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Abstract—Numerical issues related to the occurrence of error
floors in floating-point simulations of belief propagation (BP)
decoders are examined. Careful processing of messages corre-
sponding to highly-certain bit values can sometimes reduce error
floors by several orders of magnitude. Computational solutions
for properly handling such messages are provided for the sum-
product algorithm (SPA) and several variants.

I. INTRODUCTION

Belief propagation (BP) decoders based upon the sum-
product algorithm (SPA) are widely used to decode error-
correcting codes that have a sparse graphical representation,
including, most notably, low-density parity-check (LDPC)
codes. This paper addresses numerical issues arising in the im-
plementation of SPA decoding and several of its variants that
have an impact on the occurrence and severity of frequently
observed error floors in the decoder performance curves. (For
background on BP and LDPC coding, the reader is referred
to [1]–[3].)

In [4], MacKay and Postol examined near codewords asso-
ciated with the error floors that they observed in BP decoding
of Margulis-type codes over the additive white Gaussian noise
(AWGN) channel. Shortly thereafter, Richardson [5] wrote a
seminal paper on the error floors of LDPC codes in the setting
of the AWGN channel and the binary symmetric channel,
identifying decoder-dependent, error-prone substructures in the
Tanner graph, dubbed trapping sets, that were responsible for
the observed floors. Later, Han and Ryan also studied error
floors and their properties for LDPC codes used on the AWGN
channel [6]. With the exception of [5], which used a 5-bit
hardware simulation to generate error-rate curves, it appears
that the error floors reported in these prior studies were found
with floating-point (FP) simulations of the BP decoder.

A quantization scheme, such as FP, imposes a limited range
and finite resolution on the values to be represented. Addi-
tionally, the use of non-linear functions in a finite-precision
environment may dramatically further limit the domains and/or
images of said functions. This paper addresses these issues of
range and resolution of the messages in several SPA variants
implemented in FP. Recent work has shown that the error
floors of variable-regular LDPC codes, such as the Margulis
code considered by the authors of [3]–[6], are largely the result
of numerical problems associated with the processing of highly
certain messages in the BP decoder implementation [7]–[9].
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This work improves the range of several known SPA vari-
ants, introduces a new SPA variant, and presents simulation
results for two variable-regular LDPC codes whose error floors
are reduced by orders of magnitude by addressing these nu-
merical range issues. Motivated by these observations, Zhang
and Siegel [10] have devised several small-bit-width decoders
that substantially lower the observed error floors of several
LDPC codes. These decoders use non-uniform quantization
techniques that accept reduced message resolution for highly
certain messages for the sake of increased message range.

II. BACKGROUND

A. Code and Channel

LDPC codes are defined by the null space of a parity check
matrix H. The codewords are the set of column vectors C,
such that c ∈ C satisfies Hc = 0 over a particular field. A
given code can be described by many different H matrices.

The H matrix over GF(2) may be associated with a bipartite
graph B = (V,C,E), called a Tanner graph, in which the
vertex set may be partitioned into two disjoint sets V and
C. The set of variable nodes V represent the symbols of the
codeword that are sent over the channel and correspond to the
columns of the parity-check matrix. The set of check nodes C
enforce the parity-check equations represented by the rows of
H. Each edge e ∈ E of a Tanner graph joins a variable node
vi ∈ V to a check node cj ∈ C. The (j, i)th entry of H is 1
if (vi, cj) ∈ E and is 0 otherwise.

Assumption. We are only concerned with codes over the
binary field GF(2). Also, we assume binary antipodal signaling
over the AWGN channel for the purposes of illustration, but
the fundamental numerical issues are independent of these
assumptions.

After encoding, each binary element of codeword c is
transmitted over the AWGN channel as a binary antipodal
symbol ti ∈ {+1,−1}. Every received symbol ri is simply
the sum ti+ni of the transmitted symbol plus independent and
identically-distributed (i.i.d.) Gaussian noise of zero-mean and
variance σ2. This yields a channel SNR of 1/σ2 or 2REb/N0,
where R is the rate of the code, Eb is the received energy per
information bit for coherent bandpass detection, and N0 is the
one-sided power spectral density of the noise.

