
Parallel Programming of Rank Modulation
Minghai Qin Anxiao (Andrew) Jiang Paul H. Siegel

Electrical and Computer Engineering Computer Science and Engineering Electrical and Computer Engineering
University of California, San Diego Texas A&M University University of California, San Diego
La Jolla, CA 92093− 0401, USA College Station, TX 77843, USA La Jolla, CA 92093− 0401, USA

mqin@ucsd.edu ajiang@cse.tamu.edu psiegel@ucsd.edu

Abstract—Rank modulation is a technique for representing
stored information in an ordered set of flash memory cells
by a permutation that reflects the ranking of their voltage
levels. In this paper, we consider two figures of merit that
can be used to compare parallel programming algorithms for
rank modulation. These two criteria represent different trade-
offs between the programming speed and the lifetime of flash
memory cells. In the first scenario, we want to find the minimum
number of programming rounds required to increase a specified
cell-level vector ℓ0 to a cell-level vector corresponding to a
target rank permutation τ , with no restriction on the maximum
allowable cell level. We derive lower and upper bounds on this
number, denoted by t∗1(τ , ℓ0). In the second scenario, we seek an
efficient programming strategy to achieve a cell-level vector ℓ(τ)
consistent with the target permutation τ , such that the maximum
cell level after programming is minimized. Equivalently, this
strategy maximizes the number of information update cycles
supported by the device before requiring a block erasure. We
derive upper bounds on the minimum number of programming
rounds required to achieve cell-level vector ℓ(τ), denoted by
t∗2(τ , ℓ0), and propose a programming algorithm for which the
resultant number of programming rounds is close to t∗2(τ , ℓ0).

I. INTRODUCTION
Flash memories have become the most widely-used non-

volatile memories due to the fast read/write speed, low power
consumption and high density. The basic memory unit, called
a cell, is a floating-gate transistor of which the level is
determined by the amount of charge (e.g., electrons) trapped
in it. Traditionally, the data is represented by the amount
of trapped charge quantized to q discrete levels and thus
each cell can represent log2 q bits of information. The cell
level is increased or decreased by the hot-electron injection
mechanism or Fowler-Nordheim tunneling mechanism [1]. A
page consists of about 104 cells organized such that they are
read and written simultaneously and a block consists of tens
to hundreds of pages.
One of the most conspicuous properties of flash memory

cells is the asymmetry in programming (increasing cell levels)
and erasing (decreasing cell levels to 0). While increasing a
cell level can be easily accomplished by applying a certain
voltage to a cell to inject a desired amount of charge, decreas-
ing a cell level is an enormously expensive operation in the
sense that the whole block containing it has to be first erased
(removing all charge of all cells within the block) before
reprogramming to the target levels. This operation, called a
block erasure, is time-consuming and, moreover, it degrades
the performance of the flash memory cells. Typically, a block

can tolerate 103 (when q = 8) to 105 (when q = 2) erasures
before it begins to malfunction. Therefore, in order to avoid
unnecessary block erasures caused by “overshooting” prob-
lems, flash memory programming is carefully accomplished
by several rounds of charge injection that make cell levels
monotonically approach their target values.
In order to increase the programming speed and to reduce

the complexity of hardware realization, parallel programming
is used, whereby a common voltage is applied to a group
of cells to inject a specified charge simultaneously. For a
discrete set of cell levels, parallel programming techniques
that minimize a cost function of the target cell-level vector Θ
and the programmed cell-level vector ℓ after t programming
rounds were studied in [3], [6], [10].
One way in which the storage capacity of flash memory

devices has been increased is through the use of a larger
number of levels in each cell. However, as the quantization
of the cell levels becomes finer, the problem of overshooting
can be exacerbated, thereby compromising data integrity and
limiting the achievable storage capacity. A novel idea called
rank modulation [4] has been proposed to solve such over-
shooting problems. With rank modulation, the information is
represented by the permutation induced by the levels of an
ordered set of n cells. As a result, it does not require a
discrete set of target cell levels, and recovery of the stored
information is easily implemented by comparing the charges
of the n cells. However, to date, programming algorithms for
rank modulation, as described in [2], [4], [5], for example,
have been based upon sequential programming of individual
cells, resulting in fundamental limitations on the programming
speed.
In this paper, we study two approaches to parallel pro-

