
2780 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

Optimized Cell Programming for Flash
Memories With Quantizers

Minghai Qin, Student Member, IEEE, Eitan Yaakobi, Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract— Multilevel flash memory contains blocks of cells that
represent data by the amount of charge stored in them. The
cell writing—or programming—process applies specified voltages
in a sequential manner, injecting charge to achieve a desired
level. Reducing a cell level requires a costly block erasure, so
programming only increases cell levels. Parallel programming,
whereby a common voltage is applied to a group of cells to
inject charge simultaneously, simplifies circuitry and increases
programming speed. However, cell-to-cell variations and limited
programming round can adversely affect its precision. In this
paper, we consider algorithms for efficient cell programming.
Since cell levels are quantized to a discrete set of values, our
objective is to minimize the number of cells that are not quantized
to their target levels. For a specified number of programming
rounds, we derive an optimal parallel programming algorithm
with complexity that is polynomial in the number of cells. We
extend the algorithm to account for intercell interference, where
the voltage applied to a cell can affect the level of adjacent
cells. We then consider noisy programming of a single cell, with
and without feedback about the cell level. In both scenarios, we
present an algorithm that, for a given number of programming
rounds, minimizes the probability of an incorrect cell level.

Index Terms— Parallel programming, flash memory program-
ming, intercell interference.

I. INTRODUCTION

FLASH memories are a widely-used technology for non-
volatile data storage. The basic memory units in flash

memories are floating-gate cells, which use charge (i.e., elec-
trons) stored in them to represent data; the amount of charge
stored in a cell determines its level. The hot-electron injection
mechanism or Fowler-Nordheim tunneling mechanism [3] is

Manuscript received October 9, 2012; revised August 13, 2013;
accepted October 11, 2013. Date of publication November 26, 2013; date
of current version April 17, 2014. This work was supported in part by the
International Sephardic Education Foundation, the Lester Deutsch Fellowship,
the University of California Laboratory Fees Research Program under Award
09-LR-06-118620-SIEP, in part by the National Science Foundation under
Grant CCF-1116739, and in part by the Center for Magnetic Recording
Research at the University of California, San Diego. This paper was presented
at the 2012 IEEE International Symposium on Information Theory.

M. Qin and P. H. Siegel are with the Department of Electrical and Computer
Engineering and the Center for Magnetic Recording Research, University of
California, San Diego, La Jolla, CA 92093 USA (e-mail: mqin@ucsd.edu;
psiegel@ucsd.edu).

E. Yaakobi is with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA 91125 USA, and also with the Depart-
ment of Electrical and Computer Engineering and the Center for Magnetic
Recording Research, University of California, San Diego, La Jolla, CA 92093
USA (e-mail: eyaakobi@ucsd.edu).

Communicated by E. Arikan, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2013.2292819

used to increase and decrease a cell level by injecting charge
into it or by removing charge from it, respectively. The
cells in flash memories are organized as blocks, each of
which contains about 106 cells. One of the most prominent
features of programming flash memory cells is its asymmetry
in programming and erasing. That is, increasing a cell level
(injecting charge into a cell) is easy to accomplish by applying
a certain voltage to the cell. However, decreasing a cell level
(removing charge from a cell) is expensive in the sense that
the block containing the cell must first be erased, i.e., all
charge in the cells within the block is totally removed, before
reprogramming them to their target levels. The erase operation,
called a block erasure, is not only time-yconsuming, but also
degrades the performance and reduces the longevity of the
flash memory [3].

In order to minimize the number of block erasures, program-
ming flash memories is accomplished very carefully using
multiple rounds of charge injection to avoid “overshooting” the
desired cell level. Therefore, a flash memory can be modeled
as a Write Asymmetric Memory (WAM), for which capac-
ity analysis and coding strategies are discussed in [2], [6],
and [15].

Parallel programming is a crucial tool to increase the write
speed when programming flash memory cells. Two important
properties of parallel programming are the use of shared pro-
gram voltages and the need to account for variation in charge
injection [17]. Instead of applying distinct program voltages
to different cells, parallel programming applies a common
program voltage to many cells simultaneously. Consequently,
the write speed is increased and the complexity of hardware
realization is substantially reduced. Parallel programming must
also account for the fact that cells have different hardness
with respect to charge injection [13], [16]. When applying the
same program voltage to cells, the amount of charge trapped
in different cells may vary. Those cells that have a large
amount of trapped charge are called easy-to-program cells and
those with little trapped charge are called hard-to-program
cells. Understanding this intrinsic property of cells will allow
the programming of cells according to their hardness of
charge injection. One widely-used programming method is
the Incremental Step Pulse Programming (ISPP) scheme [13],
[16], which allows easy-to-program cells to be programmed
with a lower program voltage and hard-to-program cells to be
programmed with a higher program voltage.

In [7] and [8], optimized programming for a single flash
memory cell was studied. A programming strategy to optimize
the precision with respect to two cost functions was proposed,

0018-9448 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

QIN et al.: OPTIMIZED CELL PROGRAMMING FOR FLASH MEMORIES 2781

where one of the cost functions is the �p metric and the other
is related to rank modulation [9]. It was assumed that the pro-
gramming noise, which is the difference between the ideal and
actual trapped charge in the cell, follows a uniform distribution
and the level increment is chosen adaptively according to the
current cell level to minimize the cost function.

In [17], algorithms for parallel programming were studied.
The underlying model incorporated shared program voltages
and variations in cell hardness, as well as a cost function based
upon the �p metric. The programming problem was formulated
as a special case of the Subspace/Subset Selection Problem
(SSP) [5] and the Sparse Approximate Solution Problem
(SAS) [14], both of which are NP-hard. Then an algorithm
with polynomial time complexity was proposed to search for
the optimal programming voltages.

We note that flash memories use multiple discrete levels to
represent data in real applications [3]. Hence, if the actual cell
level is within a certain distance from the target level, it will
be quantized to the correct target level even though there is
a gap between them. Read errors can be mitigated by use of
error correction codes. If the error correction capability is e,
then any read error will be totally eliminated as long as the
number of read errors is less than e. This motivates us to
consider another cost function, which is the number of cells
that are not quantized correctly to their target levels.

To formulate this more precisely, let � = (θ1, . . . , θn) be
the vector of target cell levels and let �t = (�1,t , . . . , �n,t)
be a vector of random variables which represent the level of
every cell after t programming rounds. Note that in general the
value of �i,t , for 1 � i � n, depends on the applied voltages,
the hardness of the cell, and the programming noise. We
will evaluate the performance of any programming method by
some cost function C(�, �t) involving the target cell levels �
and the actual cell levels �t . Then, the programming problem
is to find an algorithm which minimizes the expected value
of C(�, �t). In [17], the cost function was based upon the �p

metric, i.e., Cp(�, �t) = (∑n
i=1

∣
∣θi − �i,t

∣
∣p)

1
p . In this paper,

we study a cost function motivated by the quantization of cell
levels, namely

C�(�, �t) = ∣∣ {i ∈ [n] : ∣∣θi − �i,t
∣
∣ > �i

} ∣∣,
where �i is the quantization distance for the i -th cell. We ana-
lytically solve the corresponding problem of finding an optimal
parallel programming algorithm for the special case where the
hardness of each cell is known and there is no programming
noise. We also derive optimal programming algorithms for a
single cell in the presence of noise, both with and without
the availability of feedback during the programming process.
We focus upon these scenarios because of their amenability to
analysis; the solution to the general cell-programming problem
remains open.

Another factor that limits the precision of flash program-
ming is inter-cell interference (ICI), which can cause the
level of a cell to increase when its neighboring cells are
programmed. The ICI is caused by the parasitic capaci-
tance between neighboring cells, and it is of particular con-
cern in multilevel cell programming [4], [11]. Constrained
codes that mitigate the effect of ICI have been studied in

Fig. 1. The information-theoretic framework of the cell programming model.

[1] and [12]. In this paper, we consider a simple model of
ICI and, by application of dynamic programming in the form
of the Viterbi algorithm, we derive an optimal, linear-time
algorithm for parallel programming with ICI in the absence
of noise.

The rest of the paper is organized as follows. In Section II,
we formulate the parallel programming problem with the
cost function that reflects the quantization of cell levels. In
Section III, we derive a polynomial-time algorithm for opti-
mal parallel programming in the absence of noise, assuming
known, deterministic cell-hardness parameters. In Section IV,
we extend this to a polynomial-time, optimal parallel program-
ming algorithm for the case where ICI is present. In Section V,
we study the problem of programming a single cell in the
presence of noise, but with no feedback on the cell level during
programming. In Section VI, we then consider noisy cell
programming with applied voltages chosen adaptively using
feedback about the current cell level.

II. PRELIMINARIES

Let us define the cell programming problem in a general
information-theoretic framework, such as a cascade channel
described in Fig. 1, where the number of channels is the
number of programming rounds, t . We assume that there
are n cells, denoted by c1, c2, . . . , cn , whose initial levels
(i.e., charge levels) are all 0. Each cell is characterized by
some target level θi � 0 and the target-level vector is � �
(θ1, . . . , θn). Each round of programming is first described by
an encoder Ei , 1 � i � t . The input to the first encoder is
the target-level vector. For the other encoders, the input also
includes feedback on the cell levels after the previous round
of programming. The output of encoder Ei is the vector Vi

2782 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

which includes information about the programming voltage
of the i -th round and the set of cells that are programmed
with this voltage. The output of the i -th channel, which is the
outcome of the i -th round of programming, is a function of
Vi and εi as well as �i−1 if i > 1. The vector εi represents the
noise in each cell and any other property of the cell that will
affect its level. For i > 1, the vector �i represents the value of
cells after the i -th round. For round i + 1, the outcome of the
i -th round of programming �i is used to generate a feedback
vector Fi on the cell levels to be used in the next round of
programming. The goal is to minimize a cost function that
measures the difference between the channel output �t after t
rounds of programming and the target level vector �.

Remark 1. In practice, electrons trapped in the oxide layer
can cause transient charge leakage during programming, which
leads to a slight decrease of cell levels. Since the leakage
and other detrimental factors are typically significantly smaller
than the programming noise and inter-cell interference dis-
cussed in Section IV, we simply assume the cell levels can
only increase during programming.

Feedback information on cell levels after a particular write
can be used to adaptively choose the programming voltage of
the next round, thus increasing the precision of programming.
However, obtaining the feedback information is time- and
energy-consuming since reading the cell level is accomplished
by comparing it to a sequence of reference values.

In the remainder of the paper, we denote by [m : n] the
integer set {i ∈ Z : m � i � n}. We will sometimes shorten
[1 : n] to [n] when the meaning is clear from the context. We
will use R+ to denote the set of all non-negative real numbers,
i.e., R+ = {x ∈ R : x � 0}.

When applying a voltage V to a memory cell ci , where
i ∈ [n], we assume that the increase of the level of cell ci is
linear with V , that is, the level of ci will increase by

αV + ε,

where α and ε are random variables that might be different
for each cell ci and each round of programming. Each cell ci

is associated with an α and we call it the hardness of charge
injection for cell ci , and ε is the programming noise. (Note
that the distribution of ε may vary among different cells and
different writes.) We define the parallel programming problem
in detail as follows.