B. Sum-Product Algorithm (SPA)

We next describe the sum-product algorithm (SPA) that is
one of the most widely used forms of BP decoding for LDPC



codes. For codes with a cycle-free Tanner graph representation,
SPA decoding on such a graph is optimal, in the sense
that it is equivalent to symbol-wise, maximum a-posteriori
(MAP) decoding. Such codes are generally not attractive [11].
Although no longer optimal when used to decode LDPC
codes whose Tanner graph representations have cycles, SPA
decoding has nevertheless been found to provide near-optimal
performance, at least in certain ranges of signal-to-noise ratio.

As is often done, we will first implement our decoder
simulation in the log-domain; this removes the need for
normalization and is also closer to the approximations used in
hardware implementations. In describing the algorithm, we use
the notation N (i) to indicate the set of check nodes adjacent
to variable node vi, and we use N (j)\ i to denote all variable
nodes adjacent to check node cj , excluding variable node vi.

First, the received symbols ri are converted to log-likelihood
ratios (LLRs) defined by

λ[i] = ln
P (ri|ti = +1)

P (ri|ti = −1)
.

For the AWGN channel, this becomes λ[i] = 2ri/σ
2.

The LLR λ[i] is the initial message passed from variable
node vi to each of its adjacent check nodes in the Tanner
graph. That is, λ[i→j]0 = λ[i] for all i, j such that (vi, cj) ∈ E.
The iteration counter l is then initialized to 1.

On the first half-iteration of iteration l, the message sent
from check node cj to the adjacent variable node vi is given
by

λ
[i←j]
l = 2 tanh−1

[ ∏
k∈N (j)\i

tanh
λ
[k→j]
l−1
2

]
, (1)

for each edge in the graph. During the second half-iteration,
the return message sent from variable node vi to adjacent
check node cj is given by

λ
[i→j]
l = λ[i] +

∑
k∈N (i)\j

λ
[i←k]
l . (2)

If the early termination logic detects a codeword or if the
iteration counter l exceeds the maximum allowed count, the
iterations are halted. Otherwise, the iteration counter is incre-
mented by 1, and the new check-to-variable-node messages are
computed using (1). Upon the completion of the iterations, the
decision for symbol i, denoted t̂[i]l , is set equal to the sign of
the incoming message sum at variable node vi, that is,

t̂
[i]
l = sign

(
λ[i] +

∑
k∈N (i)

λ
[i←k]
l

)
.

If B has no cycles, the message sum is equivalent to
ln P (r|ti=+1)

P (r|ti=−1) , the MAP decision statistic.

C. Floating-Point Notation

Floating-point (FP) formatting offers an economical com-
puter representation (i.e., quantization) of real numbers cover-
ing a wide dynamic range with a significant level of precision.

The elements of an FP number are stored separately: the
sign bit, the exponent, and the significand. Table I shows the

TABLE I
FLOATING-POINT BASIC BINARY FORMATS OF IEEE STANDARD 754 [12].

Name Bits stored p bits emax

Single-precision (SP) 32 24 +127
Double-precision (DP) 64 53 +1023
Quadruple-precision (QP) 128 113 +16,383

basic binary formats included in IEEE Standard 754-2008,
which uses base-2 representation [12]. The parameters p and
emax denote the number of binary digits in the significand
(i.e., precision) and the maximum exponent, respectively. The
standard requires the minimum exponent be emin = 1 −
emax. Since normalized FP numbers are expressed with the
radix point after the first binary digit of the significand, the
maximum supported FP value may be computed to be

p ones︷ ︸︸ ︷
(1.111 . . . 111)2 ·2emax = (2− 21−p) 2emax.

Normalization of binary FP numbers is required by the
standard when possible. These normalized numbers must have
1 as the most significant bit of the significand, which need not
be stored. Very small FP numbers may become subnormal (or
“denormalized”) when they are too small to be normalized.
Subnormal numbers are supported by the standard and do
not use the full precision available. The smallest normalized
positive value is 2emin and the smallest subnormal positive
value is

p−1 bits︷ ︸︸ ︷
(.000 . . . 001)2 ·2emin = 2emin+1−p

per [12, §3.3]. The available binary FP values in the immediate
vicinity of 1 are the following:

1− 3 · 2−p, 1− 2 · 2−p, 1− 2−p, 1, and 1 + 21−p. (3)

