39)

Mw
Mw

k

3
I

where 6, contains all the crosstalk terms on channel k.
Finding the capacities of the channels with input—output pairs
(ui,z;), © = 1,..., K gives a set of achievable rates for the
original channel. As mentioned before, {z;} form sufficient
statistics for the channel-coded symbols {u; }, hence the rate of
information communicated by any (u;, z;) pair can be written
as

(x5 2;) = h(z) — h(zi|z:)- (40)
Similar to the previous subsection, we assume that the channel-
coded symbols generated by each user are i.i.d. Gaussian
random variables.

In calculating h(z;), the only dominant terms are the signal
and noise, since the residual crosstalk after cancellation is at
least two orders of magnitude smaller than the linear term z;.
Hence, we have

h(zi)

However, h(z;|z;) should be computed more carefully, since,
unlike the previous cases, the residual crosstalk is not a deter-
ministic function of z;, and hence can contribute to h(z;|z;).

= log (2me(P;/2 + 0?)) . (41)
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Also, crosstalk terms may not be negligible compared to the
noise term, which, in the absence of the signal, is the dominant
term. Using the Gaussian bound again, we have

h(zilw:) <h(zf|x:) +h(2] )

SEX{% log((2me)? var[z5|z; = x]var[z] |z; = X])}
(42)

with equality if 22 and 2! are independent Gaussian

random variables given z;. Now, to compute var[zZ|z;]
and var(z]|x;], observe that the variance of crosstalk in (39)
is O ((o% 4+ P6?)8%) which is negligible compared to the
variance of the noise, o2. Hence, the dominant terms are the
variance of the noise, and the covariance of the noise with
the residual crosstalk. The only crosstalk terms that can have
nonzero correlation with the noise are those which contain n;
or n;, with the rest being independent of n;, and hence not
contrlbuting to the covariance.

We define (; as the collection of terms in z; that contribute to
h(z|x;), and factor these terms by n; and n to obtain

S =n; —f—nLZka |2k |? + n Zthmkam

k+m=21

o, (1+2ka ) 400 360 e 4

k4+m=21

Now, to first order, we can write

var[zt|z; = x]var[z] |z; = x|
=var[(f|z; = x|var[¢f |z = x]
<E [z = x] B [(¢)? i = «]

<1/4E [|¢[?)"

Using the fact that the absolute value of the term inside the
parentheses in (43) is equal to one (cf. (35)), we have

] + (zzsmmkxm)Q

k+m=21

(44)

E[|GP] =E

=252

(45)

where we have neglected the square of the second term in (43).
Hence, combining (45) with (44) and (42), we obtain

h(zi|x;) < log(2mec?). (46)

Finally, by substituting (46) into (40), we conclude that the rate

I(x;; 2;) = log(1 + P;/20?) 47)

is achievable.

This result implies that, even with a simple interference can-
cellation scheme, the outer bound of Section III-A is achievable.
Hence, to the first order of approximation, (14) is the capacity
region of the channel. O

Remark 3: In this section, we proved that every point in
the capacity region can be achieved by mutually independent
Gaussian inputs, independent of the channel parameters. This
means that, although for the capacity analysis we assumed that
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the transmitters know the gains and crosstalk coefficients, they
can achieve the capacity without using this information by only
knowing their corresponding SNRs at the receiver.

IV. CAPACITY REGION OF THE CHANNEL WITH MEMORY

In a channel with strong dispersion, the relative walk-off be-
tween the signals traveling at different frequencies along with
nonlinear mixing introduces (finite) memory to the channel. In
this case, (8) must be rewritten by adding time to the triple sum-
mation on the right-hand side. As mentioned in Section II, an-
other effect of strong dispersion is to suppress the FWM, such
that in many practical cases FWM can be neglected. Specifi-
cally, it can be shown that the dominant effect in this regime is
a generalized form of XPM over time and frequency, while the
mixing coefficients are imaginary, as before. More precisely, we
can write

M K

yin)=zi(n)+ > > il (p

p=—M k=1

(48)

z(n —p)*z

where M is the two-sided memory of the channel, n;(n) for i =
1,...,Kandn = 1,..., N arei.i.d. complex Gaussmn n01se
samples with variance o2 per complex dimension, and {p B ( )}
are real constants. If the dispersion is not strong enough to sup-
press FWM completely, then the expression reflecting the pres-
ence of FWM can also be derived from (8) in a similar way. We
assume that users are frame-synchronous and there is a guard
time between every two blocks of coded symbols, so that there
is no interblock interference. As the block length N becomes
large, the overhead due to this guard time becomes negligible.