Let � = (θ1, . . . , θn) be the target cell levels and
α = (α1, . . . , αn) be the hardness of charge injection and let
V = (V1, V2, . . . , Vt)

T ∈ R
t+ be the vector of voltages applied

on the t rounds of programming. Define the indicator matrix

B =

⎡

⎢
⎢
⎢
⎣

b1,1 b2,1 · · · bn,1
b1,2 b2,2 · · · bn,2
...

...
. . .

...
b1,t b2,t · · · bn,t

⎤

⎥
⎥
⎥
⎦

∈ {0, 1}t×n

where, for i ∈ [n] and j ∈ [t], the entry bi, j ∈ {0, 1} indicates
whether the cell ci is programmed on the j -th round; i.e.,
bi, j = 1 if voltage Vj is applied to cell ci , and bi, j = 0,
otherwise. Denote the programming noise of the i -th cell on

the j -th programming round by εi, j , for i ∈ [n] and j ∈ [t].
For i ∈ [n], let �i,t be the random variable representing the
level of cell ci after t rounds of programming; that is,

�i,t =
t∑

j=1

(
αi V j + εi, j

)
bi, j .

We define �t = (�1,t , . . . , �n,t) to be the cell-state vector after
t rounds of programming.

We evaluate the performance of the programming by refer-
ence to a cost function C(�, �t). The programming problem is
to minimize the expected value of C(�, �t) over V and B. That
is, given �, α and {εi, j }n×t , we seek to solve the optimization
problem

minimize E[C(�, �t)], (P1)

over V ∈ R
t+ and B ∈ {0, 1}t×n , where, for a random variable

X , E [X] denotes its expected value.
In [17], the �p metric is considered as the cost function, i.e.

Cp(�, �t) =
(

n∑

i=1

∣∣θi − �i,t
∣∣p
) 1

p

,

and the optimal solution for (P1) was derived for known α

in the absence of noise. However, in real applications, flash
memories use multiple discrete levels to represent data and if
the cell level �i,t is within a certain distance from the target
level θi , it will be quantized to the correct target level even
though there is a gap between �i,t and θi . This motivates us to
consider as the cost function the number of cells that are not
correctly quantized to their target levels. To be more precise,
letting � = (�1, . . . ,�n), we define

C�(�, �t) = ∣∣ {i ∈ [n] : ∣∣θi − �i,t
∣
∣ > �i

} ∣∣

to be the cost function, where �i is the quantization distance
for ci . Therefore, the cell programming problem is to solve

minimize E
[∣∣ {i ∈ [n] : ∣∣θi − �i,t

∣
∣ > �i

} ∣∣] , (P2)

with V ∈ R
t+ and B ∈ {0, 1}t×n.

Remark 2. Problem (P2) is the most general form of the
cell programming problem and, therefore, difficult to solve
analytically. In the following sections of the paper, we consider
four special cases, of both theoretical and practical interest, for
which analytical solutions can be found.

Remark 3. Another concern in programming is the writing
speed, which strongly depends on the number of program-
ming rounds. Therefore, an alternative criterion for evaluating
the performance of a programming method is the minimum
number of programming rounds needed to achieve a specified
level of programming accuracy, as described by the expected
cost. That is, given the values of �, α and {εi, j }n×t , we seek
to determine

min
V∈R

t+,B∈{0,1}t×n
t, subject to E[C�(�, �t)] � γ, (P2′)

where γ is the maximum allowable expected cost.
If t can be bounded above by a finite number tmax, Prob-

lem (P2′) can be translated to Problem (P2) through a binary

QIN et al.: OPTIMIZED CELL PROGRAMMING FOR FLASH MEMORIES 2783

search for t between 0 and tmax. If there exists an algorithm
with time complexity O(f (n)) for Problem (P2), then there
exists an algorithm with time complexity O(log(tmax) f (n))
for (P2′). As tmax is usually a small number between 6 and 10
in practice [16], [17], we focus on solving Problem (P2)
throughout this paper.

Remark 4. In practice, quantization is performed by com-
paring to predetermined voltage levels. The number of such
reference levels may therefore affect the read latency, as well
as the chip area in a circuit implementation. The trade-off
between storage capacity – a function of the number of levels –
and quantization speed is determined by the cell quantization
distances, {�i }. In the case of a uniform quantizer with
quantization distance �, if the maximum cell level is θmax,
then the number of levels equals � θmax

2� � + 1.

III. NOISELESS PARALLEL PROGRAMMING

In this section, we assume that the cell hardness parameters
(α1, . . . , αn) are known and deterministic, and there is no
programming noise, i.e., εi, j = 0,∀i ∈ [n], j ∈ [t]. In this sce-
nario, �i,t is deterministic so that we can omit the expectation
in (P2) and �i,t = αi

∑t
j=1 Vj bi, j . Let n, t,� = {�1, . . . ,�n}

and � = {θ1, . . . , θn} denote the block length, the number of
programming rounds, the set of quantization distances, and the
set of target levels, respectively. Our goal is to find a solution
to (P2).

Lemma 1. The solution to Problem (P2) is equivalent to the
solution of the following:

maximize f (V , B), (P3)

with V = (V1, . . . , Vt)
T ∈ R

t+, bi = (bi,1, . . . , bi,t)
T ∈

{0, 1}t and B = (b1, . . . , bn), where ui = θi−�i
αi

, vi = θi+�i
αi

,

i ∈ [n] and f (V , B) =
∣
∣∣
{
i ∈ [n] : ui � bT

i · V � vi
} ∣∣∣.

Proof: The following chain of equations is easily estab-
lished:

min
V ,B

∣
∣ {i ∈ [n] : ∣∣θi − �i,t

∣
∣ > �i

} ∣∣

= n − max
V ,B

∣
∣ {i ∈ [n] : ∣∣θi − �i,t

∣
∣ � �i

} ∣∣

= n − max
V ,B

∣
∣
∣
{

i ∈ [n] : ∣∣ θi

αi
− �i,t

αi

∣
∣ � �i

αi

} ∣
∣
∣

= n − max
V ,B

∣
∣
∣
{

i ∈ [n] : ∣∣ θi

αi
− bT

i · V
∣
∣ � �i

αi

} ∣
∣
∣

= n − max
V ,B

∣
∣
∣
{

i ∈ [n] : θi

αi
− �i

αi
� bT

i · V � θi

αi
+ �i

αi

} ∣
∣
∣

= n − max
V ,B

∣
∣
∣
{

i ∈ [n] : ui � bT
i · V � vi

} ∣∣
∣,

where V ∈ R
t+, B ∈ {0, 1}t×n, ui = θi−�i

αi
and vi = θi+�i

αi
.

This establishes the lemma. �
The quantities ui and vi defined in the statement of

Lemma 1 represent the boundaries of the correct quantization
interval for cell ci , ∀i ∈ [n]. We call them the upper threshold

point and the lower threshold point for cell ci and we call the
interval [ui , vi] the quantization interval for cell ci . Any pair
(V , B) that achieves the maximum for (P3) is called an optimal
solution pair, and V is called optimal or an optimal solution
if there exists B such that (V , B) is an optimal solution
pair.

Definition 1. Suppose ui and vi , i ∈ [n], are defined as in
Lemma 1. Let Tu be the set of upper threshold points and Tv

be the set of lower threshold points, i.e., Tu =⋃i∈[n]{ui } and
Tv =⋃i∈[n]{vi }. Let T = Tu ∪ Tv be the set of all upper and
lower threshold points.

Example 1. Suppose the target levels are � = (10, 13, 8,
5, 10), the quantization distances are � = (2, 2, 2, 3, 1), and
the cell hardness parameters are α = (0.5, 0.5, 1, 1, 0.5).
According to Lemma 1, (u1, . . . , u5) = (16, 22, 6, 2, 18)
and (v1, . . . , v5) = (24, 30, 10, 8, 22). Then T =
{2, 6, 8, 10, 16, 18, 22, 24, 30}.
Remark 5. We assume that |T | > t since otherwise we can
easily achieve C�(�, �t) = 0 by using the set of threshold
points, T , as the set of programming voltages {V1, . . . , Vt }.
Definition 2. Suppose V = (V1, . . . , Vt)

T ∈ R
t+. We define

SV to be

SV =
⋃

b∈{0,1}t

{bT · V }.

and call it the attainable set of V . That is, SV is the set of
voltage values that can be achieved by applying V .

Remark 6. Note that, for any i ∈ [n], if there exists z ∈ SV
such that ui � z � vi , then there exists b ∈ {0, 1}t such that
ui � bT · V � vi , and thus the level of ci can be quantized to
the correct target level.

For a fixed V , maximizing the function f (V , B) over
B is easy to accomplish by checking whether there exists,
for each i , an attainable voltage level z ∈ SV such that
ui � z � vi . If one could enumerate all possible vectors
V , one could use this approach to exhaustively search for
an optimal solution. However, since V can be, in principle,
any vector in R

t+, there is an uncountably infinite number of
possible choices of V to consider. Nevertheless, Lemma 2
states that we can limit the number of vectors V under
consideration to be polynomial in n, and still guarantee that
an optimal solution will be found.

Lemma 2. There exists a matrix A ∈ {0, 1}t×t , invertible over
R, such that

A · V = p,

where p ∈ T t and V is an optimal solution for (P3).

Proof: See Appendix A. �
Remark 7. In Lemma 2 and Algorithm 1 below, the binary
matrix A has to be invertible over R, not necessarily over
G F(2). Therefore, enumerating only the binary matrices in-
vertible over G F(2) may not be sufficient to find an optimal
solution.

2784 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

Algorithm 1 Parallel Programming

Function (f ∗, V ∗, B∗) =ParallelProgramming
(
t, un

1, vn
1

)
.

Input:
t, (u1, . . . , un), and (v1, . . . , vn).

Output:
f ∗: maximum value of Problem (P3);
(V ∗, B∗): the optimal solution pair.

1. Let f ∗ = 0;
2. Let V = V ∗ = (0, . . . , 0) ∈ R

t+,
3. Let B = (b1, . . . , bn) ∈ {0, 1}t×n , bi = 0,∀i ∈ [n];
4. Let B∗ ∈ {0, 1}t×n , b∗

i, j = 0,∀i ∈ [t], j ∈ [n];
5. For i = 1, 2, . . . , N {
6. For j = 1, 2, . . . , Q {
7. If Ã j is invertible and Ã−1

j · pi ∈ R
t+{

8. Let V = Ã−1
j · pi ;

9. Let f = 0;
10. For k = 1, 2, . . . , n {
11. If ∃z ∈ SV , such that uk � z � vk {
12. Find b ∈ {0, 1}t , such that bT · V = z;
13. Let bk = b;
14. f = f + 1;
15. }
16. }
17. If f > f ∗
18. f ∗ = f , V∗ = V , B∗ = B;
19. }}}

Output the optimal solution pair (V ∗, B∗) with maximized
f (V∗, B∗) = f ∗.