D. Numerical Problem in FP

Direct implementation of (1) yields numerical problems at
high LLRs. Letting y = tanh(λ/2) < 1, we may express y as

y =
1− e−λ

1 + e−λ
= 1− 2e−λ

1 + e−λ

in order to find when FP quantizes y to 1. Ideally, the values
of y near 1 are rounded to the closest quantized level listed
in (3). So to be rounded-up to 1, y ≥ 1 − 2−p/2 must be
satisfied, which is equivalent to

2e−λ

1 + e−λ
≤ 2−(p+1) and (4)

λ+ ln(1 + e−λ) ≥ (p+ 2) ln 2. (5)

We may very accurately approximate (5) by λ ≥ (p+ 2) ln 2
or 38.1230949 in DP-FP (64-bit IEEE 754) with its p = 53
bits of precision.

As an argument of ±1 will cause the tanh−1 function
to overflow, protection from high magnitude LLRs must be
added to (1) or (2) to ensure numerical integrity or an
alternative solution not using tanh−1 must be found. Thus,



preventing tanh−1 overflow by limiting LLRs will result in
a maximum producible LLR magnitude. Our examination of
published error-floor results suggests that such LLR limiting
(or “saturating” or “clipping”) is commonly employed.

III. PREFERRED SPA SOLUTION

In this section we describe our preferred SPA solution, its
numerical limits, and speed issues. The relationship known as
the Jacobian logarithm is

ln(ex + ey) = ln(ex) + ln
(
1 + ey−x

)
= ln(ey) + ln

(
1 + ex−y

)
= max(x, y) + ln (1 + exp(−|x− y|)) .

(6)

Using (6) and other identities, an alternative exact pairwise
check node reduction may be derived [13], [14]. For example,
if we set N (j) \ i = {k1, k2}, the check-node message in (1)
can be computed as follows:

λ
[i←j]
l = signλ

[k1→j]
l−1 · signλ

[k2→j]
l−1 ·

min
(∣∣∣λ[k1→j]l−1

∣∣∣ , ∣∣∣λ[k2→j]l−1

∣∣∣)
+ ln

(
1 + exp

[
−
∣∣∣λ[k1→j]l−1 + λ

[k2→j]
l−1

∣∣∣])
− ln

(
1 + exp

[
−
∣∣∣λ[k1→j]l−1 − λ[k2→j]l−1

∣∣∣])
(7)

The check-node-message re-formulation in (7) contains no
possibility of overflow, regardless of the LLR magnitude,
which for DP-FP extends to approximately 1.798×10308. The
only potential for overflow in the SPA is now just the addition
operation within (2) at extremely high LLRs.

The computer implementation of (7) does not necessarily
have a large impact on simulation speed. A single hyperbolic
tangent evaluation consumes nearly the same number of CPU
cycles as four exponential or logarithmic evaluations on a
modern processor in our experiments. The most significant
impact is that (7) forces us to organize computations pair-
wise. Hu et al. present a substantial speed improvement by
organizing computation pairs onto a trellis by the forward-
backward algorithm, which computes all the output messages
of the check node [13].

The next level of potential speed optimization is to approx-
imate the ln (1 + exp(−|x|)) operations, for which results lie
in the interval (0, ln 2]. There has been significant work in
this area, much of it focused towards hardware implementation
[13], [15]. For simulation, we have often adopted the following
two-piece linear approximation of Richter et al. [16].

ln
(

1 + e−|x|
)
≈

{
0.6− 0.24 |x| , if |x| < 2.5

0, otherwise.

We have noted losses of about 0.02 dB in the AWGN waterfall
region of the FER curve for the (2640, 1320) Margulis code
with this approximation, while the simulation runs nearly 4
times faster. This is an acceptable trade-off for a decoder
simulation tool used to study the error floor.

IV. ADDITIONAL SPA FORMULATIONS

In this section we address the numerical issues of other
versions of the SPA implemented using FP computer process-
ing. As explained in Section II-D, the tanh(λ/2) function
loses accuracy and rounds to 1 for λ ≥ (p + 2) ln 2. Thus,
changing to larger FP formats for added precision increases
the LLR limits only linearly. This section explores alternative
formulations of SPA, some of which increase LLR dynamic
range.