The number of symbols from channel % that affect a symbol
in channel 7 grows with the difference between the carrier fre-
quencies of these channels. The reason is that increasing the
spacing between two carriers also increases the difference in the
propagation speed of signals in those channels, and hence each
symbol in one channel will be affected by more symbols from
the other channel.

To derive the capacity region of this channel, we use the fol-
lowing theorem.

Theorem I (Verdd, [11]): The capacity region of a frame-syn-
chronous multiple-access channel with finite memory is given
by

|
C = Closure (1}\1{13011; NCN) . 49)
where
CvN: m {(R17"'7RK):
sc{1,..,K}

0s§ijSIM?HYﬂX§ﬁ-<ﬂ»
keS

The following proposition determines the capacity region of
the channel with memory.
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Proposition 2: To the first order of approximation on the non-
linearity, the capacity region of the coherent WDM channel with
memory is the region given by (14).

Proof: Denote by X% and Y& the matrices containing,
respectively, all the inputs and outputs of the channel at time
slots 1 to N and subchannels with indices in S C {1,..., K}.
As before, we drop the subscript if S = {1,...,K}. Since
the users are frame-synchronous and the channel has a finite
memory, we can use Theorem 1 to derive the capacity region.

The channel model in the presence of memory can be visual-
ized as a simple generalization of the memoryless case, where
the vectors are replaced by matrices in (13), i.e., we deal with
both frequency and time indices. However, the properties of in-
terference terms are preserved, hence, we can use some of the
results obtained in the previous section. Following the same ap-
proach as in Section II, we can write

I(XGYNIXG) = I(XT; Y| XE) +
~I(XT Y| XS).

I(X§5YS| X5, Y8")
(51

Furthermore, similar to (30), we have

—ZZMQ+U mmm)

n=14€S
(52)

I(XE Y |XE)

or in another form

NxY) <Zlog<1;[ (1+ ~o~ [|$i(n)|2]>>.

i€S
(53)

(XS ’

Inside the logarithm, we are multiplying N terms whose sum
is upper-bounded due to the power constraint (7). Hence, this
product will be maximized if all the symbols of each user have
equal powers. Then, we will have

v xE) <Y tog (14 P1/20%)").

i€S

(X4 (54)

As in Section 111, it can be shown that this bound is achievable if
the symbols transmitted in different time slots and subchannels
are all independent and circularly symmetric complex Gaussian
random variables. Finally, C'y is given by

0<Y Ry <N log(1+ Py/20”) } (55)

kes kes
This, along with (49), yields

c= N

sc{1,..,.K}

{rrse )

0< > Rp <Y log (14 Pi/207) } (56)

kesS kes

which is equivalent to (14). O
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Remark 4: Proposition 2 states that even the channel memory
does not affect the first-order capacity region of the nonlinear
WDM channel. However, including memory does increase the
complexity of the optimum detection scheme.

V. CAPACITY WITH SINGLE-WAVELENGTH DETECTION

We showed that with optimal detection in a multiple-access
model of the fiber channel, first-order nonlinearity does not limit
the achievable rates of transmission. Now, we look at the capacity
region when the receiver only looks at one of the WDM subchan-
nels to detect the signal of interest. This problem is an example of
an interference channel. In this type of multiuser channel, each
user, by looking only at his own wavelength channel, should in
principle be able to collect some information about the inter-
fering signals, knowing that they are coded data sequences, and
use this information to improve the detection. Unfortunately,
no general solution is known for the capacity of interference
channels, and the capacity region is characterized by bounds. In
the case of Gaussian channels with weak interference, the best
known estimate of the capacity region is the inner bound achieved
by treating the interfering signals as noise [12]. This bound is
asymptotically tight because it is not possible to make a good
estimate of the other users’ signals from the weak interference.