Next we give an algorithm to search for an optimal solution
to (P3), which, as we have shown, is also an optimal solution
to (P2). First, let {p1, . . . , pM} be an arbitrary ordering of
the points in T , where M = |T | is the number of different
threshold-point values and pi can be the value of either an
upper or a lower threshold point, for i ∈ [M]. Since p is
of length t , there are N = Mt choices of p (the entries can
be repeated). Let { p1, . . . , pN } be an arbitrary ordering of the
choices. Now, let Ã ∈ {0, 1}t×t be a binary matrix with distinct
rows; the number of such matrices is Q = ∏t−1

k=0(2
t − k).

Let {Ã1, . . . , ÃQ} be an arbitrary ordering of these matrices.
Algorithm 1 will iterate over all choices of p and those
matrices Ã that are invertible.

Example 2. Suppose α,�,�, ui and vi , 1 � i � 5, are given
as in Example 1. Suppose the number of programming rounds
is t = 2. If pi = (30, 8)T ∈ T 2 and

Ã j =
[

1 1
1 0

]

as we iterate through Line 5 to Line 19, then

V = (V1, V2)
T = Ã−1

j · pi = (8, 22)T ,

and

SV = {0, 8, 22, 30}.

By choosing the indicator matrix as

B =
[

b1,1 b2,1 b3,1 b4,1 b5,1
b1,2 b2,2 b3,2 b4,2 b5,2

]
=
[

0 1 1 1 0
1 1 0 0 1

]
,

the final cell levels are �2 = (11, 15, 8, 8, 11), where

�i,2 = αi

2∑

j=1

Vj bi, j = αi
(
V1bi,1 + V2bi,2

)
,∀1 � i � 5.

It can be easily checked that

θi − �i � �i,2 � θi + �i ,∀1 � i � 5,

implying all cells are correctly quantized and V = (8, 22)T is
an optimal solution.

Theorem 1. Algorithm 1 finds an optimal solution pair
(V ∗, B∗) and computes the optimal value f (V ∗, B∗) for
Problem (P3). The time complexity of the algorithm
is O(nt+1).

Proof: According to Lemma 2, there exists an optimal
solution (V , B), an invertible matrix A ∈ {0, 1}t×t , and a
threshold-point vector p ∈ T t , such that

A · V = p.

In Algorithm 1, all possible A’s and p’s, have been exhaus-
tively considered and there is at least one optimal V among
all the V ’s derived from A’s and p’s. The algorithm outputs
the best V among them. This proves that this algorithm will
find an optimal solution to (P3).

The number of iterations of the algorithm is of order
N Qt3n2t , where N = Mt � (2n)t and Q = ∏t−1

k=0(2
t − k).

Therefore, the complexity is O(nt+1). �
Remark 8. The efficiency of the algorithm could be improved
if, rather than iterating over the Q = ∏t−1

k=0(2
t − k) binary

matrices with distinct rows, we instead iterated only over the
set of binary matrices that are invertible over R.

IV. NOISELESS PARALLEL PROGRAMMING WITH

INTER-CELL INTERFERENCE

In this section, we consider the scenario where cell density
has increased to the point that inter-cell interference (ICI)
exists. The phenomenon of ICI in flash memories was studied
in [4] and [11] and constrained codes that mitigate the effect
of ICI were presented in [1] and [12]. In this section, we
extend the results of Sections II and III, formulating the
cell programming problem with ICI as an optimization prob-
lem and providing an efficient polynomial time algorithm to
solve it.

Suppose the cell layout is a one-dimensional array. When
a cell is programmed by applying a voltage to it, the levels
of the left and right neighboring cells will also increase.
Those cells that cause the ICI are called interfering cells and
those cells whose levels are increased unexpectedly because
of ICI are called victim cells. Since a large programming
voltage will result in a more severe ICI, we make the further
assumption that the ICI of the victim cell is proportional to the
voltage applied to the interfering cell. We define a sequence

QIN et al.: OPTIMIZED CELL PROGRAMMING FOR FLASH MEMORIES 2785

of parameters βi,i+1 ∈ R+ and βi+1,i ∈ R+, i ∈ [n − 1] to
describe the effect of ICI from ci to ci+1 and from ci+1 to ci ,
respectively.

To be more precise, suppose the flash memory cells are c =
(c1, . . . , cn) with injection hardness parameters (α1, . . . , αn).
There are t rounds of charge injection, corresponding to a set
of applied voltages (V1, . . . , Vt). There is no programming
noise, i.e., εi, j = 0,∀i ∈ [n], j ∈ [t]. If the voltage applied to
the cell ci in round j is Vj , then

• the cell level of ci is increased by αi bi, j V j ,
for all i ∈ [n]

• the cell level of ci+1 is increased by αi+1bi+1, j βi,i+1Vj ,
for all i ∈ [n − 1]

• the cell level of ci−1 is increased by αi−1bi−1, j βi,i−1Vj ,
for all i ∈ [2 : n].

We represent the indicator matrix as B = (b1, . . . , bn) ∈
{0, 1}t×n, where the vector b j , for j ∈ [n], denotes the
j -th column of B. For convenience, we also define β0,1 =
βn+1,n = 0, reflecting the fact that the leftmost cell c1 and
rightmost cn have only one neighboring cell each. Similarly,
we define b0 = (b0,1, . . . , b0,t)

T = 0, bn+1 = (bn+1,1, . . . ,
bn+1,t)

T = 0.
Now, let β denote the vector (β0,1, β1,2, β2,3, . . . , βn,n+1,

β2,1, . . . , βn,n−1, βn+1,n). Assuming there is no programming
noise, the final cell level of ci , i ∈ [n] after t rounds of
programming can be written as

�i,t =
t∑

j=1

αi (bi, j + βi+1,i bi+1, j + βi−1,i bi−1, j)Vj .

The cell programming problem is the same as Problem (P2),
which is to solve

minimize E
[∣∣ {i ∈ [n] : ∣∣θi − �i,t

∣
∣ > �i

} ∣∣] ,

with V ∈ R
t+ and B ∈ {0, 1}t×n.

Lemma 3. The solution to Problem (P2) is equivalent to the
solution of the following:

maximize f̂ (V , B), (P3′)

with V = (V1, . . . , Vt)
T ∈ R

t+, bi = (bi,1, . . . , bi,t)
T ∈

{0, 1}t and B = (b1, . . . , bn), where ui = θi−�i
αi

, vi = θi+�i
αi

,
i ∈ [n] and

f̂ (V , B)

= ∣∣{i ∈ [n] : ui � (bT
i + βi+1,i bT

i+1 + βi−1,i bT
i−1) · V � vi

}∣∣.

Proof: The following chain of equations is easily
established.

min
V ,B

∣
∣
∣{i : |θi − �i,t | > �i , i ∈ [n]}

∣
∣
∣

= n − max
V ,B

∣
∣
∣{i : |θi − �i,t | � �i , i ∈ [n]}

∣
∣
∣

= n − max
V ,B

∣
∣∣
{

i ∈ [n] : ∣∣ θi

αi
− �i,t

αi

∣
∣ � �i

αi

}∣∣∣

= n − max
V ,B

∣
∣∣
{

i ∈ [n] :
∣
∣ θi

αi
− (bT

i + βi+1,i bT
i+1 + βi−1,i bT

i−1) · V
∣
∣ � �i

αi

}∣∣
∣

= n − max
V ,B

∣
∣∣
{

i ∈ [n] :
θi−�i

αi
� (bT

i +βi+1,i bT
i+1 + βi−1,i bT

i−1) · V � θi+�i

αi

}∣∣
∣

= n − max
V ,B

∣
∣
∣
{

i ∈ [n] :

ui � (bT
i + βi+1,i bT

i+1 + βi−1,i bT
i−1) · V � vi

}∣∣
∣,

where V ∈ R
t+, B ∈ {0, 1}t×n, ui = θi−�i

αi
and

vi = θi +�i
αi

. �
As was the case for Problem (P3) in Section III, the

optimization in Problem (P3′) is over the applied voltage
vector V and the binary indicator matrix B. In Section III,
however, there was no ICI and the cells could be treated
independently. Consequently, for a fixed voltage vector V ,
we could maximize f (V , B) over B simply by checking for
each i ∈ [n] individually whether there exists an attainable
value z ∈ SV such that ui � z � vi . The time complexity of
this procedure is O(n).

Unfortunately, this procedure is not applicable in the pres-
ence of ICI because the level of a given cell depends on the
voltage increments applied to neighboring cells. Therefore, to
solve Problem (P3′), we first develop an efficient algorithm
with time complexity O(n) to maximize f̂ (V , B) over B for a
fixed V . We then prove a generalization of Lemma 2 that limits
the number of candidate voltage vectors V to be polynomial
in n, and, finally, present an efficient algorithm to search for
the optimal solution pair (V , B).

We call si = (bi−1, bi) ∈ {0, 1}t×2 the state of cell ci ,
∀i ∈ [n+1]. Note that the last column of sn+1 is all zeros. Let
s0 ∈ {0, 1}t×2 be the all-zero matrix. For example, if t = 1,
then there are 4 states, corresponding to all binary vectors
of length 2, i.e., (0, 0), (0, 1), (1, 0), (1, 1). We can relate
Problem (P3′) to an optimization problem over a trellis T,
which we define as follows [10].

Definition 3. A trellis T of depth n is a triplet (S, E, L),
where S = S0 ∪ S1 ∪ S2 ∪ · · · ∪ Sn denotes the set of states;
E = E1 ∪ E2 ∪ · · · ∪ En denotes the set of edges, where each
edge e ∈ Ei has initial state σ(e) ∈ Si−1 and terminal state
τ (e) ∈ Si ; and L : E → �1 denotes a label function that
assigns to each edge a value in the set �1.

For our cell programming problem, we construct a trellis as
follows.

Construction 1 Suppose the number of cells is n and the
number of programming rounds is t . We define a trellis T
of depth n + 1, where S0 = {0} and Si is the set of states
of cell ci , for all i ∈ [n + 1]. There exists as edge e ∈ Ei

from state si ∈ Si to state si+1 ∈ Si+1 if and only if the last
column of si is the same as the first column of si+1. In that
case, σ(e) = si and τ (e) = si+1.

We will make use of two label functions. The terminal
state label function is L : E → {0, 1}t , where for all e ∈ E,
L(e) equals the last column of τ (e). The branch metric label
functions are Lb

i : Ei → {0, 1},∀i ∈ [2 : n + 1], where
Lb

i (e) = 1 if and only if e ∈ Ei and the cell ci−1 can be
quantized correctly by the voltage vector V and the submatrix

2786 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

Fig. 2. Illustration of a terminal state label function of a trellis.

Fig. 3. Path with maximum metric in a trellis with t = 1.

Fig. 4. Another path with maximum metric in a trellis with t = 1.

(σ (ei), L(ei)) = (bi−2, bi−1, bi) of the indicator matrix, i.e.,

ui−1 � (bT
i−1 + βi,i−1 bT

i + βi−2,i−1 bT
i−2) · V � vi−1.

Since the construction of the trellis T depends upon
t, V ,β, un

1 and vn
1 , we denote the trellis by T(t, V ,β, un

1, vn
1).