A. Min-Sum Algorithm (MSA)

The min-sum algorithm (MSA) uses the following approx-
imation to the check-node-update expression (1):

λ
[i←j]
l = min

k∈N (j)\i

∣∣∣λ[k→j]l−1

∣∣∣ · ∏
k∈N (j)\i

signλ
[k→j]
l−1 . (8)

Since this expression is equivalent to (7) with the two loga-
rithmic terms assumed to be zero, (8) also won’t overflow.
However, the decoder performance losses that have been
observed by using MSA have ranged from 0.60 to 1.22 dB
[15] in AWGN, depending on the code. To reduce these losses,
variations on (8) known as normalized-BP and offset-BP have
been used successfully [3], [15]. Note that as LLRs get very
large, the MSA closely approximates the SPA as the two
logarithmic terms of (7) become relatively small.

B. Gallager’s Involution Transform (GIT)

In [1], Gallager proposed another version of the check-node-
update expression (1), using logarithms to replace the mul-
tiplications with additions. The resulting check-node update
becomes

λ
[i←j]
l =

∏
k∈N (j)\i

sign
(
λ
[k→j]
l−1

)
·

Φ

( ∑
k∈N (j)\i

Φ
(∣∣∣λ[k→j]l−1

∣∣∣)),
where we define

Φ (x) , − ln tanh
(x

2

)
= ln

(
1 + e−x

1− e−x

)
, (9)

for x > 0. Since the function Φ (x) is its own inverse, i.e.,
Φ (Φ (x)) = x, for all x > 0, this technique is sometimes
called Gallager’s involution transform (GIT). Because the
function Φ (x) transforms values between domains in which
addition is the primary means of computing, this technique
was originally proposed for low-complexity hardware imple-
mentation of the SPA. We are also aware of its appearance in
SPA simulation code, in spite of the fact that addition is no
faster than multiplication on a modern FP processor.

Both expressions in (9) suffer finite-precision problems
prior to taking the logarithm. As explained in Section II-D,
tanh (λ/2) is rounded to 1 for λ ≥ (p+ 2) ln 2, which would
yield Φ (λ) = − ln 1 = 0. Similarly, 1− e−x and 1 + e−x are
rounded to 1 for x ≥ (p+ 1) ln 2 and x > p ln 2, respectively.
Thus, the computational limit of LLR magnitude using (9) is
at best λ ≥ (p+ 2) ln 2.
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Fig. 1. Numerical accuracy of several versions of − ln tanh(x/2) plotted
as significant bits vs. x (LLR value) using DP-FP computations

C. Gallager’s Involution Transform, Amended (GIT2)

Given the following series expansion in the range x > 0:

ln
(
1 + e−x

)
= e−x − e−2x

2
+
e−3x

3
+ . . . ,

the series expansion of (9) is readily found to be

ln

(
1 + e−x

1− e−x

)
= 2

[
e−x +

e−3x

3
+
e−5x

5
+ . . .

]
, (10)

for x > 0. This can clearly be approximated by a small
number of terms as x grows large. What has been gained is
that (10) will not round to zero until x > (emax + p) ln 2,
thus providing a substantial increase in LLR dynamic range.
Also, the value e−x+ln 2 will not begin to lose accuracy as it
“denormalizes” until x > emax ln 2.

Our next step is to find the cross-over in accuracy between
(9) and (10) with a limited number of terms. Make the
following computations:

Φ0(x) , − ln tanh
(x

2

)
,

Φ1(x) , 2e−x,

Φ2(x) , 2e−x +
2e−3x

3
, and

εi(x) , |Φi(x)− Φ(x)| /Φ(x),

where we compute Φ(x) using our best approximation at each
x and not (9) explicitly. The expression for εi(x) computes the
relative error of the corresponding computation Φi(x).

In Fig. 1 we plot the relative error of each computation
as − log2(εi) versus x to show the accuracy in bits of the
several computational versions of Φ(x) in DP-FP. We observe
a cross-over of the lower bound of the accuracy of Φ0(x)
and the accuracy of the single-term power series Φ1(x) at
x ≈ 12.4 and 37.2 bits of accuracy, which is still quite good.
Thus, computationally, the following approximation to (9) has

much greater dynamic range than directly implementing (9)
on a computer, at acceptable accuracy for many applications:

Φ(x) ≈

{
− ln tanh

(
x
2

)
, 0 < x < 12.4

e−x+ln 2, x ≥ 12.4.
(11)

The value returned by (11) will not round to zero until x >
(emax + p) ln 2 or 745.8 in DP-FP. If even more accuracy
is desired, additional terms may be employed at an earlier
cross-over. For instance, Fig. 1 shows that the cross-over in
the accuracy of Φ0(x) and the two-term power series Φ2(x)
occurs at x ≈ 7.35 with over 44 bits of accuracy. However, no
larger dynamic range is achievable while employing Gallager’s
involution transform.