In our problem, since the interference is assumed to be
weak, the same argument can be made. Therefore, we define
single-wavelength detection (SWD) as the strategy whereby the
information transmitted by user k£ is decoded by only using the
output of the kth channel and treating the crosstalk from other
channels as random interference, without any knowledge of the
codebooks of other users. Although each user detects its signal
independently without attempting to decode the interference,
the notion of multiuser capacity region should still be consid-
ered, because the distribution of the coded symbols transmitted
by each user affects the permissible rates of other users by
changing the interference distribution. In order to simplify the
analysis, we only characterize the sum-rate capacity of the
channel, and assume that the channel is memoryless. How-
ever, the results can be easily generalized to the channel with
memory, by reasoning similar to that applied in Section IV.

Using SWD, the sum-rate capacity of the channel is equal to

K
i=1
Now, I(z;;y;) can be expanded as
I(@isyi) = h(yi) — h(yilz:). (58)

Here, unlike in the multiple-access case, despite knowing the
desired input, we cannot completely estimate and cancel the in-
terference. Hence, the second term in (58) is not a constant, in
contrast to (18). Specifically, using (8) we have

Tr; = ’u,:|

h(yilzi) = Ey [h(yilz; = u)]
(59)

=B |1 X iz + )

k—l4+m=1

which depends on the distribution of all users.
Finding the capacity region (57) is complicated, because we
need to search over all probability distributions of sources to find
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the admissible rates. Note that even maximizing (58), which is
itself difficult, does not necessarily result in the actual capacity
region. Therefore, in order to derive analytical estimates, we
confine our analysis to the two regimes where either FWM or
XPM is dominant.

We first study the case in which FWM is the dominant non-
linear effect. In this case, the total interference power in each
wavelength is evenly distributed among the roughly N2 nonzero
crosstalk terms in (8), in the sense that the sum over any group
of O(N) crosstalk terms is small compared to the total sum.
Having this property, we show that the distribution of the total
crosstalk approaches a complex Gaussian random variable, with
the help of the properties of weighted U-statistics. Given a se-
quence of n real and i.i.d. random variables{ X }

UP =Y " w()p(X,,,...,X;,) (60)

is a weighted U-statistic of order p, where p < n is the number
of symbols contributing to each term, and the summation is over
all the choices J = (j1,. .., jp) of pindices from 1,...,n such
that j; # --- # j,. Here, 1 is a given function which is sym-
metric under permutations of its arguments, and the weights w
are functions of the summation indices. It is shown in [13] that
under certain conditions for ensuring a sufficiently weak depen-
dence between the summands in (60), U? for fixed p approaches
a Gaussian random variable as n, the number of random vari-
ables, becomes large.

To apply this result to the crosstalk terms in (59), we assume
that all the channel-coded symbols {u;} have the same dis-
tribution, and that the real and imaginary parts of each uy, are
1.i.d. and zero-mean. The difference in the transmission powers
is reflected in {gx}. The only exception to this i.i.d. assump-
tion is the 4th user’s symbol, since in (59) we are conditioning
on z;, or equivalently, u;. However, there are only O(N) terms
containing this symbol, and hence they can be neglected com-
pared to the total sum of the crosstalk terms. Now, we can con-
sider the real and imaginary parts of the nonlinear crosstalk in
channel ¢ as two U-statistics, where { X} } in (60) are the real
and imaginary parts of the channel-coded symbols {uf, ui}. In
this analogy, n = 2K, p = 3, ¥(Xk, X1, Xin) = X X1 X,
and w(Xg, X1, X;n) = 0if kK — 1 4+ m # i. We conclude
that the real and imaginary parts of the crosstalk each approach
a Gaussian as the number of channels K increases. This also
holds for any linear combination of them, thus making them
jointly Gaussian. Furthermore, due to the circular symmetry of
the distribution of {uy}, and the form of the crosstalk terms,
it is not difficult to check that the real and imaginary parts of
the crosstalk are uncorrelated and have equal variances. As a
result, the crosstalk sum in (59) approaches a circularly sym-
metric complex Gaussian random variable.