gramming for rank modulation where cell levels are integer-
valued. In the first, our objective is to minimize the number
of programming rounds needed to produce a cell-level vector
representing the target permutation, under the assumption that
there is no constraint on the magnitude of cell-level incre-
ments. A consequence of this assumption is that the cell levels
may approach their physical upper limits quickly, implying
that this programming technique may limit the number of
information updates that can be made before a block erasure
is required. In contrast, the second approach aims to minimize
the number of programming rounds subject to a constraint on
the difference between the maximum cell level before and after
programming. This technique therefore allows the maximum

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

719

possible number of subsequent information updates before a
block erasure is required. These two scenarios represent dif-
ferent trade-offs between programming speed and the lifetime
of the flash memory.
Since the minimum number of programming rounds is

a function of the target permutation τ and the initial cell-
state vector ℓ0, we denote them by t∗1(τ , ℓ0) and t∗2(τ , ℓ0),
respectively, in the two programming scenarios. We will use
the notation t∗i and t∗i (τ , ℓ0) interchangeably, i = 1, 2, in
contexts where there is no ambiguity. We first derive universal
lower and upper bounds on t∗1(τ , ℓ0) as a function of τ .
These bounds show that, when compared to the push-to-top
programming scheme proposed in [4], the minimal number of
programming rounds required in this scenario is approximately
1
3 of that used in the push-to-top scheme. In the second
scenario, the smallest set of cell-level increments needed
to represent the target permutation can be determined as
in [2]. We derive an upper bound on t∗2(τ , ℓ0) and propose
an algorithm with complexity O(n2 log n) to search for the
optimal set of voltages in each round of programming. The
resulting number of programming rounds is shown to be only
2.5% more than the minimum number obtained by a brute-
force optimal search.
The rest of the paper is organized as follows. In Section II,

we model the cell increments during parallel programming
mathematically. In Section III, we aim to minimize the number
of programming rounds for rank modulation when cells are
allowed to increase to arbitrarily high levels. In Section IV,
we aim to minimize the number of programming rounds for
rank modulation when the cell increment is minimized.

II. PRELIMINARIES
We denote n flash memory cells by c1, . . . , cn. Cells are

programmed by injecting charge to increase the cell levels.
We denote by [m : n] the set of integers {i ∈ Z|m 6 i 6 n}
and [1 : n] is denoted by [n]. The set of non-negative
real numbers and non-negative integers are denoted by R+

and Z+, respectively. As assumed in [6], [10], the number
of programming rounds (charge injection) is t and when a
voltage Vj, j ∈ [t], is applied to cell ci, the cell level of
ci will be increased by αiVj. We call αi the hardness of
charge injection of ci, and we define the cell-hardness vector
α = (α1, . . . ,αn). Suppose the cell-state vector is ℓ0 before
programming and denote the set of voltages that can be applied
in the t rounds of parallel programming by V = (V1, . . . , Vt).
The final cell-state vector is then

ℓi,t = ℓi,0 +αi

t

∑
j=1

bi, jVj, (1)
where the (i, j) entry in the matrix

B =

b1,1 b2,1 · · · bn,1

b1,2 b2,2 · · · bn,2...
b1,t b2,t · · · bn,t

∈ {0, 1}t×n

indicates whether or not voltage Vj is applied to cell ci during
the j-th round of programming, for i ∈ [n], j ∈ [t].