Our proposed computation (11) achieves a factor of
(emax + p)/(p + 2) increase in the LLR dynamic range of
(9), which is approximately a 20-fold improvement for DP-FP.
Also, at LLR magnitudes larger than 12.4, this simple modi-
fication achieves higher accuracy with reduced computational
complexity than (9).

D. Likelihood Ratio (LR)

An alternative to using tanh in the SPA is to perform the
required computations in the likelihood ratio (LR) domain
[17], [18]. Interestingly, the non-uniform FP quantization of
LRs maps to nearly uniform quantization in the LLR domain.
If we let L[i] , expλ[i], L[i→j]

l , expλ
[i→j]
l , and so on, the

variable-node update becomes

L
[i→j]
l = L[i]

∏
k∈N (i)\j

L
[i←k]
l or (12)

L
[i→j]
l = exp

(
lnL[i] +

∑
k∈N (i)\j

lnL
[i←k]
l

)
. (13)

Letting N (j)\i = {k1, k2}, the pairwise check-node update
may be computed as

L
[i←j]
l =

1 + L
[k1→j]
l−1 L

[k2→j]
l−1

L
[k1→j]
l−1 + L

[k2→j]
l−1

. (14)

Andrews [18] notes that multiplicative overflow within (14)
is avoided if the input LRs are limited to L

[k→j]
l−1 <√

2emax(2− 21−p), which corresponds to an LLR limit of
about 354.89 in DP-FP. We have found a numerical improve-
ment to this computation which doubles its LLR range. That
improvement is to appear in the full version of this paper.

Note that the variable-node update (12) is more sensitive to
multiplication overflow than (14) for dv ≥ 3. However, (12)
may be re-stated as (13) which has no intermediate overflows.
We may gracefully limit the argument of the exponential to
restrict the output LR range. Of course, (13) is more complex
to evaluate.



E. Likelihood Difference (LD) or Tanh Domain

Another alternative is to perform the computations in the
likelihood difference (LD) domain, on the interval (−1,+1)
[17]. This is variously known as the tanh or soft-bit domain
[19]. If we let δ[i] , P (ri|ti = −1) − P (ri|ti = +1) and so
on, the pairwise variable-node update becomes

δ
[i→j]
l =

δ
[i←k1]
l + δ

[i←k2]
l

1 + δ
[i←k1]
l δ

[i←k2]
l

, (15)

while the check-node update is simply

δ
[i←j]
l =

∏
k∈N (j)\i

δ
[k→j]
l−1 . (16)

The dominant numerical issue for the check-node update is
the resolution of δ in the neighborhood of δ = ±1. The LD
messages closest to absolute certainty in FP are ±(1− 2−p).
Since LLRs are related to LDs by λ = ln(1+δ)−ln(1−δ), the
greatest nearly certain message available in LD is equivalent
to an LLR magnitude of

λ = ln(2− 2−p)− ln(2−p)

= (p+ 1) ln 2 + ln(1− 2−p−1) ≈ (p+ 1) ln 2,
(17)

where our approximation error is less than the available
resolution of FP. Note that the variable-node update (15) may
suffer from rounding to ±1 issues and divide by 0 errors
for highly certain messages, but our focus in this section has
been on the limitations of the check-node updates. Thus, for
comparative purposes, we use (17) to represent the equivalent
LLR limits of this formulation.

F. Offset-Likelihood Difference (OLD)

The magnitude of a quantization error in (normalized) FP
is roughly proportional to the amplitude of the represented
value. Thus, FP quantizes with greater absolute accuracy close
to 0 than close to 1. This leads us to propose that LDs be
offset such that check-node computations are in the form f =
1− |δ| = 1− tanh |λ/2|, so that highly certain messages are
near f = 0. Since the check-node update for LD (16) is odd in
every input and sign(δ) = sign(λ), we may simply handle the
sign at the conclusion of the check-node-message calculation.