Using this result, for large K we can compute the condi-
tional entropy (59) by evaluating the variance of the crosstalk
and noise, which can be simplified as

h(yi|zi) = log(2mea®)

1 @) 12 o«
+log (1 D DD DY DI pkp,pm) 61)

k—l4+m=1
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Fig. 2. Capacity versus transmit power per channel. Gaussian pulses with bandwidth 80 GHz, ¥ = 1 W=*km™!, 3 = —20 ps®/km, o = 0.25 dB/km. The
dashed line corresponds to the mutual information with single-wavelength detection if the users are forced to transmit with the maximum power.

where py, is the transmitted energy per symbol of user k, upper-
bounded by Pj. Since this expression is independent of the
signal distributions, it is enough to maximize the first term on
the right-hand side of (58). As in the previous sections, this
maximum occurs when the symbols are i.i.d. complex Gaussian
random variables, and is equal to

h(y;) = log (2me(p; /2 + 07)) .

Therefore, the maximum mutual information in (58) can be
written as

(62)

=log(1 + pq;/202)

—log <1 + 2}7 > Ifli?,mlzpkp;‘pm) (63)

k—l+m=i

I(zi;y:)

which, along with (57), gives the set of permissible sum rates in
terms of {py}.

In the second case, in which XPM is the dominant nonlinear
effect, the conditional entropy (59) can be rewritten as

h(yilzi) = Ey {h (jl‘i Z pg)|9[:k|2 + nz)

kesS

T; = u} . (64)

We can use the standard Central Limit Theorem for indepen-
dent summands to approximate the summation on the right-hand
side as a real Gaussian random variable for large K. Then, by
rotating the complex coordinate axes for fixed u so that the in-
terference term only appears in the real dimension, it is easy to
show that (59) reduces to

tog (2me 0 +[uf” 3 (") Pvar [l ]| )]

keS

1
e = F. | —
k) = B 5

+% log (2mea®) . (65)

To maximize the mutual information in (58), a complicated op-
timization over the distribution of all users is still needed. A rea-
sonable lower bound can be found by assuming that, as in the
previous case, each z; has a zero-mean complex Gaussian dis-
tribution with variance p; /2 < 1/2 per dimension. Then, from
(65) we can write

) = log (2nc0)+ [ 5 10g (10721l 3670t

0 keS

_L d|ul?
P; _—

(66)
bi

where we used the fact that |=;|? has a negative exponential

distribution, and also that E [|z|*] = 2E [|z]? ? for each k.

Finally, substituting (66) and (62) into (58) gives the expression

for mutual information in terms of the transmission powers.

It should be emphasized that in both FWM- and XPM-lim-
ited cases, increasing each p; does not necessarily improve the
capacity region, as the effect of increased interference in other
channels may dominate the improvement in the rate in channel
1. Therefore, we need to optimize over the transmission powers
to obtain the actual sum-rate capacity.

VI. COMPARISON AND DISCUSSION

To demonstrate the capacity gain of multiwavelength detec-
tion, we compare the average maximum rate per user for single-
wavelength and multiwavelength detection using the results of
Sections IIT and V. The capacity per user has been plotted versus
the transmit power per user in Fig. 2 for a WDM channel with
32 users. It is assumed that users are transmitting with equal
powers P and equal symbol rates, and the channel is memo-
ryless. It should be emphasized that all the results are valid as
long as the fundamental assumption of weak nonlinearity holds.
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The uncertainty in the result due to this assumption can be es-
timated by computing the ratio of total crosstalk power to the
signal power. For the values plotted in Fig. 2, the uncertainty is
1% at P = 5 dBm and 5% at P = 9 dBm.

It is observed that within the range of acceptable accu-
racy, i.e., where the uncertainty is much smaller than the
difference between the results, the maximum achievable rate
with the single-wavelength detection scheme saturates as the
crosstalk power becomes comparable to the noise power. This
effect results from the fact that the interference power in each
channel increases as 2. Thus, at high signal powers where the
interference dominates the noise, the effective signal-to-inter-
ference-plus-noise ratio (SINR) behaves as P Zie, increasing
the power does not improve the capacity. On the other hand,
with the optimal scheme interference is totally canceled, and
we can achieve the capacity of a linear fiber.

