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Abstract—Multi-level flash memory cells represent data by the
amount of charge stored in them. Certain voltages are applied
to the flash memory cells to inject charges when programming
and the cell level can be only increased during the program-
ming process as a result of the high cost of block erasures. To
achieve a high speed during writing, parallel programming is
used, whereby a common voltage is applied to a group of cells to
inject charges simultaneously. The voltage sharing simplifies the
circuitry and increases the programming speed, but it also affects
the precision of charge injection and limits the storage capacity
of flash memory cells. Another factor that limits the precision
of cell programming is the thermal electronics noise induced in
charge injection.

In this paper, we focus on noiseless parallel programming of
multiple cells and noisy programming of a single cell. We propose
a new criterion to evaluate the performance of the cell program-
ming which is more suitable for flash memories in practice and
then we optimize the parallel programming strategy accordingly.
We then proceed to noisy programming and consider the two
scenarios where feedback on cell levels is either available during
programming or not. We study the optimization problem un-
der both circumstances and present algorithms to achieve the
optimal performance.

I. INTRODUCTION

Flash memories are a widely-used technology for non-

volatile data storage. The basic memory units in flash

memories are floating-gate cells, which use charge (i.e., elec-

trons) stored in them to represent data, and the amount of

charge stored in a cell determines its level. The hot-electron

injection mechanism or Fowler-Nordheim tunneling mech-

anism [2] is used to increase and decrease a cell level by

injecting charge into it or by removing charge from it, re-

spectively. The cells in flash memories are organized as

blocks, each of which contains about 106 cells. One of the

most prominent features of programming flash memory cells

is its asymmetry; that is, increasing a cell level, i.e., inject-

ing charge into a cell, is easy to accomplish by applying a

certain voltage to the cell, while decreasing a cell level, i.e.,

removing charge from a cell, is expensive in the sense that

the block containing the cell must first be erased, i.e., all

charge in the cells within the block is totally removed, before

reprogramming to their target levels. The erase operation,

called a block erasure, is not only time consuming, but also

degrades the performance and reduces the longevity of flash

memories [2].

In order to minimize the number of block erasures, pro-

gramming flash memories is accomplished very carefully us-

ing multiple rounds of charge injection to avoid “overshoot-

ing” the desired cell level. Therefore, a flash memory can be

modeled as a Write Asymmetric Memory (WAM), for which

capacity analysis and coding strategies are discussed in [1],

[5], [11].

Parallel programming is a crucial tool to increase the write

speed when programming flash memory cells. Two important

properties of parallel programming are the use of shared pro-

gram voltages and the need to account for variation in charge

injection [12]. Instead of applying distinct program voltages to

different cells, parallel programming applies a common pro-

gram voltage to many cells simultaneously. Consequently, the

complexity of hardware realization is substantially reduced and

the write speed is therefore increased. Parallel programming

must also account for the fact that cells have different hardness

with respect to charge injection [3], [9]. When applying the

same program voltage to cells, the amount of charge trapped in

different cells may vary. Those cells that have a large amount

of trapped charge are called easy-to-program cells and those

with little trapped charge are called hard-to-program cells. Un-

derstanding this intrinsic property of cells will allow the pro-

gramming of cells according to their hardness of charge injec-

tion. One widely-used programming method is the Incremental
Step Pulse Programming (ISPP) scheme [3], [9], which allows

easy-to-program cells to be programmed with a lower program

voltage and hard-to-program cells to be programmed with a

higher program voltage.

In [6], [7], the optimized programming for a single flash

memory cell was studied. A programming strategy to optimize

the expected precision with respect to two cost functions was

proposed, where one of the cost functions is the �p metric and

the other is related to rank modulation [8]. It was assumed that

the programming noise follows a uniform distribution and the

level increment is chosen adaptively according to the current

cell level to minimize the cost function.

In [12], algorithms for parallel programming were studied.