Let ℓt = (ℓ1,t, . . . , ℓn,t) be the final cell-state vector after
programming. We assume ℓi,t 6= ℓ j,t, ∀i 6= j. Let Σn be the set
of all permutations of [n]. Let τ = (τ1, . . . , τn) ∈ Σn be the
rank permutation of ℓt, denoted by rank(ℓt) = τ , where τi is
the index of the cell with the i-th lowest level. For example,
if ℓt = (1.5, 3.5, 0.5, 2), then rank(ℓt) = τ = (3, 1, 4, 2).
The figure of merit for the programming algorithm is the

number of required programming rounds, t. The cell program-
ming problem is to find a set of positive real programming
voltages V ∈ R

t
+ and a binary matrix B ∈ {0, 1}t×n of

cell-programming indicators such that rank(ℓt) = τ and t is
minimized, where ℓt is given by Equation (1).

III. RANK MODULATION MINIMIZING PROGRAMMING
ROUNDS

In this section, we assume αi = 1, ∀i ∈ [n] and both ℓi, j

and Vj, i ∈ [n], j ∈ [t] are integers. We further assume there is
no physical upper limit on the cell levels. Given the initial cell-
state vector ℓ0 with rank(ℓ0) ∈ Σn and the target permutation
τ ∈ Σn, we would like to find a set of programming voltages
V ∈ Z

t
+ and a binary matrix B ∈ {0, 1}t×n of cell-

programming indicators such that rank(ℓt) = τ and t is
minimized, where ℓt can now be expressed as

ℓi,t = ℓi,0 +
t

∑
j=1

bi, jVj. (2)

The following definitions will be useful in deriving bounds
on the minimum possible value of t.
Definition 1. A decomposition of a permutation σ =
(σ1, . . . ,σn) ∈ Σn decomposes σ into subsequences
((v1), . . . , (vm)), where (vi), i ∈ [m], is a subsequence of the
form (σu1 ,σu2 , . . . ,σuk

), in which the relative orders within σ
are preserved, i.e., for any two u j, uk ∈ [n] in (vi),σu j

is to the
left of σuk

in vi if and only if σu j
is to the left of σuk

in σ .
An increasing block (σu,σu+1, . . . ,σv), 1 6 u 6 v 6 n,

of a permutationσ = (σ1, . . . ,σn) is a contiguous subsequence
of σ such that σi < σi+1, ∀i ∈ [u : v − 1]. An increasing
block decomposition of σ is a decomposition such that each
subsequence is an increasing block.
An increasing subsequence (σu1 ,σu2 , . . . ,σuk

), ui ∈
[n], i ∈ [k], of a permutation σ = (σ1, . . . ,σn) is a sub-
sequence (not necessarily contiguous) of σ such that σui

<

σui+1
, ∀i ∈ [k− 1]. An increasing subsequence decomposition

of σ is a decomposition such that each subsequence is an
increasing subsequence. A decreasing subsequence is defined
similarly.

Example 1. If σ = (3, 1, 4, 5, 6, 2), then an increasing block
decomposition is ((3), (1, 4, 5, 6), (2)) and an increasing sub-
sequence decomposition is ((3, 4, 5, 6), (1, 2)).
Without loss of generality, we assume the initial rank is the

identity permutation, i.e., σ = (1, 2, . . . , n). It is clear that the
optimal t∗ depends on τ and the initial cell-state vector ℓ0, so
we denote it by t∗1(τ , ℓ0). The next theorem gives a universal
bound on t∗1(τ , ℓ0) as a function of τ .

2013 IEEE International Symposium on Information Theory

720

Theorem 1. Let m1 and m2 be the minimum number of
subsequences in an increasing block decomposition and an
increasing subsequence decomposition of τ , respectively. Then
the optimal t∗1 satisfies

⌈log m2⌉ 6 t∗1(τ , ℓ0) 6 ⌈log m1⌉.