VII. CONCLUSION AND FUTURE WORK

We derived the multiuser capacity region of WDM in a non-
linear fiber channel using a weak nonlinearity assumption. If the
outputs of the fiber at all subchannels are used for detection, the
channel with crosstalk caused by Kerr nonlinearity in the fiber
will have the same capacity as a linear fiber channel. This result
holds also if the channel has memory due to the walk-off be-
tween different carriers. Every point in the capacity region can
be achieved if each user transmits Gaussian distributed channel-
coded symbols, without knowing the nonlinearity parameters.
On the other hand, if only the output of one subchannel is used,
the capacity will saturate when the crosstalk dominates. We con-
clude that the crosstalk introduced by the Kerr nonlinearity does
not severely limit the capacity of optical fibers, as long as the
weak nonlinearity assumption is not violated.

Due to the nonlinear structure of the channel, optimal multi-
wavelength detection for this channel is intractable, especially
since the power-dependent nonlinear effects are important
mostly at very high aggregate data rates, i.e., several gigabits
per second. Applying iterative multiuser detection schemes
seems to be the best solution to this problem, and studying
the complexity—performance tradeoff of these schemes is a
potential area for future work.

The focus of this work has been on optical communications
with coherent transmission/reception. Although there is an in-
creasing interest in coherent optical communications, at present,
for practical reasons, noncoherent detection is more widely used
in optical fibers. Hence, an important problem still to be studied
is the question of how the results of this paper can be extended
to noncoherent receivers. Furthermore, more accurate analytical
models for the nonlinear channel are needed in order to design
and analyze schemes that can perform well in real systems.

A simplifying assumption made for the analysis was that the
subchannels remain nonoverlapping in the frequency domain,
even though they experience spectral broadening. While this as-
sumption is not restrictive in the weakly nonlinear regime, as the
total transmission power continues to increase, not only the sub-
channels overlap, but also the total spectrum of the composite
signal increases. Hence, the spectral efficiency is expected to ex-
perience a limit at very high power levels. Moreover, the impact
of other types of nonlinearity, such as Raman scattering, should
also be considered in this regime.
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APPENDIX |
OPTIMALITY OF MATCHED FILTERING

In this appendix, we prove that the sampled outputs of the K
filters, each matched to the response of the linear channel to the
waveform transmitted in one of the K subchannels, provide all
the useful information for decoding the symbols. In other words,
the information that any other filter provides is redundant given
the outputs of the matched filters.

In order to provide sufficient statistics for the received signal,
we need to select a complete set of orthogonal basis functions
for the space of the received signals. We will first discuss the
memoryless case, and then comment on the case where the
channel has memory. Moreover, for simplicity, we assume that
XPM is the dominant nonlinear effect. As outlined at the end of
this appendix, it can be shown with a similar, but more tedious,
derivation that the same result holds also with the existence of
FWM.

We adopt the K matched filters used for the linear channel re-
sponse (which are orthogonal) as the first K basis functions and
then find other orthonormal filters to span the complete space
along with these filters. Clearly, the linear (zero-order) term of
the output signal corresponding to the kth user is orthogonal
to, and hence canceled by, all the filters except the kth matched
filter. However, since the crosstalk term in the kth channel is
nonlinear, it is not matched to the kth matched filter, and may
contribute to the output of the other basis functions. Conse-
quently, {yx}, the sampled outputs of the matched filters, will
each contain one linear signal term (if the kth user is transmit-
ting anything), a number of third-order crosstalk terms, and an
additive noise term. On the other hand, {w; }, the sampled out-
puts of the rest of the basis functions, i.e., those not among the
K matched filters, will only contain noise, and possibly some
third-order crosstalk terms. For any w;, we can write

K
wi = @iy 3 A k]
k=1

(67)

where, for simplicity, we have assumed that the crosstalk terms
in w; are contributed by the XPM and SPM produced on only
one subchannel, whose index is denoted by m(i). A more gen-
eral form for w; can be obtained by including all the third-order
combinations of {xz;}. Using a similar, but more tedious, anal-
ysis, it can be shown that the result derived here for (67) also
holds for the general case.