The underlying model incorporated shared program voltages

and variations in cell hardness, as well as a cost function based

upon the �p metric. The programming problem was formu-

lated as a special case of the Subspace/Subset Selection Prob-

lem (SSP) [4] and the Sparse Approximate Solution Problem

(SAS) [10], both of which are NP-hard. Then an algorithm

with polynomial time complexity was proposed to search for

the optimal programming voltages.

We note that flash memories use multiple discrete levels

to represent data in real applications [2]. Hence, if the actual

cell level is within a certain distance from the target level, it

will be quantized to the correct target level even though there

is a gap between them. Read errors can be mitigated by use

of error correction codes. If the error correction capability is
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e, then any read error will be totally eliminated as long as

the number of read errors is less than e. This motivates us to

consider another cost function, which is the number of cells

that are not quantized correctly to their target levels.

Assume that Θ = (θ1, . . . , θn) is the vector of target cell

levels and �t = (�1,t, . . . , �n,t) is a vector of random vari-

ables which represent the level of every cell after t program-

ming rounds. Note that in general the value of �i,t, for 1 �
i � n, depends on the applied voltages, the hardness of the

cell, and the programming noise. We will evaluate the per-

formance of any programming method by some cost func-

tion C(Θ, �t) between the target cell levels Θ and the actual

cell levels �t. Then, the programming problem is to find an

algorithm which minimizes the expected value of C(Θ, �t).
In [12], the �p metric was considered as the cost function

Cp(Θ, �t) =
(∑n

i=1

∣∣θi − �i,t
∣∣p) 1

p . Motivated by the nature of

quantization of the cell levels, we study in this paper the cost

function

CΔ(Θ, �t) =
∣∣ {i ∈ [n] :

∣∣θi − �i,t
∣∣ > Δi

} ∣∣,
where Δi is the quantization distance for the i-th cell. We

solve this problem for the special case where the hardness of

each cell is known and there is no programming noise. We

also study the problem in the presence of noise for a single

cell with and without feedback.

The rest of the paper is organized as follows. In Section II,

we propose a new cost function and define the parallel pro-

gramming problem when flash memories quantize the amount

of charge to discrete levels. In Section III, we present a

polynomial-time algorithm to optimize the noiseless parallel

programming with deterministic parameters defined in Sec-

tion II. In Section IV, single cell programming with noise is

studied where there is no feedback information on the cell

level. In Section V, noisy cell programming is studied where

we can adaptively apply voltages according to the feedback

of the current cell level. Due to the lack of space, some

proofs will be omitted.

II. PRELIMINARIES

Let c1, c2, . . . , cn be n flash memory cells, with erased level

denoted by 0. Their levels can be increased by injecting elec-

trons, but cannot be decreased. We denote by [n] the set of pos-

itive integers less than or equal to n, i.e., [n] = {1, 2, . . . , n}.
When applying a voltage V to a memory cell ci, where i ∈ [n],
we assume that the increase of the level of cell ci is linear with

V , that is, the level of ci will increase by

αiV + ε,

where αi and ε are random variables. We call the αi’s, where

αi > 0, i ∈ [n], the hardness of charge injection for cell ci,
and ε is the programming noise. (Note that the distribution of

ε may vary among different cells and different writes.)

We denote by θi � 0, i ∈ [n], the target level of ci. The

programming process consists of t rounds of charge injection

achieved by applying a specified voltage to all of the cells.

The goal is to program the cell levels to be as close as pos-

sible to the target levels. We define the parallel programming

problem in detail as follows.