Proof: First we prove the lower bound. We will invoke
the following lemma, whose proof is omitted due to space
constraints.
Lemma 2. The minimum number of subsequences in any in-
creasing subsequence decomposition of a permutation σ is
equal to the length of the longest decreasing subsequence in
σ .
According to Lemma 2, the length of the longest decreasing
subsequence in τ is m2. Let this decreasing subsequence be

(d1, d2, . . . , dm2),
where

d1 > d2 > · · · > dm2and
ℓd1,t < ℓd2,t < · · · < ℓdm2

,t.

Since the initial permutation is assumed to be the identity
permutation σ = (1, . . . , n), meaning ℓd1,0 > ℓd2,0 >

· · · > ℓdm2,0
, the increments of the di-th cell, denoted by

(Id1
, . . . , Idm2

), where Idi
= ℓdi,t

− ℓdi,0
, ∀i ∈ [m], have to

satisfy
Id1

< Id2
< · · · < Idm2

,

i.e., at least m2 distinct increments are needed. It follows that
the number of programming rounds satisfies the lower bound
⌈log m2⌉ 6 t∗1 .We now proceed to the proof of the upper bound, which is
achieved by a specific programming strategy.
Suppose
((τ1, . . . , τk1

), (τk1+1, . . . , τk2
), . . . , (τkm1−1+1, . . . , τkm1

))

is an increasing block decomposition of τ of size m1, where
km1 = n. By assumption, the initial permutation is an identity
permutation, so the cell levels satisfy

ℓ1,0 < ℓ2,0 < · · · < ℓn,0 < N

for some integer N, which implies that |ℓi,0 − ℓ j,0| <

N, ∀i, j ∈ [n]. Let t = ⌈log m1⌉ and V = (V1, . . . , Vt),
where Vj = 2 j−1N, ∀ j ∈ [t]. The set of achievable increments
is, therefore, I = {iN|i ∈ [0 : 2t− 1]}. Now, for every index
i ∈ [n], we determine the the block index j ∈ [m1] such that i
lies in the j-th block of the increasing block decomposition of
τ , and we increase the level of the cell ci by (j− 1)N. Since
1 6 j 6 m1 6 2t, it follows that (j− 1)N ∈ I , meaning that
the cell level increments that are produced can all be achieved
by V . We now show that the rank permutation of the cell-state
vector ℓt attained by this programming strategy is τ .
Consider a pair of cell indices u and v in τ such that u is

to the left of v. If they are both in the same increasing block,
then

ℓu,t = ℓu,0 + Iu = ℓu,0 + Iv < ℓv,0 + Iv = ℓv,t,

where the first and last equalities follow from the definition
of Iu, u ∈ [n], and the second equality follows from the fact
that the cell increments are the same within each block and
the inequality follows from the relation u < v. If u is in the
i-th block and v is in the j-th block, where i < j, then

ℓu,t = ℓu,0 + Iu = ℓu,0 + (i− 1)N

< N + (i− 1)N = iN 6 (j− 1)N = Iv < ℓv,t.

This proves ℓu,t < ℓv,t if u is on the left of v in τ . Since u
and v are chosen arbitrarily, the rank permutation of the final
cell-state vector ℓt is τ . Therefore, t∗1 6 ⌈log m1⌉.
Lemma 2 establishes the connection between the increas-

ing subsequence decomposition and the longest decreasing
subsequence of a permutation τ ∈ Σn. Efficient algorithms
with time complexity O(n log n) that find the longest in-
creasing/decreasing subsequence of τ ∈ Σn were studied
in [7]–[9] and it was shown that partitioning a permutation
into a minimum number of monotone subsequences is NP-
hard [9]. The problem of decomposing a permutation into a
minimum number of increasing subsequences is interesting by
itself and next we would like to give an algorithm with time
complexity O(n log n) that performs the minimum increasing
subsequence decomposition of τ ∈ Σn.