We denote by W the vector containing all {w;}, and sup-
pose that we are interested in finding the sum-rate capacity of
the channel. For the mutual information between the inputs and
outputs of the channel, we have

I(X;Y, W) = 1(X;Y) + I(X; W[Y), (68)

and the second term in the right-hand side can be written as
WWIY) = h(W]X,Y) =h(W[Y) = h(n:)

<D [wilY) = h(m)] - (©9)
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where we used the fact that {7, } are mutually independent. Each
term inside the summation in (69) can be upper-bounded as
h(wi]Y')

— h(n;) < [W(wfY) = h(nf)]

+ [h(w][Y) = h(n])]
since nf and 7! are independent. Using a bound similar to
(20), the first bracketed expression on the right-hand side can
be written as

x [h(wﬂY:’r)_h(mRﬂ <Ey {% log (wﬂ

(70)

(71)

where T = [v1,...,vk]? is a realization of Y. In order to
estimate the variance on the right-hand side, using (67) we can
write

(72)

R _ R R

xfn(i)el + 7t
where 6% and 67 are, respectively, the real and imaginary parts
of the summation in (67), and both are O(6). Since the noise is
independent of the other terms, we can write

var [wf*|Y =Y] =var [a:ffl(i)GR - xfn(i)01|Y = T} +0?
(73)

Furthermore, for the first term on the right-hand side, we have

var[ )9 ,In(i)91|Y = Y] < 2var [:pﬁ(i)HR|Y = T]

m(z

+2var [xfn(i)HI|Y = T]. (74)
From (9), by neglecting the FWM, we can write
TRy = Yni) — By = Tomi)- (75)

Hence, the first term on the right-hand side of (74) can be written
as

m(z m(z

< 3var [ym(i)HRlY = T} + 3var [fiﬁ(i)ﬁRlY = T}

+ 3var [nﬁ/(i)BR|Y - T} . (76)
The second and third terms on the right-hand side of this in-
equality are, respectively, O(P§?) and O(0?62), which are both
negligible with respect to o in (73). Also, since {y;,} are given,
the first term is equal to

3var [yﬁ(i)6R|Y = T} = 3(yﬁ(i))2var 0%y =7]. a7
For var [0R|Y = Y], we have

(Z‘A(m >>‘ var [[zx ]|V = T])

(78)

var [0R|Y Y
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Recall from (35) that

=lyx — ni/”
= |yr|> — 2Re{yrni} + |ni|>.

|7k |
(79)

Assuming that the system is operating at high SNR, for the sum-
mand in (78) we have

v [2
‘ A

var [|xk|2|Y = T}

2
~ ‘/\,im(‘))‘ var [2Re{yrnj}|Y = Y]

12
=0 <‘)\](€m(z)) ka|2a2> ) (80)
Hence (78) and (80) yield
var [07|Y = Y] = O ((vLett)*[y|*0®) 81

where, as defined in Section II, v and L.g, respectively, de-
note the nonlinearity parameter and the effective length of the
fiber, and we used the fact that the crosstalk coefficients A}* are
O(7yLeft). Combining (81) with (77) yields

var [yﬁ(i)9R|Y - T] = 0(6%?) (82)
where we used the fact that
O (vLestlyl*) = O ('VLeff(yrIZ(i))Z) =0(9). (83)
By substituting (82) in (76) we obtain
var [ ol 0R[Y = T] 0(6%0%) + O(P6Y).  (84)

A similar equation can be derived for z, ;. Hence, using (73)
and (74), we can write

var [wf|Y = Y] = 0(8%0%) + O(P*) + 0” ~ 0®  (85)
for small §. Hence, we can write the logarithm on the right-hand
side of (71) as

var [w,ﬂY = T]
log | ——5—— | = log(1) =0, (86)
o
to the first order of approximation. Therefore, we have
h(wiY) = h(n") = 0. (87)

A similar result can be derived for w{ . Finally, using (70), each
term inside the summation on the right-hand side of (69) is neg-
ligible, which implies that, to the first order of approximation
I(X;W]Y)=0. (88)
The result in (88) proves that, having collected all the infor-
mation from the K matched filters, the outputs of other filters do
not contain significant additional information for the decoder.
While this analysis was performed for the sum-rate capacity, it
is straightforward to do the same analysis for all the other terms
in the capacity region of the channel, and the only difference
with the above case will be that the computations will now be
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done conditioned on a subset of users’ signals. As a result, we
can show that
I(Xs;Y,W|XS/) ~ I(Xs;Y|XSI), VS C {1,. . K} (89)

where X g and X g+ are defined in Section III. Consequently, the
outputs of the K matched filters provide sufficient statistics for
detection of the {z;}.