To begin the derivation of the check-node computation for
the offset-likelihood difference (OLD) algorithm we note that

f
[i←j]
l = 1−

∏
k∈N (j)\i

∣∣∣δ[k→j]l−1

∣∣∣
simplifies significantly when performed pairwise. Letting
N (j) \ i = {k1, k2}, the check-node computation becomes

f
[i←j]
l = f

[k1→j]
l−1 + f

[k2→j]
l−1 − f [k1→j]l−1 · f [k2→j]l−1 . (18)

If we wish to perform the variable-node update in the
LLR domain, then we note that the transformations between
domains are relatively simple, since

fi =
2e−|λi|

1 + e−|λi|
=

2

1 + e|λi|
(19)

and
|λi| = ln

(
2− fi
fi

)
. (20)

Algorithm 1 Offset-LD Check-Node Update for One Edge
1: procedure OFFSET LD CN(n, λ)
2: f ← 0 . f holds the magnitude, 0 < f ≤ 1
3: s← +1 . s holds the sign, s ∈ {+1,−1}
4: for i← 1, n do
5: g ← 2 ∗ exp(−|λ[i]|)/ [1 + exp(−|λ[i]|)]
6: f ← f + g − f ∗ g
7: s← s ∗ sign(λ[i])
8: end for
9: λout ← s ∗ ln

(
2−f
f

)
10: return λout
11: end procedure

The pairwise calculation of (18) generalizes easily to the
recursion of Algorithm 1. By definition, the range of f is
the interval (0, 1]. For simplicity Algorithm 1 is written to
compute a single output message; however, a check node
must compute an output for each edge. Thus, the transformed
LLR values from (19) on line 5 of Algorithm 1 may be pre-
computed (just once) for all output messages. Furthermore, we
may organize the pairwise computations on a trellis [13].

The computational complexity of Algorithm 1 is less than
that of (7); however the dynamic range is also less. The
numerical dynamic range is limited due to underflowing (i.e.,
rounding to zero) 2e−|λ| in (19). This was shown in Section
IV-C to occur as LLRs exceed (emax+ p) ln 2.

The other numerical concern is overflowing 2/f in (20)
when f is so small that it is significantly denormalized.
However, for small f (e.g., fi < 2−p), we may accurately
restate (20) as |λi| = ln 2 − ln fi, which has no major
numerical concerns and fewer operations.

G. Summary of SPA Formulations

Table II summarizes the findings on LLR limits with respect
to check-node inputs. The traditional formulations based on
tanh operations in (1), Gallager’s involution transform, and
LD are all very limited in their usable LLR range. Our
preferred approach (7) has a range 306 orders of magnitude
greater.

Fig. 2 shows the output accuracy of a CN using 64-bit FP
calculations for several SPA formulations. The MSA approx-
imation peaks at low LLRs and then improves substantially,
while offset-BP is more accurate than MSA at low LLR and
less accurate at high LLR. The approximation by Richter et al.
[16] has substantially less error than the other approximations
throughout the LLR range. Finally, the vertical lines indicate
two exact formulations reaching their upper LLR limit and
their error beginning a linear growth with respect to LLR.

V. HYBRID SPAS AND RESCALING

Fig. 2 also suggests that hybrid SPA solutions – that is,
switching from a precise formulation to an approximation as



TABLE II
UPPER LLR LIMITS OF SPA FORMULATIONS WITH RESPECT TO CHECK

NODE INPUTS

Tech- LLR-equivalent LLR limit LLR limit
nique limit (approx.) for DP-FP for QP-FP

(1) (p+ 2) ln 2 38.12 79.72

(7) 2emax+1 1.798× 10308 1.190× 104932

MSA 2emax+1 1.798× 10308a 1.190× 104932a

GIT (p+ 2) ln 2 38.12 79.72

GIT2 (emax+ p) ln 2 745.8 11434

LR (emax+ 1) ln 2/2 354.9 5678

LD (p+ 1) ln 2 37.43 79.02

OLD (emax+ p) ln 2 745.8 11434
aMSA decoder approximates SPA with a performance loss of 0.6 to 1.22 dB.
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LLRs grow – may be acceptable. In fact, one of our SPA
decoder implementations in DP-FP switches from the Richter
et al. approximation to MSA once a very large LLR, say 2p+3,
is first seen. At such a point in decoding, the approximation
error of the less-complex MSA is less than the resolution of
the values for most of the messages in the graph.