Algorithm 1: Finding Minimum Number of Increasing
Subsequences
Input: A permutation τ = (τ1, τ2, · · · , τn) of the integer

set [n];
Output: m increasing subsequences S1, S2, . . . , Sm.
m ← 1, S1 ← {τ1}, T ← {τ1};
for i = 2 to n do

if τi is smaller than all the integers in T then
m ← m + 1, Sm ← {τi}, T ← T ∪ {τi};else
Find the largest integer p in T that is less than τi;
Suppose p is contained in S j;
S j ← (S j, τi);
Replace p by τi in T.

Note that, at each step, the set T represents the last entries
in the increasing subsequences considered up to that point.
Theorem 3. The output of Algorithm 1 satisfies
1) m = m2;
2) the subsequences S1, S2, · · · , Sm are an increasing sub-

sequence decomposition of τ .
The time complexity of Algorithm 1 is O(n log n).

Proof: The proof is omitted due to space limitations.
Fig. 1 shows the lower and upper bounds on t∗1(τ , ℓ0)

averaged over all n! permutations of τ ∈ Σn. Also shown,
in the curve labeled “No parallel,” is the number of rounds
required for “push-to-top” programming [4]. The parallel
programming scheme requires roughly 1

3 of the number of
programming rounds compared to the push-to-top scheme.

2013 IEEE International Symposium on Information Theory

721

4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

Number of cells n

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
p
ro

g
ra

m
m

in
g
 r

o
u
n
d
s

t
*

1,upper

t
*

1,lower

No parallel

Fig. 1. Lower and upper bounds on t∗1(τ , ℓ0)

For the case of small n, the optimal t∗1(τ , ℓ0) can be derived
by examining each τ ∈ Σn. For example, if n = 3, then

t∗1(τ , ℓ0) =

0, if τ = (1, 2, 3);

2, if τ = (3, 2, 1);

1, otherwise.

Table I shows t∗1(τ , ℓ0) for n = 4. In the table,
t∗1((3142), ℓ0) = 1 if ℓ4,0 − ℓ3,0 > 2 and ℓ2,0 − ℓ1,0 > 2;
and t∗1((3142), ℓ0) = 2, otherwise.

TABLE I
t∗1(τ , ℓ0) AS A FUNCTION OF τ

τ t∗ τ t∗ τ t∗ τ t∗

1234 0 2134 1 3124 1 4123 1
1243 1 2143 1 3142 - 4132 2
1324 1 2314 1 3214 2 4213 2
1342 1 2341 1 3241 2 4231 2
1423 1 2413 1 3412 1 4312 2
1432 2 2431 2 3421 1 4321 2

Conjecture 4 For each τ ∈ Σn, there exists an ℓ0, such that
t∗1(τ , ℓ0) equals the lower bound ⌈log m2⌉; i.e., Theorem 1
provides a tight universal lower bounds on t∗1(τ , ℓ0).
IV. RANK MODULATION MAXIMIZING THE NUMBER OF

UPDATES
As in the previous section, we assume αi = 1, ∀i ∈ [n]

and both ℓi, j and Vj are integers, for i ∈ [n], j ∈ [t]. Suppose
that the rank of the initial cell-state vector ℓ0 is the identity
permutation σ = (1, . . . , n) and let the target permutation be
τ ∈ Σn. According to [2], in order to maximize the number of
updates (or equivalently minimize the maximum cell level after
programming), the final cell-state vector satisfies ℓτ1 ,t = ℓτ1 ,0,
and ℓτi ,t = max{ℓτi−1,t + 1, ℓτi,0}, i ∈ [2 : n].
Our goal is to minimize the number of programming rounds

t such that the final cell-state vector is ℓt. Define the set of
cell-level increments I = {I1, . . . , Im} to be the set of distinct
integers in ℓt − ℓ0. Without loss of generality, we assume
0 < I1 < I2 < · · · < Im. The cell programming problem can

be formulated as follows: given I , minimize t such that there
exists V

T = (V1, . . . , Vt) ∈ Z
t
+ and for each Ii ∈ I , i ∈

[m], there exists a bi ∈ {0, 1}t such that V
T · bi = Ii. The

pair (V , B) is called an optimal pair if (V , B) achieves the
minimum number of rounds t. A vector V is called optimal
if there exists a B such that (V , B) is an optimal pair.
For V ∈ Z

t
+, we call the set of integers {z ∈ Z|z =

V
T · b for some b ∈ {0, 1}t} the span of V , denoted by

S(V). If I ⊂ S(V), we say V covers I . Therefore, the
cell programming problem translates to finding a vector V

of minimum length that covers a given integer set.
Example 2. Suppose I = {2, 5, 7, 8, 10}. Let V = (2, 3, 5)T,
and the bi’s are chosen such that