Let Θ = (θ1, . . . , θn) be the target cell levels and α =
(α1, . . . , αn) be the hardness of charge injection. Let V =
(V1, V2, . . . , Vt)

T be the voltages applied on the t rounds of

programming. Let bi,j ∈ {0, 1} for i ∈ [n] and j ∈ [t] indicate

whether ci is programmed on the j-th round; i.e., bi,j = 1 if

voltage Vj is applied to cell ci, and bi,j = 0, otherwise. Let

�i,t for i ∈ [n] be a random variable, representing the level of

ci after t rounds of programming. Then

�i,t =
t∑

j=1

(αiVj + εi,j) bi,j ,

where εi,j , for i ∈ [n] and j ∈ [t], is the programming noise

of the i-th cell on the j-th programming round. We define

�t = (�1,t, . . . , �n,t) to be the cell-state vector after t rounds

of programming and we define the matrix

B =

⎡⎢⎢⎢⎣
b1,1 b2,1 · · · bn,1
b1,2 b2,2 · · · bn,2

...
...

. . .
...

b1,t b2,t · · · bn,t

⎤⎥⎥⎥⎦ ∈ {0, 1}t×n

to be the indicator matrix of the programmed cell on each

round of programming.

We evaluate the performance of the programming by some

cost function C(Θ, �t). The programming problem is to min-

imize the expected value of C(Θ, �t) over V and B. That is,

given the information of Θ, α and {εi,j}n×t, we seek to solve

minimize E [C(Θ, �t)] , (P1)

with V ∈ R
t
+ and B ∈ {0, 1}t×n, where E [X] is the expected

value of the random variable X .

Remark 1. We use R+ to denote the set of all non-negative

real numbers, i.e., R+ = {x ∈ R : x � 0}.
In [12], the �p metric is considered as the cost function, i.e.

Cp(Θ, �t) =

(
n∑

i=1

∣∣θi − �i,t
∣∣p) 1

p

,

and the optimal solution for (P1) was derived for known α
in the absence of noise. However, in real applications, flash

memories use multiple discrete levels to represent data and if

the cell level �i,t is within a certain distance from the target

level θi, it will be quantized to the correct target level even

though there is a gap between �i,t and θi. This motivates us to

consider the number of cells that are not correctly quantized

to their target levels as the cost function. To be more precise,

letting Δ = (Δ1, . . . ,Δn), we define

CΔ(Θ, �t) =
∣∣ {i ∈ [n] :

∣∣θi − �i,t
∣∣ > Δi

} ∣∣
to be the cost function, where Δi is the quantization distance
for ci. Therefore, the cell programming problem is to solve

minimize E
[∣∣ {i ∈ [n] :

∣∣θi − �i,t
∣∣ > Δi

} ∣∣] , (P2)

with V ∈ R
t
+ and B ∈ {0, 1}t×n.

III. NOISELESS PARALLEL PROGRAMMING

In this section, we assume that the cell hardness parame-

ters (α1, . . . , αn) are known and deterministic, and there is no

programming noise, i.e., εi,j = 0, ∀i ∈ [n], j ∈ [t]. In this sce-

nario, �i,t is deterministic so that we can omit the expectation

in (P2) and �i,t = αi

∑t
j=1 Vjbi,j . Let n, t,Δ1, . . . ,Δn and
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θ1, . . . , θn denote the block length, number of programming

rounds, quantization distances and target levels, respectively.

Our goal is to find an optimal solution to (P2).

Lemma 1. The solution to Problem (P2) is equivalent to the so-

lution of the following:

maximize f(V ,B), (P3)

with V = (V1, . . . , Vt)
T ∈ R

t
+, bi = (bi,1, . . . , bi,t)