A path e = (e1, e2, . . . , en) in T is a sequence of edges,
where σ(e1) ∈ S0, σ (ei+1) = τ (ei),∀i ∈ [1 : n − 1]. The
associated path metric is defined as m(e) = ∑n

i=1 Lb
i (ei).

A path e also defines an indicator matrix B(e), which is
obtained by reading off and concatenating the column vectors
corresponding to the terminal state labels of its edges. The
path metric m(e) can be interpreted as the number of cells
being quantized correctly when the voltage tuple is V and the
indicator matrix is B(e), i.e., m(e) = f̂ (V , B(e)). Therefore,
for a fixed V , solving Problem (P3′) is equivalent to finding
a path e from S0 to Sn that maximizes m(e), and thus finding
the indicator matrix B(e).

Example 3. Fig. 2 shows an example of a trellis T with
terminal state label function for n = 5 cells and t = 1.
The number of states for each cell is 22t = 4. The num-
ber of paths emanating from each state is 2t = 2. For
the highlighted path e, the corresponding indicator matrix
B(e) = (1, 0, 0, 1, 1).

Next we state the principle of optimality underlying the
technique of dynamic programming and, in particular, the
well-known Viterbi algorithm.

Algorithm 2 Viterbi Algorithm

Function (mi (s), qi (s)) = Viterbi
(
T(t, V ,β, un

1, vn
1)
)
.

Input:
Trellis T(t, V ,β, un

1, vn
1) in Construction 1.

Output:
mi (s),∀i ∈ [n], s ∈ S: the maximum path metric from s0

to s ∈ Si ;
qi (s) ∈ Si ,∀i ∈ [n], s ∈ S: the state sequence correspond-

ing to the path from s0 to s with maximum metric.
The algorithm has 4 steps.

1) Initialize.
Let m0(s) = 0,∀s ∈ S. Let q0(s0) = s0.

2) Add.
For each state s ∈ Si , and edge e ∈ Ei such that τ (e) =
s, let

m̃i (e) = mi−1(σ (e)) + Lb
i (e)

3) Compare.
For each state s ∈ Si , determine edge e∗ with τ (e∗) = s,
such that m̃i (e∗) � m̃i (e),∀e such that τ (e) = s.

4) Select.
Let mi (s) = mi−1(σ (e∗)) + Lb

i (e
∗) and qi (s) =

(qi−1(σ (e∗)), s).

Theorem 2. [Principal of Optimality] Let e = (e1, e2, . . . ,
ei−1, ei) be a path from state s0 ∈ S0 to state si ∈ Si

with maximum path metric m(e). Let si−1 ∈ Si−1 be the
terminal state of ei−1, i.e., si−1 = τ (ei−1). Then, the path
ẽ = (e1, . . . , ei−1) from state s0 to si−1 has the maximum
path metric over all paths from s0 to si−1.

In Algorithm 2, we present the Viterbi algorithm as ap-
plied to the search for the maximum path metric from S0
to Sn .

Example 4. Let α,�,�, ui and vi , 1 � i � 5, be specified as
in Example 1. Suppose t = 1, V1 = 20, βi+1,i = βi,i+1 = 0.2,
∀i ∈ [n−1]. Figs. 3 and 4 show the trellis structure along with
the value of the branch metric label function on each edge.
Recall that u = (16, 22, 6, 2, 18) and v = (24, 30, 10, 8, 22).
The values mi (s), s ∈ Si are also shown. The highlighted
paths have the maximum path metric from s0 to any state
s6 ∈ S6, namely m6(10) = 4, where the indicator matrices are
(1, 1, 1, 0, 1) and (1, 1, 0, 0, 1), respectively.

Theorem 3. Algorithm 2 finds the path with the maximum
path metric with time complexity O(n).

Proof: The correctness follows from Theorem 2 and the
linear complexity follows from the properties of the Viterbi
Algorithm. �

So far we have constructed an algorithm with linear com-
plexity to determine B that maximizes f̂ (V , B) for a fixed V .
It is left to determine V that maximizes f̂ (V , B).

As in Section III, we define a threshold-point vector
p = (pk1 , . . . , pkt) ∈ T t , where T is given as in Definition 1,
such that pk j is a threshold point for the k j -th cell, for
j ∈ [t] and k j ∈ [n]. For a fixed p, we define a finite set of
matrices A(p) of size t × t , such that ai, j ∈ {0, 1, βki +1,ki ,

QIN et al.: OPTIMIZED CELL PROGRAMMING FOR FLASH MEMORIES 2787

Algorithm 3 Parallel Programming With ICI

Function (f ∗,V ∗,B∗)= ParallelProgrammingICI
(
t, un

1, vn
1 ,β

)
.

Input:
t, (u1, . . . , un), (v1, . . . , vn) and β;

Output:
f ∗: maximum value of Problem (P3′);
(V ∗, B∗): optimal solution pair.

1. Let f ∗ = 0;
2. Let V = V ∗ = (0, . . . , 0) ∈ R

t+;
4. Let B∗ ∈ {0, 1}t×n , b∗

i, j = 0,∀i ∈ [t], j ∈ [n];
5. For i = 1, 2, . . . , N {
6. For j = 1, 2, . . . , Q(pi) {
7. If Ã j (pi) is invertible and Ã j (pi)

−1 · pi ∈ R
t+{

8. Let V = Ã j (pi)
−1 · pi ;

8. Construct the trellis T(t, V,β, un
1, vn

1) according
to Construction 1;
9. Let (mk(s), qk(s)) = Viterbi

(
T(t, V,β, un

1, v
n
1)
)
,

for k ∈ [n], s ∈ S;
10. Let s∗ = arg maxs∈Sn mn(s) and f = mn(s∗);
11. If f > f ∗ {
12. f ∗ = f , V ∗ = V ;
13. Let the path e=(s0, q1(s∗), q2(s∗), . . . , qn(s∗));
14. Let B∗ = B(e);}
15. }}}

Output the optimal solution pair (V ∗, B∗) with maximized
f̂ (V∗, B∗) = f ∗.

1 + βki +1,ki , βki −1,ki , 1 + βki −1,ki , βki +1,ki + βki −1,ki ,
1+βki +1,ki +βki −1,ki }. To determine the optimal V , we make
use of the following modified version of Lemma 2.

Lemma 4. There exists a threshold-point vector p and an
invertible matrix A(p) in the corresponding finite set of
matrices such that

A(p) · V = p,

where V ∈ R
t+ is an optimal solution.

Proof: See Appendix A. �
Remark 9. Note that, in contrast to Lemma 2, when ICI is
present the matrices that we consider for a given threshold
vector p are defined in terms of p.

Finally, we give an algorithm to search for an optimal
solution to Problem (P3′), which is also an optimal solution
to Problem (P2) when ICI exists. Let {p1, . . . , pM } be an
arbitrary ordering of the points in T , where M = |T | is
the number of different threshold point values. Since p is of
length t , there are N = Mt choices of p (the entries can
be repeated). Let { p1, . . . , pN } be an arbitrary ordering of
the choices. For a fixed pi , i ∈ [M], a sequence of matrices
Ã(pi)

t×t is formed such that no two rows are the same.
Thus, the number of different Ã(pi)’s is Q(pi) =∏t−1

k=0(8
t −

k). Let {Ã1(pi), . . . , ÃQ(pi)(pi)} be an arbitrary ordering of
all possible Ã(pi)’s. Algorithm 3 will iterate over all choices
of pi and those Ã(pi)’s that are invertible.

The proof of the following theorem is similar to that of
Theorem 1, so we omit the details.

Theorem 4. Algorithm 3 finds the optimal solution pair
(V ∗, B∗) and computes the optimal value f̂ (V∗, B∗) for Prob-
lem (P3′). The time complexity of the algorithm is O(nt+1).

V. SINGLE CELL NOISY PROGRAMMING

WITHOUT FEEDBACK

In this section, programming noise is assumed to exist.
To carry out our analysis, we must restrict to the case of
programming a single cell, with injection hardness α. The
number of programming rounds is again denoted by t , and the
programming noise vector ε1, . . . , εt consists of independently
distributed Gaussian random variables with zero means and
variances σ 2

j , j ∈ [t], respectively.

Remark 10. Note that according to this model, after every
programming round the level of each cell could decrease
because ε j could be negative. We choose to study this model
while assuming that the variance σ j , j ∈ [t] is much smaller
than αVj , i.e., P

(
αVj + ε j < 0

)
is very small. Thus, the

probability of decreasing the cell levels is negligible. This
model is a reasonable approximation to a physical cell and
it can be studied analytically, as will be seen in this section.

Another reasonable assumption we make is that σ j = σ Vj ,
j ∈ [t], where σ is a fixed number; that is, the standard
deviation of the programming noise is proportional to the
programming voltage. This makes sense since larger voltage
applied to the cell results in larger power of the programming
noise [7]. We further assume that during programming, no
feedback information is available, meaning that the actual
amount of charge trapped in the cell after each round of
programming is not known. The goal is to maximize the
probability that after t rounds of programming the final level
is in [θ − �, θ + �], i.e.,

maximize P
(
θ − � �

t∑

j=1

(αVj + ε j) � θ + �
)
, (P4)

with V ∈ R
t+.

Lemma 5. The cell programming problem (P4) is
equivalent to

maximize g(V), (P5)

with V ∈ R
t+, where

g(V) = 1√
2π

∫ c(V)+δ(V)

c(V)−δ(V)
e−u2/2du,

c(V) = θ−α
∑t

j=1 Vj

σ
√∑t

j=1 V 2
j

, and δ(V) = �

σ
√∑t

j=1 V 2
j

.

Proof: We rewrite the probability in (P4) as

P
(

− � + θ �
t∑

j=1

(αVj + ε j) � � + θ
)

= P
(−� + θ − α

∑t
j=1 Vj

√∑t
j=1(σ

2
j)

� X �
� + θ − α

∑t
j=1 Vj

√∑t
j=1(σ

2
j)

)
,

2788 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

Fig. 5. Probability of correct quantization as a function of the number of
programming rounds.

where X =
∑t

j=1(αVj+ε j)−α
∑t

j=1 Vj√∑t
j=1 σ 2

j

∼ N (0, 1). Under the

assumption that σ j = σ Vj , we have

P
(−� + θ − α

∑
Vj

σ
√∑

V 2
j

� X � � + θ − α
∑

Vj

σ
√∑

V 2
j

)

= 1√
2π

∫
�+θ−α

∑
V j

σ

√
∑

V 2
j

−�+θ−α
∑

V j

σ

√
∑

V 2
j

e−u2/2du,

= g(V).

�
Let p(y) = 1√

2π
e−y2/2 be the N (0, 1) Gaussian probability

density function. Then g(V) can be interpreted as the area
between the curves p(y) and y = 0 on the interval determined

by V , where the interval is centered at
θ−α

∑t
j=1 Vj

σ
√∑t

j=1 V 2
j

, with radius

�

σ 2
√∑t

j=1 V 2
j

.

Remark 11. In the remainder of the paper, we will on oc-
casion simplify notation by writing summations of the form∑t

j=1(·) as
∑

(·), provided that the meaning is clear from the
context.

Lemma 6. If V∗ is the optimal solution to (P5), then ∀ j ∈
[t], V ∗

j = x , for some constant x ∈ R+.