To extend the analysis to the general case, where FWM is
important and w; contains arbitrary combinations of {z;}, we
write x in terms of y;, for each k, in a similar manner to (79).
In this case, the variance of interference will also appear in (80);
however, since the interference is weak, we will still be able to
derive an equation similar to (81).

Now, assume that the channel has memory. As discussed
in Section IV, memory adds a new dimension to the space
of the received signals. For this space, we adopt as the first
KN basis functions the normalized filters matched to the
linear response of the channel to the pulses transmitted in
subchannels 1,..., K and in time slots 1,..., N, where N
is the block length. Assuming that the quadratic dispersion
is compensated, these basis functions are orthogonal, as each
pulse is orthogonal to other pulses transmitted in different time
slots and/or frequency bands. The linear term of the output
signal corresponding to the kth user and nth time slot appears
only in the output of one matched filter, and is orthogonal to
all other basis functions. Hence, as in the memoryless case, the
sampled output of the matched filters {y(n)} for subchannels
k =1,...,K and time slots n = 1,..., N will contain one
linear signal term (if the kth user is transmitting anything at that
time), but the sampled outputs of the rest of the filters, {w;},
will only contain noise, and possibly some third-order crosstalk
terms. By an analysis similar to that in the memoryless case, it
can be shown that, having observed the outputs of matched fil-
ters, the remaining samples w; do not contain useful additional
information for detecting the symbols. The only difference with
the memoryless case is that there will be more crosstalk terms,
due to the addition of the time dimension.

Remark 5: The discussion presented in this appendix does
not imply that only the outputs of the matched filters contain
useful information for the detector. The point made here is that
the outputs of the other filters contain redundant information if
we have already observed the output samples of the matched fil-
ters. In fact, it is not difficult to show that, although I(X; W1Y")
is O(62) and negligible, I(X; W) is not.

APPENDIX II
MODEL DETAILS

In this appendix, we derive the discrete-time model of (8).
From [9], the low-pass equivalent linear transfer function of the
channel in (2) is given by

i 2
Hyi(w,z) =exp (—%) exp (—J'B22w Z) .

(90)

With respect to the third-order term in the Volterra series expan-
sion (2), we have
Hj(wy,w2,w, 2) = Hi(w, 2) Hy (w1, w2, w, 2) o1
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where

H:’;(wth,w,Z)
.7 1—exp(—az—jf(w1 — w)(w1 — w2)z)
o+ jfa(wr — w)(w1 — wo) )

= i1 92)
and we have neglected the frequency dependence of the fiber
loss factor . In the expression for H;(w, 2), the first factor is
the attenuation from absorption and scattering in the fiber, and
the second factor is the quadratic phase distortion caused by
dispersion, which produces both phase and amplitude distortion
in the time domain.

Now, if we substitute (6) in (2), the third-order term will
contain a triple summation over channel indices. Each of
the matched filters have frequency response proportional to
H{(w,L)V*(w). As the linear dispersion term (90) has a
constant magnitude frequency response, matched filtering will
perfectly equalize the linear term in (2). Therefore, assuming
that the fiber attenuation has been compensated by the optical
amplifier, the output of the matched filter corresponding to
wavelength (user) ¢ can be written as (8), where

fl(cf%?m:/de*(w)//Hé(wl + kAw,ws + lAw, w + iAw, 2)
Viw—wr+wa+ (i —k+1—m)Aw)

V(wl)V* (wg)dwldwg. (93)

APPENDIX 111
NEGLIGIBILITY OF I(Xs;Ys/|Xs/,Ys)

For simplicity, here we show the negligibility of
1(Xs;Ys/|Xs,Ys) for the case where FWM is small
compared to XPM. Extending the analysis to the general case
with the FWM effect, although more tedious, follows the same
steps as the XPM-limited case.

By definition, for I(Xs;Ys/|Xs/,Ys) we have

I(Xs/ YS/ |X5/7 Y5> = }L(YS/ |XS’ s Ys) — }L(YS/ |4XV7 Ys) (94)
For the second term on the right-hand side we have

h(YS/ |X, YS) = }L(ZS/)

=|95’|log(2meo?), 95)

which is a constant, and for the first term we can write

h(Ys'|Xs,Ys) < Z [h(yf | Xsr, Ys) + h(y] | Xs, Ys)] -
ies’
(96)

We need to upper-bound each term inside the summation. From
(9), neglecting the FWM, h(yf*| X s/, Ys) can be upper-bounded
for any 7 € S’ by

h(/{f—}—n?