T ∈
{0, 1}t and B = (b1, . . . , bn), where ui =

θi−Δi

αi
, vi =

θi+Δi

αi
,

i ∈ [n] and f(V ,B) =
∣∣∣ {i ∈ [n] : ui � bTi · V � vi

} ∣∣∣.
Proof: The following chain of equations is easily estab-

lished.
min
V ,B

∣∣ {i ∈ [n] :
∣∣θi − �i,t

∣∣ > Δi

} ∣∣
=n−max

V ,B

∣∣ {i ∈ [n] :
∣∣θi − �i,t

∣∣ � Δi

} ∣∣
=n−max

V ,B

∣∣∣ {i ∈ [n] :
∣∣ θi
αi
− �i,t

αi

∣∣ � Δi

αi

} ∣∣∣
=n−max

V ,B

∣∣∣ {i ∈ [n] :
∣∣ θi
αi
− bTi · V

∣∣ � Δi

αi

} ∣∣∣
=n−max

V ,B

∣∣∣ {i ∈ [n] :
θi
αi
− Δi

αi
� bTi · V � θi

αi
+

Δi

αi

} ∣∣∣
=n−max

V ,B

∣∣∣ {i ∈ [n] : ui � bTi · V � vi

} ∣∣∣,
where V ∈ R

t
+,B ∈ {0, 1}t×n, ui =

θi−Δi

αi
and vi =

θi+Δi

αi
.

This establishes the chain.

Since ui and vi, i ∈ [n] are the boundaries of the correct

quantization interval for ci, we call them the upper threshold
point and the lower threshold point for ci and we call the in-

terval [ui, vi] the quantization interval for ci. Any pair (V ,B)
that achieves the maximum for (P3) is called an optimal so-
lution pair, and V is called optimal or an optimal solution if

there exists B such that (V ,B) is an optimal solution pair.

Definition 1. Suppose ui and vi, i ∈ [n], are defined as in

Lemma 1. Let Tu be the set of upper threshold points and Tv
be the set of lower threshold points, i.e., Tu =

⋃
i∈[n]{ui} and

Tv =
⋃

i∈[n]{vi}. Let T = Tu ∪ Tv be the set of all upper and

lower threshold points.

Remark 2. We assume that |T | > t since otherwise we can

easily achieve CΔ(Θ, �t) = 0 by setting {V1, . . . , Vt} = T .

Definition 2. Suppose V = (V1, . . . , Vt)
T ∈ R

t
+. We define

SV to be
SV =

⋃
b∈{0,1}t

{bT · V }.

and call it the attainable set of V . That is, SV is the set of

voltage values that can be injected by applying V .

Remark 3. For each i ∈ [n], if there exists z ∈ SV such that

ui � z � vi, then there exists b ∈ {0, 1}t such that ui �
bT ·V � vi, and thus ci can be quantized to the correct target

level.

For a fixed V , optimizing the cost function over B is easy

to accomplish by checking whether there exists z ∈ SV such

that ui � z � vi for each i. Intuitively, we can enumerate ev-

ery possible V and calculate the cost function to search for

an optimal solution. However, since V can be any point in

R
t
+, there is an uncountably infinite number of choices of V

to consider. Lemma 2 states that we can limit the number un-

der consideration to be polynomial in n, and guarantee that

an optimal solution can be found. Although this lemma plays

the most important role in deriving the algorithm, the proof is

too long to present due to space limitations.

Lemma 2. There exists an invertible matrix A ∈ {0, 1}t×t,

such that
A · V = p,

where V is an optimal solution for (P3) and p ∈ T t.

Remark 4. In Lemma 2 and Algorithm 1 below, the matrix

A has to be invertible over R instead of GF (2). Therefore,

enumerating only the invertible matrices over GF (2) is not

sufficient to find an optimal solution.

Next we give an algorithm to search for an optimal solu-

tion to (P3), which, as we have shown, is also an optimal

solution to (P2). Let {p1, . . . , pM} be an arbitrary ordering

of the points in T , where M = |T | is the number of differ-

ent threshold point values and pi can be the value of either

an upper or a lower threshold point, for i ∈ [M ]. Since p
is of length t, there are N = M t choices of p (the entries

can be repeated). Let {p1, . . . ,pN} be an arbitrary ordering

of the choices. A matrix Ã ∈ {0, 1}t×t is formed such that

no two rows are the same. Thus, the number of different Ã’s

is Q =
∏t−1

k=0(2
t − k). Let {Ã1, . . . , ÃQ} be an arbitrary or-

dering of all possible Ã’s. Algorithm 1 will iterate over all

choices of p and those Ã’s that are invertible.