Proof: See Appendix B. �
Theorem 5. The optimal solution V ∗ to (P5) satisfies the
following: V ∗

j = x∗,∀ j ∈ [t], where x∗ is the positive root of
the equation

(
2 ln

b

a

)
x2 + 2(b − a)cx + (a2 − b2) = 0,

and a = −�+θ
σ
√

t
, b = �+θ

σ
√

t
, c = α

√
t

σ .

Proof: According to Lemmas 5 and 6, the optimal solution
to (P5) is achieved by a sequence of programming voltages
V ∗ = (V1, . . . , Vt), where Vj = x,∀ j ∈ [t], for some x ∈ R+.
Referring to the definition of g(V), we must therefore find

Fig. 6. Minimum number of rounds required to ensure 90% probability of
correct programming.

Fig. 7. Minimum number of rounds to ensure 80% probability of correct
programming.

x ∈ R+ that maximizes

h(x) =
∫ b−cx

x

a−cx
x

e− u2
2 du

where a = −�+θ
σ
√

t
, b = �+θ

σ
√

t
, and c = α

√
t

σ . Note that
h(x) � 0,∀x � 0. Moreover, h(0) = 0 and h(x) → 0 as
x → 0. To determine a value of x that maximizes h(x), we
examine the points where h′(x), the first derivative of h(x),
vanishes. A simple calculation shows that

h′(x) = e
− 1

2

(
b−cx

x

)2

· −cx − (b − cx)

x2

−e− 1
2 (

a−cx
x)

2 · −cx − (a − cx)

x2 .

The condition h′(x) = 0 translates to
(

2 ln
b

a

)
x2 + 2(b − a)cx + (a2 − b2) = 0.

Since
(
2 ln b

a

)
(a2 − b2) < 0, this equation has two real

solutions, one of which is positive. We denote this solution
by x∗. Noting that h(x) is clearly positive for some x ∈ R+,
we conclude that the maximum value of h(x) must be achieved
when x = x∗. This completes the proof. �
Example 5. Using Theorem 5, a simple calculation shows
that the probability of the cell being quantized correctly is
a function of three parameters: the number of programming
rounds t , the ratio between θ and �, and the ratio between
α and σ .

QIN et al.: OPTIMIZED CELL PROGRAMMING FOR FLASH MEMORIES 2789

Fig. 5 shows the probability of correct programming as a
function of the number of programming rounds t for different
σ ’s, where α = 1, θ = 1, and � = 0.2. Figs. 6 and 7
show the minimum number of programming rounds t , for
different θ/� and α/σ , such that the probability of correct
quantization is above 90% and 80%, respectively.

VI. SINGLE CELL NOISY PROGRAMMING

WITH FEEDBACK

In this section, we assume that after every round of pro-
gramming, we can evaluate the amount of charge that has
already been trapped in the cells.1 That is, we can measure the
value

∑k
j=1(αVj + ε j) after the k-th round of programming,

∀k ∈ [t]. Therefore, we can adaptively choose the applied volt-
ages according to the current cell level. Similarly, we assume
the injection hardness α of the cell is known and fixed, and the
programming noise values ε1, . . . , εt are independent random
variables with probability density functions p j (x),∀ j ∈ [t].

Our goal is to maximize the probability that after t rounds
of programming the final level is in [θ − �, θ + �], i.e.,

maximize P
(
θ − � �

t∑

j=1

(αVj + ε j) � θ + �
)
, (P6)

with V ∈ R
t+.

Definition 4. Let P(V t
1, θ,�, t) be the probability that the

final cell level after t rounds of programming is in [θ − �,
θ + �] when the voltages applied are V t

1, where
V j

i = (Vi , Vi+1, . . . , Vj). Let P(θ,�, t) be the maximum
probability over all choices of V t

1, i.e.,

P(θ,�, t) = max
V t

1∈R
t+

P(V t
1, θ,�, t),

where

P(V t
1, θ,�, t) = P

⎛

⎝θ − � �
t∑

j=1

(αVj + ε j) � θ + �

⎞

⎠.

Suppose the target level and quantization distance are
θ and �, respectively. Let P(θ,�, t) be as in Definition 4.
Then we have

P(θ,�, 1) = max
V1∈R+

∫ θ+�

θ−�
p1(x − αV1)dx .

Suppose V1 is the voltage applied on the first programming
round. Then

P(V t
1, θ,�, t) =

∫

R+
p1(x − αV1)P(θ − x,�, t − 1)dx .

Since feedback information is available, the recursion

P(θ,�, t) = max
V1∈R+

∫

R+
p1(x − αV1)P(θ − x,�, t − 1)dx

1Measuring the exact amount of charge injected is time-consuming for real
applications, thus it is common to compare the cell level to certain threshold
values and to obtain a range for the cell level. In this work, we follow the
assumption that the actual cell level is available, as in [7].

holds for t � 2. It follows that the problem of finding
P(θ,�, t) can be reduced to the problem of finding P(θ − x ,
�, t − 1).

We can compute P(θ,�, t) numerically using the recursion
once we know the distribution of the noise p j (x), j ∈ [t].
However, analytical results are difficult to derive since the
noise distribution p j (x), j ∈ [t] could be an arbitrary proba-
bility distribution. In the sequel, we assume a simple yet non-
trivial noise distribution, namely, ε j is uniformly distributed
over [αVj − δ1Vj , αVj + δ2Vj] for j ∈ [t], where 0 � δ1 � α
and δ2 � 0. Thus p j (x) = 1

(δ1+δ2)Vj
Ix∈[−δ1Vj ,δ2Vj]. This

assumption is similar to the one made in [7] except that we do
not constrain Vj to be integer-valued. The size of the support
set of the noise distribution is proportional to the programming
voltage, which is reasonable since larger voltages result in
larger deviations of the noise distribution.

Lemma 7. In Definition 4,

P(θ,�, 1) =
{

1, if θ−�
θ+� < α−δ1

α+δ2
α+δ2
δ1+δ2

2�
θ+� if θ−�

θ+� � α−δ1
α+δ2

and the optimal solution is achieved by V1 = θ+�
α+δ2

.

Proof: See Appendix C. �
Next we would like to find the values of V t

1 that maximize
P(V t

1, θ,�, t) with feedback information, for arbitrary t .

Lemma 8. P(θ,�, t) is a non-increasing function of θ .

Proof: See Appendix C. �
Theorem 6. P(V t

1, θ,�, t) is maximized when V1 = θ+�
α+δ2

.

Proof: The proof consists of two parts. First we prove

that for any V̂ t
1

def= (V̂1, . . . , V̂t) such that V̂1 < V1 =
θ+�
α+δ2

, maxV̂
t
2

P(V̂ t
1, θ,�, t) � maxV t

2
P(V t

1, θ,�, t). Next,

we prove that for any Ṽ
t
1

def= (Ṽ1, . . . , Ṽt) such that Ṽ1 >

V1 = θ+�
α+δ2

, maxṼ t
2

P(Ṽ
t
1, θ,�, t) � maxV t

2
P(V t

1, θ,�, t).

Case (1): Suppose V̂1 < V1 = θ+�
α+δ2

.
First we provide a sketch of the proof. If the first volt-

age applied is V1 (resp. V̂1), then the cell level after the
first programming round is uniformly distributed over
F = [(α − δ1)V1, (α + δ2)V1] (resp. F̂ = [(α − δ1)V̂1,
(α + δ2)V̂1]). We will divide F (resp. F̂) into non-overlapping
intervals and prove that in each interval applying V1 yields
higher probability of correct programming than applying V̂1.

Let � = (δ1+δ2)V̂1
(α−δ1)(V1−V̂1)

� and divide F (resp. F̂) evenly into �

non-overlapping intervals. That is, let Fi = [
(α − δ1)V1 +

(i − 1) (δ1+δ2)V1
� , (α − δ1)V1 + i (δ1+δ2)V1

�

]
(resp. F̂i =

[
(α − δ1)V̂1 + (i − 1) (δ1+δ2)V̂1

� , (α − δ1)V̂1 + i (δ1+δ2)V̂1
�

]
), for

i ∈ [�]. Note that if x ∈ Fi and x̂ ∈ F̂i , then x > x̂,∀i ∈ [�].
Then

max
V t

2

P(V t
1, θ,�, t) =

∫

F

p1(x − αV1)P(θ − x,�, t − 1)dx

=
∫

⋃�
i=1 Fi

1

(δ1 + δ2)V1
P(θ − x,�, t − 1)dx

=
�∑

i=1

∫

Fi

1

(δ1 + δ2)V1
P(θ − x,�, t − 1)dx

2790 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

and

max
V̂

t
2

P(V̂
t
1, θ,�, t) =

∫

F

p1(x − αV̂1)P(θ − x,�, t − 1)dx

=
∫

⋃�
i=1 F̂i

1

(δ1 + δ2)V̂1
P(θ − x,�, t − 1)dx

=
�∑

i=1

∫

F̂i

1

(δ1 + δ2)V̂1
P(θ − x,�, t − 1)dx .

According to Lemma 8, P(θ −x,�, t −1) is a non-decreasing
function of x ; therefore, for each element in the summation,
we have
∫

Fi

1

(δ1 + δ2)V1
P(θ − x,�, t − 1)dx

�
|Fi |P(θ − ((α − δ1)V1 + i (δ1+δ2)V1

�),�, t − 1)

(δ1 + δ2)V1

�
|̂Fi |P(θ − ((α − δ1)V̂1 + (i − 1) (δ1+δ2)V̂1

�),�, t − 1)

(δ1 + δ2)V̂1

�
∫

F̂i

1

(δ1 + δ2)V̂1
P(θ − x,�, t − 1)dx,

for all i ∈ [�]. This proves maxV̂
t
2

P(V̂
t
1, θ,�, t) �

maxV t
2

P(V t
1, θ,�, t).

Case (2): Suppose Ṽ1 > V1 = θ+�
α+δ2

.
If the first voltage applied is Ṽ1, then the voltage of the cell

after the first round of programming is uniformly distributed
over F̃ = [(α − δ1)Ṽ1, (α + δ2)Ṽ1]. Once the voltage is in
(θ + �, (α + δ2)Ṽ1], the probability that after t rounds of
programming the final cell level is within the interval [θ − �,
θ + �] is 0, since the cell level cannot be decreased in our
model of flash cell programming.

Now, since Ṽ1 > V1, we have

max
Ṽ

t
2

P(Ṽ
t
1, θ,�, t) =

∫

F̃

p1(x − αṼ1)P(θ − x,�, t − 1)dx

=
∫ θ+�

(α−δ1)Ṽ1

1

(δ1 + δ2)Ṽ1
P(θ − x,�, t − 1)dx

�
∫ θ+�

(α−δ1)Ṽ1

1

(δ1 + δ2)V1
P(θ − x,�, t − 1)dx

�
∫ θ+�

(α−δ1)V1

1

(δ1 + δ2)V1
P(θ − x,�, t − 1)dx

= max
V t

2

P(V t
1, θ,�, t).