(2, 3, 5)

1 0 1 0 1
0 0 0 1 1
0 1 1 1 1

 = (2, 5, 7, 8, 10).

Therefore, there exists a V of length 3 that covers I .
This problem is related to a well-known NP-complete

problem, Subset Sum Problem. Finding the optimal V for each
given I is therefore a hard task, so we will settle for finding
a solution which, though not necessarily optimal, compares
favorably to the simple push-to-top [4] solution.
First we provide a general upper bounds on t∗2(τ , ℓ0) in the

following theorem.
Theorem 5. The minimum possible number of programming
rounds satisfies

t∗2 6 min{⌈log(Im + 1)⌉, 1 + ⌈log(Im − I1 + 1)⌉, m}.

Proof: If V is chosen as (20, 21, . . . , 2⌈log(Im+1)⌉−1),
then it is guaranteed that V covers [2⌈log(Im+1)⌉− 1] ⊃ [Im] ⊃
I . Therefore, t∗2 6 ⌈log(Im + 1)⌉.
If V is chosen as (I1, 20, 21, . . . , 2⌈log(Im−I1+1)⌉−1), then it

is guaranteed that V covers [I1 : I1 + 2⌈log(Im−I1+1)⌉− 1] ⊃
[I1 : Im]. Therefore, t∗2 6 1 + ⌈log(Im − I1 + 1)⌉.
If V is chosen as (I1, I2, . . . , Im), then it is guaranteed that

V covers I . Therefore, t∗2 6 |I| = m.
Here are some further results and conjectures related to this

parallel programming problem.
Proposition 6. There exists an optimal V such that all the
elements in V are distinct.

Proof: The proof is omitted due to space limitations.
Conjecture 7 If the integrality constraint on V is loosened,
requiring only that V ∈ R

t
+, then there still exists an optimal

V such that V ∈ Z
t
+; i.e., t2 is achieved using integer-valued

voltages V .
Next we present an algorithm that searches for a short,

but not necessarily minimum-length, vector V that covers the
given integer set I . Theorem 5 suggests that Im, the largest
elements in I , and |I|, the cardinality of I have a strong in-
fluence on the size and composition of an optimal V . Note that

2013 IEEE International Symposium on Information Theory

722

once V1 is fixed, we can reduce all elements greater than V1 by
V1, and reformulate the problem into that of finding a vector
Ṽ that covers Inew = {i ∈ I|i < V1} ∪ {i|(i + V1) ∈ I}.
The following algorithm is based on an iterative, greedy search
for V1 that, in each iteration, chooses V1 to minimize |Inew|
and, should more than one such V1 exist, chooses one that
mnimizes the largest element in Inew.

Algorithm 2: Finding V that covers I
Input: an integer set I = {I1, . . . , Im}
Output: an integer vector V that covers I
V ← ∅;
while I 6⊂ S(V) do
I ← ascending sort(I);
min size ← |I|;
max elem ← I1;
V1 ← 0;
for v = 1 to Im do
Inew ← reduced set(I , v);
if |Inew| < min size then

V1 ← v;
min size ← |Inew|;
max elem ← max{Inew};

else
if |Inew| = min size then

Imaxnew ←= max{Inew};
if Imaxnew < max elem then

V1 ← v;
max elem ← max{Inew};

V ← (V , V1); // append V1 to V

In Algorithm 2, ascending sort(I) sorts I in ascending
order and max{Inew} returns the maximum element of a set
Inew. For a given v ∈ [1 : Im], reduced set(I , v), calculated
using Algorithm 3, generates Inew for the next iteration and
minimizes |Inew| and Imaxnew .