Algorithm 1 PARALLEL PROGRAMMING

Let f∗ = 0;

Let V = V ∗ = (0, . . . , 0), V ,V ∗ both have length t;
Let B = (b1, . . . , bn) ∈ {0, 1}t×n, bi = 0, ∀i ∈ [n];
Let B∗ ∈ {0, 1}t×n, b∗i,j = 0, ∀i ∈ [t], j ∈ [n];
For i = 1, 2, . . . , N {

For j = 1, 2, . . . , Q {
If Ãj is invertible and Ã−1

j · pi ∈ R
t
+{

Let V = Ã−1
j · pi;

Let f = 0;

For k = 1, 2, . . . , n {
If ∃z ∈ SV , such that uk � z � vk {

Find b ∈ {0, 1}t, such that bT · V = z;

Let bk = b;

f = f + 1;

}}
If f > f∗ {

f∗ = f , V ∗ = V , B∗ = B; }
}}}
Output the optimal solution pair (V ∗,B∗) with maximized

f(V ∗,B∗) = f∗.

Remark 5. Since any matrix with two identical rows is not

invertible, we only enumerated Ã matrices with distinct rows

and then checked their invertibility. Therefore, the number

of A ∈ {0, 1}t×t that we considered is
∏t−1

k=0(2
t − k). Fur-

thermore, note that the complexity of the algorithm could be

slightly reduced if we enumerated only the set of invertible

matrices A over R.
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Theorem 1. Algorithm 1 finds the optimal solution pair

(V ∗,B∗) and computes the optimal value f(V ∗,B∗) for (P3).

The time complexity of the algorithm is O(nt+1).

Proof: According to Lemma 2, there exists an optimal

solution (V ,B), an invertible matrix A ∈ {0, 1}t×t, and a

threshold-point vector p ∈ T t, such that

A · V = p.

In Algorithm 1, all possible A’s and p’s, have been exhaus-

tively iterated and there is at least one optimal V among all

the V ’s derived from A’s and p’s. The algorithm outputs the

best V among them. This proves that this algorithm will find

an optimal solution to (P3).

The number of iterations of the algorithm is of order

NQt3n2t, where N = M t � (2n)t and Q =
∏t−1

k=0(2
t − k).

Therefore, the complexity is O(nt+1).

IV. SINGLE CELL NOISY PROGRAMMING WITHOUT

FEEDBACK

In this section, programming noise is assumed to ex-

ist. There is a single cell with injection hardness α, and

the number of programming rounds is t. The programming

noises ε1, . . . , εt are assumed to be independently distributed

Gaussian random variables with zero mean and variance

σ2
εj , j ∈ [t], respectively.

Remark 6. Note that according to this model, after every

programming round the level of each cell can decrease even

though in real applications, the cell level of flash memories

can only increase. We choose to study this model while as-

suming that the variance σεj , j ∈ [t] is much smaller than

αVj , i.e., P (αVj + εj < 0) is very small, such that the prob-

ability of decreasing the cell levels is negligible. This model

is a reasonable approximation to a physical cell and it can be

studied analytically, as will be seen in this section.

Another reasonable assumption we make is σεj = σVj ,j ∈
[t], where σ is a fixed number; that is, the standard deviation

of the programming noise is proportional to the programming

voltage. This makes sense since large voltage applied to the

cell results in large power of the programming noise. During

programming, no feedback information is available, meaning

that the actual amount of charge trapped in the cell after each

round of programming is not known. The goal is to maximize

the probability that after t rounds of programming the final

level is in [θ −Δ, θ +Δ], i.e.,

maximize P
(
θ −Δ �

t∑
j=1

(αVj + εj) � θ +Δ
)
, (P4)

with V ∈ R
t
+.