Noting that

max
V t

1

P(V t
1, θ,�, t) = max

V1
max

V t
2

P(V t
1, θ,�, t),

we conclude that P(V t
1, θ,�, t) is maximized when V1 =

θ+�
α+δ2

. �
Next we give an algorithm for determining the optimal cell

programming for Problem (P6), where feedback information
is available.

Corollary 1. Algorithm 4 gives an optimal solution for the
cell programming problem (P6).

Algorithm 4 Noisy Programming With Feedback
The voltage Vj on the j -th round of programming, where
1 � j � t , is set as follows.

Let x j denote the feedback representing the cell level before
the j -th write, where, for j = 1, we set x1 = 0.

Set Vj = θ−x j +�
α+δ2

.

Proof: According to Theorem 6, if we need to reach the
level θ , then the voltage applied on the first round is θ+�

α+δ2
.

Thus, after the (j − 1)-st round, if we know that the current
cell level is x j , then the voltage applied on the j -th round is
θ−x j +�

α+δ2
, which completes the proof. �

VII. CONCLUSION

Accurate and efficient cell programming is critical to
the enhancement of flash memory functionality and storage
capacity. Programming techniques must take into account the
asymmetric nature of the write process, the manner in which
discrete data values are represented within the range of cell
levels, the presence or absence of noise, and the reduction in
write latency that parallel programming can provide.

In this paper, we make the realistic assumption that cell
levels are quantized to a discrete set of levels to represent
digital data. The programming of a cell is considered to be
successful if the programmed cell level is correctly quan-
tized to the desired target level. For several scenarios, we
present programming algorithms that, for a specified number
of programming rounds, achieve optimality with respect to this
figure of merit. Specifically, when cells have known hardness
to charge injection and the programming process is noiseless,
we derive an optimal parallel programming algorithm whose
complexity is polynomial in the number of cells. We also
modify the algorithm to take into account the presence of
inter-cell interference from adjacent cells.

We also consider techniques for programming a single
cell in the presence of noise. Assuming that no feedback
on the cell level is available during the write process, we
present a programming algorithm that, for a given number of
programming rounds, maximizes the probability of attaining
a cell level corresponding to the desired target level. We then
address the situation where feedback is available and present
an optimal strategy for adaptively choosing the programming
voltages.

APPENDIX A

Proof of Lemma 2: We prove the lemma by induction.
For t = 1, it is equivalent to prove that there exists an

optimal V1 such that V1 ∈ T . So, suppose V ∗
1 is an optimal

solution. If V ∗
1 ∈ T , then the lemma holds for t = 1; if not,

define δmin to be the smallest distance from V ∗
1 to an element

of T , i.e.,
δmin = min

p∈T
{|V ∗

1 − p|}.

If δmin is achieved by choosing an upper threshold point, set
V̂1 = V ∗

1 + δmin; otherwise, set V̂1 = V ∗
1 − δmin. That is,

V̂1 is the closest threshold point to V ∗
1 . By the definition of

QIN et al.: OPTIMIZED CELL PROGRAMMING FOR FLASH MEMORIES 2791

δmin, any cell that can be quantized correctly using V ∗
1 can

be quantized correctly using V̂1; thus, V̂1 is also an optimal
solution. Meanwhile, V̂1 ∈ T . This proves that there always
exists an optimal solution V1 ∈ T .

Suppose the lemma holds if the number of programming
rounds is t − 1. That is, for t � 2, assume there exists an
invertible matrix A ∈ {0, 1}(t−1)×(t−1), such that

AV = p,

where V ∈ R
t−1+ is an optimal solution for (P3) and

p ∈ T (t−1). We are going to prove by contradiction that the
lemma holds if the number of programming rounds is t .

Suppose the opposite is true. Then, for any p′ ∈ T t , there
does not exist an invertible matrix A ∈ {0, 1}t×t , such that

AV = p,

where V is an optimal solution for (P3). Let t ′ be the
largest number, 0 � t ′ < t , such that there exists a matrix
A′ ∈ {0, 1}t ′×t with full row rank, such that

A′V ∗ = p′,

where V ∗ is an optimal solution for (P3) and p′ ∈ T t ′ .
Let V ∈ R

t+ satisfy A′V = p′. Since rank(A′) = t ′ < t , the
solution space for V is a nonempty polytope P consisting of
the non-negative vectors in a t ′-dimensional subspace. That is,

P = {V ∈ R
t+|A′V = p′}.

(Note that if t ′ = 0, then P is the space of non-negative
t-dimensional vectors.)

Claim 1. There exists a V̂ in P such that V̂ is on the
boundary of P , i.e., ∃V̂ ∈ P and k ∈ [t], such that V̂k = 0.

Proof of Lemma 2: Since P is a nontrivial polytope, there
exists X ∈ R

t+ in P such that X �= V ∗. If there exists j ∈ [t]
such that X j < V ∗

j , let

zmin = arg min
1� j�t

X j

V ∗
j
.

If there exists more than one index j ∈ [t] that minimizes
X j
V ∗

j
,

then zmin is chosen arbitrarily from among these indices. Let

ymin = min
1� j�t

X j

V ∗
j

= Xzmin

V ∗
zmin

< 1,

and set

V̂ = X − yminV∗

(1 − ymin)
.

Since V̂ is a linear combination of X and V∗, we have
A′V̂ = p′. Then

V̂zmin = Xzmin − yminV ∗
zmin

(1 − ymin)
=

Xzmin − Xzmin
V ∗

zmin
V ∗

zmin

(1 − ymin)
= 0,

and

V̂ j = X j − yminV ∗
j

(1 − ymin)
� 0, ∀ j ∈ [t].

Therefore V̂ ∈ P and V̂zmin = 0.

If there does not exist j ∈ [t] such that X j < V ∗
j , then there

exists j ∈ [t] such that V ∗
j < X j since X �= V ∗. Following

similar reasoning, we can prove that there exists V̂ ∈ P such
that V̂k = 0, for some k ∈ [t]. �

Now, there are two different cases to consider for the V̂ of
Claim 1.

Case (1): V̂ is an optimal solution of (P3).

Claim 2. If V̂ is optimal, then all of the n cells can be
quantized correctly using t − 1 rounds of programming.

Proof: Suppose the opposite is true, and there exists ci with
quantization interval [vi , ui] that is not quantized correctly by
V̂ . Set Ṽ j = V̂ j for all j such that 1 � j �= k � t and set
Ṽk = vi . Then the number of cells that are quantized correctly
by Ṽ is larger than V̂ , contradicting the assumption that V̂ is
optimal. �

By the induction assumption, if the number of program-
ming rounds is t − 1, there exists an invertible matrix
A ∈ {0, 1}(t−1)×(t−1), such that

AV = p,

where V ∈ R
(t−1)
+ is an optimal solution and p ∈ T (t−1).

Note that in this case, according to Claim 2, all of the n
cells can be quantized correctly. We form another invertible
matrix Ã ∈ {0, 1}t×t by adding one column and one row
to A, where all added entries are 0 except that ãt,t = 1.
Let Ṽ = (V1, . . . , Vt−1, pt)

T ∈ R
t+ where pt ∈ T is any

threshold point. Let p̃ = (pT , pt)
T = (p1, . . . , pt−1, pt)

T be
a threshold-point vector. Then we have

ÃṼ =
[

A 0
0T 1

] [
V
pt

]

=
[

p
pt

]
∈ T t .

and Ṽ is optimal since all of the n cells are quantized correctly.
The existence of Ã, Ṽ and p̃ contradicts the assumption that
t ′ is the maximum row rank.

Case (2): V̂ is not an optimal solution of (P3).
Note that because V ∗ is optimal while V̂ is not optimal,

the following claims hold.

Claim 3. There exists b ∈ {0, 1}t such that bT V∗ ∈ [vi , ui]
and bT V̂ /∈ [vi , ui], for some i ∈ [n].

Proof: Since V ∗ is optimal while V̂ is not optimal, at
least one cell can be quantized correctly by V ∗ but not by V̂ .
Suppose the cell is ci . Then there exists b ∈ {0, 1}t such that
bT V ∗ ∈ [vi , ui] and bT V̂ /∈ [vi , ui]. �
Claim 4. Every b ∈ {0, 1}t satisfying the property in Claim 3
is linearly independent with respect to the set of row vectors
of A′.

Proof: Suppose the opposite is true. That is, bT = xA′,
for some x ∈ R

t ′ . Then

bT V ∗ = xA′V ∗ = x p′ = xA′V̂ = bT V̂ .

This contradicts the fact that bT V∗ �= bT V̂ . �

2792 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

Suppose the number of triplets (b, vi , ui) for b ∈ {0, 1}t

and i ∈ [n] in Claim 3 is K . We list all such triplets and
label them by (bk, wk, yk), k ∈ [K]. Note that one and only
one of wk and yk is between bT

k V ∗ and bT
k V̂ . Without loss

of generality, we assume that wk is between bT
k V ∗ and bT

k V̂ .
In particular, bT

k V̂ � wk � bT
k V ∗. Define

δmin = min
1�k�K

bT
k V ∗ − wk

bT
k V ∗ − bT

k V̂
∈ [0, 1]

and

kmin = arg min
1�k�K

bT
k V ∗ − wk

bT
k V ∗ − bT

k V̂
.

Consider the convex combination of V ∗ and V̂ given by

Ṽ = V ∗ − δmin(V ∗ − V̂) = (1 − δmin)V ∗ + δminV̂ .

Claim 5. Ṽ is an optimal solution of (P3).

Proof: Suppose ci can be programmed into its quantization
interval [vi , ui], i ∈ [n] by V ∗ but not by V̂ . According to
Claim 3, let b ∈ {0, 1}t be a vector such that bT V∗ ∈ [vi , ui],
but bT V̂ /∈ [vi , ui]. We will prove that vi � bT Ṽ � ui .

Without loss of generality, we assume bT V̂ < vi �
bT V ∗ � ui . Then

ui � bT V ∗ 1©
� bT Ṽ = bT (V ∗ − δmin(V∗ − V̂)

)

� bT V∗ − bT bT V ∗ − vi

bT V ∗ − bT V̂
(V∗ − V̂)

= bT V ∗ − bT (V ∗ − V̂)
bT V ∗ − vi

bT (V∗ − V̂)= vi ,

where 1© follows from the fact that

bT Ṽ = bT (V ∗ − δmin(V ∗ − V̂)
)

= bT V ∗ − δminbT (V∗ − V̂)

� bT V ∗.

If ci can be programmed into its quantization interval
[vi , ui], i ∈ [n] by V ∗ and V̂ , then it can be programmed
into [vi , ui] by Ṽ as well, since Ṽ is a convex combination
of V∗ and V̂ . Thus, each cell that can be quantized correctly
by V∗ can also be quantized correctly by Ṽ , implying that Ṽ
is optimal. �

Let

Ã =
[

A′
bT

kmin

]
.

Claim 6. Ã has row rank t ′ + 1 and ÃṼ ∈ T (t ′+1).

Proof: According to Claim 4, each bT is linearly
independent of the set of row vectors of A′, implying that
rank(Ã) = t ′ + 1.

Consider

ÃṼ =
[

A′
bT

kmin

]
Ṽ =

[
A′Ṽ

bT
kmin

Ṽ

]
def= p̃,

Since Ṽ is a convex combination of V ∗ and V̂ , it is in the
polytope P , thus A′Ṽ = p′ ∈ T t ′ .