Also, it is simple to push the LLR limits beyond that shown
in Table II for formulations that already support large LLRs.
At very large LLRs the update rules are largely insensitive to
scaling, and MSA is always insensitive to scaling. So, once we
detect an extremely large LLR in decoding, say 10305 in DP-
FP, we may rescale all LLRs (including the LLRs from the
channel), substantially to provide additional headroom. This
alleviates the need to consider the QP-FP format for more
LLR range. We recognize that, when quantizing FP in the
LLR domain (as we prefer) and rescaling, the quantization
steps get larger as LLR magnitudes increase. We believe this
effect to be tolerable when operating in the error floor region
as LLRs grow exponentially in trapping set conditions [7]–[9].

VI. FLOATING-POINT RESOLUTION

Since range is not the only issue in quantization, we briefly
examine floating-point (FP) resolution for the several domains
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Fig. 3. 64-bit FP resolution in LLR units versus equivalent LLR λ.

covered. Fig. 3 shows the DP-FP resolution (or quantization
step-size) of several domains plotted in terms of LLR resolu-
tion versus equivalent LLR. Since the curve for “LLR domain”
is in its native domain, the resolution takes on discrete values.
It is approximately proportional to the value represented, with
a proportionality constant of α = 2−52.5 = 1.6× 10−16.

We can plot the other domains using a simple transforma-
tion. For instance, in the LR domain (L = eλ) of Section
IV-D, we find the FP-quantization steps of L as a function of
λ are approximately

∆L ≈ αL = αeλ in LR units.

To transform small changes in L to LLR units we need only
multiply by the magnitude of the derivative |dλ/dL| = 1/L
to produce ∣∣∣∣ dλdL

∣∣∣∣∆L ≈ αL/L = α in LLR units,

approximately a constant value. As shown in Fig. 3 the true LR
resolution in LLR units dithers about our approximate result
until it runs out of range. The GIT2 and OLD domains yield a
resolution overlapping the LR result, but with smaller step-size
for GIT2 at LLRs less than 0.2. For the LD or tanh domain
of we perform the same analysis and produce the top curve in
Fig. 3, which shows the step-size growing rapidly.

VII. SIMULATION

We present performance simulation results for two codes
to demonstrate the techniques of this paper. Fig. 4 shows the
frame error rate (FER) of the (2640, 1320) Margulis code,
which is a (3, 6)-regular LDPC code. We show MacKay and
Postol’s [4] results in addition to our own. While they show
the start of an error floor at 10−6 at Eb/N0 = 2.4 dB,
other studies have found the floor to be substantially higher
[3], [5], [6]. MacKay and Postol note that this error floor is
caused by certain near codewords [4]. Our own simulation,
using a non-saturating SPA decoder running for a maximum
of 200 iterations, showed no sign of a floor down to 10−8 and
significantly lower. In fact, resorting to techniques similar to
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Fig. 5. FER vs. Eb/N0 in dB for n = 1057 LDPC code in AWGN.

importance sampling we found an error-rate contribution due
to the supposedly dominant near codewords of just 2× 10−11

at Eb/N0 = 2.8 dB for this decoder [9].
Fig. 5 shows the FER results for an LDPC code listed

as 1057.244.3.457 in [20]. It is a (3, 13)-regular code, with
block length n = 1057, rate R ≈ 0.77, and dmin = 8.
Again, we compare our results to those of MacKay. We used
our non-saturating SPA decoder with three settings for the
maximum number of iterations: 103, 105, and 107. The average
number of decoder iterations performed at Eb/N0 = 4.574
dB was 2.290, 2.344, and 4.08, respectively. Despite the small
increase in average iterations required, significant performance
improvements were obtained by using the larger maximum
number of iterations.

VIII. CONCLUSION

We have addressed numerical limitations on the allowable
size of log-likelihood ratios (LLRs) in floating-point (FP) sim-
ulations of several formulations of the sum-product algorithm
(SPA). We have described preferred techniques to accommo-
date very large LLR values and even unbounded range through

rescaling. Additionally, we have proposed simple numerical
improvements to Gallager’s involution transform that extends
its dynamic range by a factor of about 20 (for double-precision
FP computations). Finally, we introduced a new exact SPA
formulation, “offset-likelihood difference,” which supports a
moderate LLR range with low computational complexity.
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