In the rest of the section, (P4) is recast as an optimiza-

tion problem and the vector of voltages V is written as x in

accordance with convention.

Lemma 3. Assume that σεj = σVj , j ∈ [t], where σ is a fixed

number and feedback information is not available, the cell pro-

gramming problem (P4) is equivalent to

maximize g(x), (P5)

with x ∈ R
t
+, where

g(x) =
1√
2π

∫ c(x)+δ(x)

c(x)−δ(x)

e−u2/2du,

c(x) =
θ−α

∑t
j=1 xj

σ
√∑t

j=1 x2
j

, and δ(x) = Δ

σ
√∑t

j=1 x2
j

.

Let p(y) = 1√
2π

e−y2/2 be the N (0, 1) Gaussian probabil-

ity density function. Then g(x) can be interpreted as the area

between the curves p(y) and y = 0 on the interval determined

by x, where the interval is centered at
θ−α

∑t
j=1 xj

σ
√∑t

j=1 x2
j

, with ra-

dius Δ

σ2
√∑t

j=1 x2
j

. For simplicity,
∑t

j=1(·) is written as
∑

(·)
when the context makes the meaning clear.

The following lemma will be used to determine the optimal

solution to (P5) in Theorem 2.

Lemma 4. If x∗ is the optimal solution to (P5), then ∀i, j ∈
[t], x∗i = x, for some constant x ∈ R+.

Theorem 2. The optimal solution x to (P5) satisfies the follow-

ing: xj = x, ∀j ∈ [t] where x is the positive root of the equation(
2 ln

b

a

)
x2 + 2(b− a)cx+ (a2 − b2) = 0,

where a = −Δ+θ
σ
√
t
, b = Δ+θ

σ
√
t
, c = α

√
t

σ .

Proof: According to Lemma 3,

g(x) =
1√
2π

∫ c(x)+δ(x)

c(x)−δ(x)

e−u2/2du

=
1√
2π

∫ Δ+θ−α
∑

xj

σ
√∑

x2
j

−Δ+θ−α
∑

xj

σ
√∑

x2
j

e−u2/2du

� 1√
2π

∫ Δ+θ−αtx

σ
√

tx2

−Δ+θ−αtx

σ
√

tx2

e−u2/2du

=
1√
2π

∫ b−cx
x

a−cx
x

e−
u2

2 du

:=
1√
2π

h(x),

where a = −Δ+θ
σ
√
t
, b = Δ+θ

σ
√
t
, c = α

√
t

σ . The inequality follows

from Lemma 4 and it is satisfied with equality if xj = x, ∀j ∈
[t]. Differentiating h(x) with respect to x, we have

dh

dx
= e−

1
2 (

b−cx
x )

2

· −cx− (b− cx)

x2

− e−
1
2 (

a−cx
x )

2

· −cx− (a− cx)

x2
= 0,

⇔
(
2 ln

b

a

)
x2 + 2(b− a)cx+ (a2 − b2) = 0.

It can be seen that there is only one extremal point for f(x)
when x � 0 and that f(x) � 0, ∀x � 0. Meanwhile, f(x)
approaches 0 as x approaches +∞. It follows that the extreme

point can only be where f(x) achieves its maximum, which

completes the proof.

V. SINGLE CELL NOISY PROGRAMMING WITH FEEDBACK

In this section, we assume that after every round of pro-

gramming, we can evaluate the amount of charge that has

already been trapped in the cells. That is, we can measure
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∑k
j=1(αVj + εj) after the k-th round of programming1, ∀k ∈

[t]. Therefore, we can adaptively choose the applied voltages

according to the current cell level. Similarly, we assume the

injection hardness α of the cell is known and fixed, and the

programming noise values ε1, . . . , εt are independent random

variables with probability density functions pj(x), ∀j ∈ [t].
Our goal is to maximize the probability that after t rounds

of programming the final level is in [θ −Δ, θ +Δ], i.e.,

maximize P
(
θ −Δ �

t∑
j=1

(αVj + εj) � θ +Δ
)
, (P6)

with V ∈ R
t
+.