Now,

bT
kmin

Ṽ = bT
kmin

(
V ∗ − δmin(V ∗ − V̂)

)

= bT
kmin

(

V∗ − bT
kmin

V ∗ − wkmin

bT
kmin

V ∗ − bT
kmin

V̂
(V∗ − V̂)

)

= bT
kmin

V ∗ − bT
kmin

(V ∗ − V̂)
bT

kmin
V ∗ − wkmin

bT
kmin

(V ∗ − V̂)

= wkmin ∈ T .

Therefore, p̃ ∈ T (t ′+1). �
For both Case (1) and Case (2), the existence of Ã, Ṽ and p̃

contradicts the assumption that t ′ is the maximum row rank
of a matrix A such that AV ∗ = p′. Therefore, there exists an
invertible matrix A ∈ {0, 1}t×t such that

AV = p,

where V ∈ R
t+ is an optimal solution for (P3) and p ∈ T t is

a threshold-point vector. �
Proof of Lemma 4: The proof is based on induction and

is very similar to the proof of Lemma 2. Therefore, we prove
the initial step of the induction and omit the remaining details.

For t = 1, we prove that there exist a threshold-point pi ∈ T
of the cell i and a real number

a ∈ {0, 1, βi−1,i , βi+1,i , 1 + βi−1,i , 1 + βi+1,i , βi−1,i

+βi+1,i , 1 + βi−1,i + βi+1,i }
=

⋃

b∈{0,1}3

{(βi−1,i , 1, βi+1,i) · b}

such that
aV = pi ,

where V � 0 is optimal.
Suppose V ∗ is optimal. If ∃a ∈ {0, 1, βi−1,i , βi+1,i ,

1 + βi−1,i , 1 + βi+1,i , βi−1,i + βi+1,i , 1 + βi−1,i + βi+1,i } and
pi ∈ T such that

aV ∗ = pi ,

then the statement holds for t = 1. Otherwise, let

δ = min
i∈[n],b∈{0,1}3

(
V ∗(βi−1,i , 1, βi+1,i) · b − pi

)+
,

where, for x ∈ R, x+ = x if x � 0 and x = +∞ if x < 0.
Suppose the minimum is achieved for i = imin ∈ [n] and
b = bmin. That is,

δ = (βimin−1,i , 1, βimin+1,i) · bminV ∗ − pimin .

Let
V̂ = pimin

pimin + δ
V ∗.

Then, by setting a = (βimin−1,i , 1, βimin+1,i) · bmin, we have

aV̂ = (βimin−1,i , 1, βimin+1,i) · bminV̂

= (βimin−1,i , 1, βimin+1,i) · bmin
pimin

pimin + δ
V ∗

= pimin .

In addition, the number of cells quantized correctly does not
decrease in going from V ∗ to V̂ since, by definition, V̂ � V ∗

QIN et al.: OPTIMIZED CELL PROGRAMMING FOR FLASH MEMORIES 2793

is chosen such that if a cell is quantized correctly by the
voltage V ∗, the cell can be also quantized correctly by V̂ .
This completes the proof of the case where t = 1. �

APPENDIX B

Proof of Lemma 6: We first prove the following claim
as it is used to establish the inequalities in the proof of
Lemma 6.

Claim 7. Let c1, c2 and δ1, δ2 > 0 be real numbers. Let

p1 = 1√
2π

∫ c1+δ1

c1−δ1

e−u2/2du and p2 = 1√
2π

∫ c2+δ2

c2−δ2

e−u2/2du.

Then the following three statements hold:

1) If c1 = c2 and δ1 > δ2, then p1 > p2.
2) If δ1 = δ2 and |c1| < |c2|, then p1 > p2.
3) If |c1| � |c2| and δ1 > δ2, then p1 > p2.

Proof:

1) If δ1 > δ2, then [c1−δ1, c1+δ1] ⊃ [c2−δ2, c2+δ2]; thus
p1 > p2 since the integrand is strictly positive on R.

2) Let δ1 = δ2 = δ. We prove the result for the case where
0 � c1 < c2 and [c1 − δ, c1 + δ]⋂[c2 − δ, c2 + δ] = ∅.
Other cases can be reduced to this case by subtracting
the integration over the intersection of the intervals.
In the case considered, ξ1 � ξ2,∀ξ1 ∈ [c1 − δ, c1 + δ],
ξ2 ∈ [c2 − δ, c2 + δ].
Note that f (u) = e−u2/2 is symmetric with respect to
u = 0 and f (u) is a continuous strictly decreasing
function for u � 0. Therefore, there exists ξi ∈ [ci − δ,
ci + δ] such that

pi =
∫ ci +δ

ci −δ
e−u2/2du = 2δe−ξ2

i /2, i = 1, 2.

It follows that p1 > p2 since ξ1 < ξ2.

3) Let p3 = ∫ c3+δ3
c3−δ3

e−u2/2du, where c3 = c1 and δ3 = δ2.
Then from 1) we have p1 � p3, and from 2) we have
p3 > p2. Therefore, p1 > p2.

�
Now we proceed to the proof of Lemma 6. Suppose

the opposite is true; that is, for some i and j in [t],
V ∗

i �= V ∗
j . Consider another vector V̂ = (V̂1, . . . , V̂t),

where V̂k = V
def=
√
∑t

j=1 V ∗
j

2

t ,∀k ∈ [t]. Then
√∑t

j=1 V̂ 2
j =

√∑t
j=1 V ∗

j
2. Furthermore, we have

t∑

j=1

V̂ j = tV = t

√∑t
j=1 V ∗

j
2

t
>

t∑

j=1

V ∗
j .

This is a special case of the Cauchy-Schwartz Inequality, and
the inequality is strict due to the assumption that V ∗

i �= V ∗
j for

some i, j ∈ [t]. Therefore, θ − α
∑t

j=1 V̂ j < θ − α
∑t

j=1 V ∗
j .

We want to show that V ∗ is not optimal, in particular,
g(V̂) > g(V∗). We consider two cases.

Case (1): Suppose θ − α
∑t

j=1 V̂ j = θ − αtV � 0.

Let

p1 = g(V ∗) = 1√
2π

∫ c(V ∗)+δ(V ∗)

c(V ∗)−δ(V ∗)
e− u2

2 du

and

p2 = g(V̂) = 1√
2π

∫ c(V̂)+δ(V̂)

c(V̂)−δ(V̂)
e− u2

2 du,

where c(V) and δ(V) are as defined in Lemma 5.

Recall that c(V̂) = θ−α
∑

V̂ j

σ
√∑

V̂ 2
j

and c(V∗) = θ−α
∑

V ∗
j

2

σ
√∑

V ∗
j

2
, and

let s =
√∑t

j=1 V̂ 2
j =

√∑t
j=1 V ∗

j
2. Then we have

0 � c(V̂) = θ − α
∑t

j=1 V̂ j

σ
√∑t

j=1 V̂ 2
j

= θ − α
∑t

j=1 V̂ j

sσ

<
θ − α

∑t
j=1 V ∗

j
2

sσ

= θ − α
∑t

j=1 V ∗
j

2

σ
√∑t

j=1 V ∗
j

2

= c(V ∗).

Recall that δ(V̂) = �

σ
√∑

V̂ 2
j

and δ(V ∗) = �

σ
√∑

V ∗
j

2
. Then

δ(V̂) = δ(V ∗). Set c1 = c(V̂), c2 = c(V∗), δ1 = δ(V̂),
and δ2 = δ(V ∗). According to 2) in Claim 7, we conclude
that p1 < p2. Therefore, g(V∗) < g(V̂), implying V ∗ is not
optimal.

Case (2): Suppose θ − α
∑t

j=1 V̂ j = θ − αtV < 0.

Consider another vector Ṽ = (Ṽ1, . . . , Ṽt) where Ṽ j = θ
αt ,

∀ j ∈ [t]. Then θ − α
∑t

j=1 Ṽ j = 0 and we have

√√
√
√

t∑

j=1

Ṽ 2
j =

√(
θ

αt

)2

t <

√

V
2
t =

√√
√
√

t∑

j=1

V̂ 2
j =

√√
√
√

t∑

j=1

V ∗
j

2.

It is easy to see that

|c(Ṽ)| =
∣
∣
∣
θ − α

∑t
j=1 Ṽ j

σ
√∑t

j=1 Ṽ 2
j

∣
∣
∣ = 0 � |c(V∗)|,

and

δ(Ṽ) = �

σ
√∑t

j=1 Ṽ 2
j

>
�

σ
√∑t

j=1 V ∗
j

2
= δ(V ∗).

Let p1 = g(Ṽ) and p2 = g(V∗). Set c1 = c(Ṽ), c2 =
c(V∗), δ1 = δ(Ṽ), and δ2 = δ(V ∗). According to 3) in
Claim 7, we conclude that p1 > p2. Therefore, g(Ṽ) >
g(V∗), implying that V ∗ is not optimal.

These contradictions of the optimality of V ∗ arose from the
assumption that V ∗

i �= V ∗
j for some i, j ∈ [t]. Therefore, we

conclude that V ∗
i = V ∗

j ,∀i, j ∈ [t]. �

2794 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

APPENDIX C

Proof of Lemma 7: Recall that when applying volt-
age Vj , the cell-level increment is uniformly distributed in
[(α − δ1)Vj , (α + δ2)Vj]. Consider the following two cases.

Case (1): Suppose θ−�
θ+� < α−δ1

α+δ2
. Setting V1 = θ+�

α+δ2
, we have

P(V1, θ,�, 1) =
∫ θ+�

θ−�
p1(x − αV1)dx

=
∫ θ+�

θ−�

1

(δ1 + δ2)V1
Ix−αV1∈[−δ1V1,δ2V1]dx

=
∫ θ+�

θ−�

1

(δ1 + δ2)V1
Ix∈[(α−δ1)V1,(α+δ2)V1]dx

=
∫ (α+δ2)V1

(α−δ1)V1

1

(δ1 + δ2)V1
dx

= 1.

Therefore,

1 � P(θ,�, 1) = max
V1

P(V1, θ,�, 1) � 1.

Case (2): Suppose θ−�
θ+� � α−δ1

α+δ2
. Then

P(V1, θ,�, 1) =
∫ θ+�

θ−�
p1(x − αV1)dx

=
∫ θ+�

θ−�

1

(δ1 + δ2)V1
Ix−αV1∈[−δ1 V1,δ2V1]dx

=
∫

R

1

(δ1 + δ2)V1
Ix∈[(α−δ1)V1,(α+δ2)V1]⋂[θ−�,θ+�]dx .