1
zl YS) < FEyrs { 3 log (27re var [/{,LR +nl

ol = x,Ys = TSD} 97)
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where

'%R = —1{ ZP;&Z)WHJZ-
keS

(98)

Moreover, we can estimate the variance inside the logarithm as

var [fi? + nfz

= o(lxl2 3 (o) ?var [|z4f?| Vs = Y] ) +o2 (99)
keS

le = X?YS = TS]

By an analysis similar to (80), we can write

X0 var [ ] Vs = Ts] = x20 (o) el?0?)
=0(c26%), k€ S. (100)

Now, by combining (99) and (100), we obtain

var [fif{ + nfz

551[ =x,Ys = TS] =040 (6202)
~ ol (101)

Substituting this equation in (97) yields

iesS’. (102)

1
h(y| X, Ys) < 3 log(2mea?),
Using the same line of reasoning, we can derive a similar equa-
tion for h(y!|Xs, Ys). Hence, from (96) we obtain
h(Ys/|Xs,Ys) < |S'|log(2mea?). (103)
Finally, by combining (94), (95), and (103), and using the non-
negativity of mutual information, we conclude that
I(Xs;Ys| X5, Ys) =0, (104)
to the first order of approximation.

This result shows that if some of the users are not using
the channel, even if they do not turn their transmitters off, the
crosstalk produced on their channels cannot be used to improve
the detection of the other users’ signals. Therefore, without loss

of generality, we can assume that the detector has only access
to the output of the subchannels corresponding to active users.

APPENDIX IV
DERIVATION OF (24)

To compute the determinant in (20), we neglect all the terms
that are at least two orders of § (i.e., O(62)) smaller than the
largest term, which is of the order of the square of the signal
power. Specifically, in each element of the covariance matrix,
we only keep the signal covariance, noise covariance, and the
cross-terms of signal with crosstalk. Considering the proper-
ties of FWM, it can be observed that among the FWM terms
in channel ¢, all but the terms of the form x .} z,, are indepen-
dent of the signal term x;, and hence do not have any cross-term
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with the signal in the covariance. Thus, we can neglect all of
these terms and only keep those of the form zz} x,,,, which we
call dependent FWM.
Neglecting the independent FWM terms, we can rewrite y; as
vi = xi + jaip”wil + jwis + 7B+ i (105)
where the terms on the right-hand side are, respectively, the
signal, SPM, XPM, dependent FWM, and noise terms, and

o= i |l (106)
k#i
and
CEDIDIP I E e (107)

k—l+m=1
=i

are dimensionless O(4) random variables independent of z;. By
separating the real and imaginary parts of (105), we obtain

R _ ,.R 1,002 I RAR Il R
{yi = —wip |wil® — wioq + @B 4 i B 4 n;

I _ T R, (D,.12 R Rl TAR T
yi = +xip; |vil® +xitas + 276 — 3 B + ;.

(108)
We can calculate the determinant in (20) as

det (cov [gJXyD = CcRo! — (Cf)? (109)

where
CF 2var[yf| Xs = x], (110)
Cf Evarly/ | Xs = x], (111)

and

cRI 2 cov[y?, vl Xs = x]. (112)

Using (108) and the notations defined in (21) and (22), (110)
can be expanded as

cF = (fufz)2 — cov [a:f?’x{pgz)|x1|2} — qiviRv{ai
+(0f)?0f + qivfolb] + 0 (113)
where bﬁ, b{ , and a; are, respectively, the expected values of
R, 31, and a; conditioned on X/ = x, and we have neglected

all O(6?) terms. For the second term on the right-hand side of
(113), we have

cov [aft, ! o i ?]
= B [ofal O] = ol B [«LpPlail?] . (114)

Now, combining (114) and (113), and with some reordering of
terms, we have

CR =pft -

(WPl = B [ael o]

2

+ulO(PS) + ;O(PS) + pfol + 02, (115)
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Similarly, we can write

O = pf = (D)) + B [zl i)’
+ulO(P8) + ;O(PS) — plbf + 0% (116)

and
OB = glol + O(P9). (117)

Substituting (115)—(117) in (109) results in (24).
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