Definition 3. Let P (V t
1, θ,Δ, t) be the probability that

the final cell level after t rounds of programming is in

[θ − Δ, θ + Δ] when the voltages applied are V t
1, where

V j
i = (Vi, Vi+1, . . . , Vj). Let P (θ,Δ, t) be the maximum

probability over all choices of V t
1, i.e.,

P (θ,Δ, t) = max
V t

1∈Rt
+

P (V t
1, θ,Δ, t),

where

P (V t
1, θ,Δ, t) = P

⎛⎝θ −Δ �
t∑

j=1

(αVj + εj) � θ +Δ

⎞⎠ .

Suppose the target level and quantization distance are θ and

Δ, respectively. Let P (θ,Δ, t) be as in Definition 3. Then the

following recursion holds:

P (θ,Δ, t) = max
V1∈R+

∫
R+

p1(x− αV1)P (θ − x,Δ, t− 1)dx,

for t � 2 and

P (θ,Δ, 1) = max
V1∈R+

∫ θ+Δ

θ−Δ

p1(x− αV1)dx.

We can compute P (θ,Δ, t) numerically using the recursion

once we know the distribution of the noise pj(x), j ∈ [t]. How-

ever, analytical results are difficult to derive since the noise

distribution pj(x), j ∈ [t] could be an arbitrary probability

distribution. In the sequel, we assume a simple yet nontriv-

ial noise distribution, namely, εj is uniformly distributed over

[αVj − δ1Vj , αVj + δ2Vj ] for j ∈ [t], where 0 � δ1 � α and

δ2 � 0. Thus pj(x) =
1

(δ1+δ2)Vj
Ix∈[−δ1Vj ,δ2Vj ]. This assump-

tion is very similar to the one made in [6]. The size of the

support set of the noise distribution is proportional to the pro-

gramming voltage, which is reasonable since larger voltages

result in larger deviations of the noise distribution.

Theorem 3. In Definition 3,

P (θ,Δ, 1) =

{
1, if θ−Δ

θ+Δ < α−δ1
α+δ2

,
α+δ2
δ1+δ2

2Δ
θ+Δ if θ−Δ

θ+Δ � α−δ1
α+δ2

,

and the optimal solution is achieved by V1 = θ+Δ
α+δ2

.

Next we would like to find the values of V t
1 that maximize

P (V t
1, θ,Δ, t) with feedback information, for arbitrary t.

Lemma 5. P (θ,Δ, t) is a non-increasing function of θ.

Lemma 6. P (V t
1, θ,Δ, t) is maximized when V1 = θ+Δ

α+δ2
.

1Measuring the exact amount of charge injected is time consuming for real
applications, thus it is common to compare the cell level to certain threshold
values and to obtain a range for the cell level. In this work, we follow the
assumption that the actual cell level is available, as in [6].

Next we give an algorithm for determining the optimal cell

programming for Problem (P6), where feedback information

is available.

Algorithm 2 Suppose the cell voltage is xj before the j-th

write, where 1 � j � t and x1 = 0. Then on the j-th write, set

Vj =
θ−xj+Δ
α+δ2

.

Theorem 4. Algorithm 2 gives an optimal solution for the cell

programming problem (P6).

VI. CONCLUSION

The study of cell programming for flash memories is an im-

portant step toward understanding their storage capacity. Flash

memories have a unique property that the cell levels can only

increase during programming, which gives rise to a monotonic

cell-programming model. In this paper, a new criterion to mea-

sure the performance of cell programming is proposed. Both

noiseless parallel programming and noisy single cell program-

ming are studied. The potential benefit of using feedback to

adaptively choose the programming voltages is considered.
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