There are two possibilities to consider.
1) If V1 � θ+�

α+δ2
, then (α+δ2)V1 � θ +� and (α−δ1)V1 �

θ − �. Therefore

P(V1, θ,�, 1)

=
∫

R

Ix∈[(α−δ1)V1,(α+δ2)V1]⋂[θ−�,θ+�]
(δ1 + δ2)V1

dx

=
∫ (α+δ2)V1

θ−�

1

(δ1 + δ2)V1
dx

= α + δ2

δ1 + δ2
− θ − �

(δ1 + δ2)V1

� α + δ2

δ1 + δ2
− θ − �

(δ1 + δ2)
θ+�
α+δ2

=
(

α + δ2

δ1 + δ2

)(
2�

θ + �

)
,

where equality holds if V1 = θ+�
α+δ2

.
2) If V1 > θ+�

α+δ2
, then (α + δ2)V1 > θ + �. Therefore

P(V1, θ,�, 1)

=
∫

R

Ix∈[(α−δ1)V1,(α+δ2)V1]⋂[θ−�,θ+�]
(δ1 + δ2)V1

dx

�
∫ θ+�

θ−�

1

(δ1 + δ2)V1
dx

= 2�

(δ1 + δ2)V1

<
2�

(δ1 + δ2)
θ+�
α+δ2

= P

(
θ + �

α + δ2
, θ,�, 1

)

It can be seen that under both circumstances, P(V1, θ,�, 1)
is maximized when V1 = θ+�

α+δ2
. Consequently,

P(θ,�, 1) =
{

1, if θ−�
θ+� < α−δ1

α+δ2
,

α+δ2
δ1+δ2

2�
θ+� if θ−�

θ+� � α−δ1
α+δ2

.

�
Proof of Lemma 8: We first prove the following two claims

as they serve as the basis for the proof of Lemma 8.

Claim 8. For β �= 0, P(βθ, β�, t) = P(θ,�, t).

Proof: We proceed by induction. For t = 1, we have

P(βθ, β�, 1) =
{

1, if βθ−β�
βθ+β� < α−δ1

α+δ2
,

α+δ2
δ1+δ2

2β�
βθ+β� if βθ−β�

βθ+β� � α−δ1
α+δ2

,

=
{

1, if θ−�
θ+� < α−δ1

α+δ2
,

α+δ2
δ1+δ2

2�
θ+� if θ−�

θ+� � α−δ1
α+δ2

,

= P(θ,�, 1).

For notational convenience, let a
∧

b
def= min{a, b}. Now,

suppose that P(βθ, β�, t − 1) = P(θ,�, t − 1). Then

P(βθ, β�, t)

= max
V1

∫

R+
p1(x − αV1)P(βθ − x, β�, t − 1)dx

(1)= max
V1

∫

R+

Ix∈[(α−δ1)V1,((α+δ2)V1)
∧

βθ]
(δ1 + δ2)V1

·P(βθ − x, β�, t − 1)dx

(2)= max
V1

∫

R+

Iβy∈[(α−δ1)V1,((α+δ2)V1)
∧

βθ]
(δ1 + δ2)V1

·P(βθ − βy, β�, t − 1)dβy

(3)= max
V1

∫

R+

Iβy∈[(α−δ1)V1,((α+δ2)V1)
∧

βθ]
(δ1 + δ2)V1

·P(θ − y,�, t − 1)dβy

(4)= max
V1

∫

R+

I
y∈[(α−δ1)

V1
β ,
(
(α+δ2)

V1
β

)∧
θ]

(δ1 + δ2)
V1
β

P(θ − y,�, t − 1)dy

(5)= max
V ′

1

∫

R+

Iy∈[(α−δ1)V ′
1,((α+δ2)V ′

1)
∧

θ]
(δ1 + δ2)V ′

1
P(θ − y,�, t − 1)dy

(6)= max
V ′

1

∫

R+
p1(y − αV ′

1)P(θ − y,�, t − 1)dy

= P(θ,�, t).

Equation (1) follows from the definition of p1(x). Equation (2)
follows from the change of variables x = βy. Equation (3)
follows from the induction hypothesis that P(βθ, β�, t−1) =
P(θ,�, t − 1). Equation (4) follows from the linearity of the
indicator function and the min operator. That is Iβy∈[a,b] =
Iy∈[a/β,b/β], and 1

y min{a, b} = min{ a
y , b

y }. Equation (5)

follows from the change of variables V ′
1 = V1

β . Equation (6)
holds for the same reason as Equation (1). �

QIN et al.: OPTIMIZED CELL PROGRAMMING FOR FLASH MEMORIES 2795

Claim 9. For β > 1, P(βθ, β�, t) � P(βθ,�, t).

Proof: Since the interval [βθ − �,βθ + �] ⊆
[βθ − β�, βθ + β�] for β > 1, the event “the cell level
is in [βθ − �,βθ + �] after t rounds of programming” is
included in the event “the cell level is in [βθ − β�, βθ +
β�] after t rounds of programming.” Thus, P(βθ, β�, t) �
P(βθ,�, t). �
It follows from Claim 8 and Claim 9 that, for β > 1,

P(θ,�, t) = P(βθ, β�, t) � P(βθ,�, t),

which proves that P(θ,�, t) is non-increasing in θ . �

ACKNOWLEDGMENT

The authors would like to thank Lele Wang for her com-
ments on the statement and proof of Lemma 2.

REFERENCES

[1] A. Berman and Y. Birk, “Constrained flash memory program-
ming,” in Proc. IEEE Int. Symp. Inf. Theory, St. Petersburg, Russia,
Jul.-Aug. 2011, pp. 2128–2132.

[2] V. Bohossian, A. Jiang, and J. Bruck, “Buffer codes for asymmetric
multi-level memory,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2007,
pp. 1186–1190.

[3] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories, 1st ed.
Norwell, MA, USA: Kluwer, 1999.

[4] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and
predistortion to tolerate cell-to-cell interference in MLC NAND flash
memory,” IEEE Trans. Circuits Syst., vol. 57, no. 10, pp. 2718–2728,
Oct. 2010.

[5] D. Haugland, “A bidirectional greedy heuristic for the subspace selection
problem,” in Lecture Notes in Computer Science, vol. 4638. New York,
NY, USA: Springer-Verlag, Aug. 2007, pp. 162–176.

[6] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memories,” in Proc. IEEE Int. Symp.
Inf. Theory, Jun. 2007, pp. 1166–1170.

[7] A. Jiang and H. Li, “Optimized cell programming for flash mem-
ories,” in Proc. IEEE PACRIM, Victoria, BC, Canada, Aug. 2009,
pp. 914–919.

[8] A. Jiang, H. Li, and J. Bruck, “On the capacity and programming of
flash memories,” IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1549–1564,
Mar. 2011.

[9] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673,
Jun. 2009.

[10] J. Lafferty and A. Vardy, “Ordered binary decision diagrams and
minimal trellises,” IEEE Trans. Comput., vol. 48, no. 9, pp. 971–986,
Sep. 1999.

[11] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron Device
Lett., vol. 23, no. 5, pp. 264–266, May 2002.

[12] Q. Li, “WOM codes against inter-cell interference in NAND memo-
ries,” in Proc. 49th Annu. Allerton Conf. Commun., Control Comput.,
Monticello, IL, USA, Sep. 2011, pp. 1416–1423.

[13] H. T. Lue, T. H. Hsu, S. Y. Wang, E. K. Lai, K. Y. Hsieh, R. Liu, and
C. Y. Lu, “Study of incremental step pulse programming (ISPP) and
STI edge effect of BE-SONOS NAND flash,” in Proc. IEEE Int. Symp.
Rel. Phys., vol. 30, May 2008, no. 11, pp. 693–694.

[14] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
J. Comput., vol. 30, no. 2, pp. 227–234, Apr. 1995.

[15] R. Rivest and A. Shamir, “How to reuse a write-once memory,”
Inf. Control, vol. 55, nos. 1–3, pp. 1–19, Dec. 1982.

[16] K.-D. Suh, B.-H. Suh, Y.-H. Lim, Y.-J. C. J.-K. Kim, Y.-N. Koh,
S.-S. Lee, S.-C. Kwon, B.-S. Choi, J.-S. Yum, J.-H. Choi, J.-R. Kim,
and H.-K. Lim, “A 3.3 V 32 Mb NAND flash memory with incremental
step pulse programming scheme,” IEEE J. Solid-State Circuits, vol. 30,
no. 11, pp. 1149–1156, Nov. 1995.

[17] E. Yaakobi, A. Jiang, P. H. Siegel, A. Vardy, and J. K. Wolf, “On the
parallel programming of flash memory cells,” in Proc. IEEE ITW,
Dublin, Ireland, Sep. 2010, pp. 1–5.

Minghai Qin (S’11) received the B.E. degree in electronic and electrical
engineering from Tsinghua University, Beijing, China, in 2009. He is currently
pursuing the Ph.D. degree in electrical engineering from the Department of
Electrical and Computer Engineering at the University of California, San
Diego, where he is with the Center for Magnetic Recording Research.

Eitan Yaakobi (S’07–M’12) received the B.A. degrees in computer science
and mathematics, and the M.Sc. degree in computer science from the
Technion-Israel Institute of Technology, Haifa, Israel, in 2005 and 2007,
respectively, and the Ph.D. degree in electrical engineering from the University
of California, San Diego, in 2011.

He is a Postdoctoral Researcher in Electrical Engineering at the California
Institute of Technology, Pasadena. His current research interests include
coding theory, algebraic error-correction coding, and their applications for
digital data storage and in particular for non-volatile memories.

Dr. Yaakobi received the Marconi Society Young Scholar in 2009 and the
Intel Ph.D. Fellowship in 2010-2011.

Paul H. Siegel (M’82–SM’90–F’97) received the S.B. and Ph.D. degrees in
mathematics from the Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1975 and 1979, respectively.

He held a Chaim Weizmann Postdoctoral Fellowship at the Courant
Institute, New York University. He was with the IBM Research Division in
San Jose, CA, from 1980 to 1995. He joined the faculty at the University
of California, San Diego in July 1995, where he is currently Professor of
Electrical and Computer Engineering in the Jacobs School of Engineering.
He is affiliated with the Center for Magnetic Recording Research where he
holds an endowed chair and served as Director from 2000 to 2011. His current
research interests include information theory and communications, particularly
coding and modulation techniques, with applications to digital data storage
and transmission.

Prof. Siegel was a member of the Board of Governors of the IEEE
Information Theory Society from 1991 to 1996 and from 2009 to 2011.
He was re-elected for another 3-year term in 2012. He served as Co-Guest
Editor of the May 1991 Special Issue on Coding for Storage Devices of
the IEEE TRANSACTIONS ON INFORMATION THEORY. He served the same
Transactions as Associate Editor for Coding Techniques from 1992 to 1995,
and as Editor-in-Chief from July 2001 to July 2004. He was also Co-Guest
Editor of the May/September 2001 two-part issue on The Turbo Principle:
From Theory to Practice of the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS.
Prof. Siegel was co-recipient, with R. Karabed, of the 1992 IEEE Informa-

tion Theory Society Paper Award and shared the 1993 IEEE Communications
Society Leonard G. Abraham Prize Paper Award with B.H. Marcus and J.K.
Wolf. With J.B. Soriaga and H.D. Pfister, he received the 2007 Best Paper
Award in Signal Processing and Coding for Data Storage from the Data
Storage Technical Committee of the IEEE Communications Society. He holds
several patents in the area of coding and detection, and was named a Master
Inventor at IBM Research in 1994. He is a member of the National Academy
of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