Algorithm 3: Inew=reduced set(I , v)

Input: a sorted integer set I = {I1, . . . , Im} in
ascending order and an integer v ∈ [1 : Im]

Output: an integer set Inew
f lag ← all-zero vector of length m;
for i = m downto 1 do

if Ii > v and f lag[i] == 0 then
Ii ← Ii − v;
f lag[k]← 1 for all k such that Ik = Ii;

Inew ← the set of distinct elements of I ;

Proposition 8. Suppose Im < N for some N ∈ Z. Then the
complexity of Algorithm 3 is O(N) and that of Algorithm 2 is
O(N2 log N).

4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

Number of cells n

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

p
ro

g
ra

m
m

in
g
 r

o
u
n
d
s

Optimal

Algorithm 1 and 2

Theorem 5

No parallel

Fig. 2. Number of programming rounds needed to achieve ℓt

Fig. 2 shows results obtained using Algorithm 2 (and Al-
gorithm 3). The horizontal axis represents the number of cells
n and the vertical axis represents the number of programming
rounds t averaged over all n! target rank permutations τ ∈ Σn.
Also shown in the figure is the upper bound of Theorem 5, the
number of rounds using the push-to-top strategy [2], [4], and
the optimal number obtained using a brute-force, exhaustive
search that minimizes t for each τ ∈ Σ. We note that the
number of programming rounds obtained using Algorithm 2
(and 3) is only 2.5% above the optimal result when n = 10.

V. ACKNOWLEDGEMENT
This research was supported in part by the NSF under Grant

CCF-1116739, NSF CAREER Award CCF-0747415, NSF
Grant CCF-1217944, and the Center for Magnetic Recording
Research at the University of California, San Diego.
The authors would like to thank Aman Bhatia and Bing Fan

for helpful discussions.
REFERENCES

[1] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories.
Kluwer Academic Publishers, 1st Edition, 1999.

[2] E. Gad, A. Jiang, and J. Bruck, “Compressed encoding for rank
modulation,” in Proc. IEEE Int. Symp. Inform. Theory, St. Petersburg,
Russia, July–August 2011, pp. 884–888.

[3] A. Jiang and H. Li, “Optimized cell programming for flash memories,”
in Proc. IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), Victoria, BC, Canada, August 2009,
pp. 914–919.

[4] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. Inform. Theory, vol. 55, no. 6, pp.
2659 – 2673, June 2009.

[5] A. Jiang and Y. Wang, “Rank modulation with multiplicity,” in Proc.
Globecom 2010, Miami, FL, USA, December 2010, pp. 1866–1870.

[6] M. Qin, E. Yaakobi, and P. H. Siegel, “Optimized cell programming
for flash memories with quantizers,” in Proc. IEEE Int. Symp. Inform.
Theory, Cambridge, MA, USA, July 2012, pp. 1000–1004.

[7] C. Schensted, “Longest increasing and decreasing subsequences,”
Canad. J. Math. 13, pp. 179–191, 1961.

[8] R. Stanley, “Increasing and decreasing subsequences and their variants,”
in Proc. Internat. Cong. (Madrid 2006). American Mathematical
Society, 2007, pp. 545–579.

[9] G. Stefano, S. Krause, M. Lübbeck, and U. Zimmermann, “On minimum
k-modal partitions of permutations,” J. Discrete Alg. 6, pp. 381–392,
2008.

[10] E. Yaakobi, A. Jiang, P. H. Siegel, A. Vardy, and J. K. Wolf, “On the
parallel programming of flash memory cells,” in Proc. IEEE Inform.
Theory Workshop, Dublin, Ireland, August–September 2010.

2013 IEEE International Symposium on Information Theory

723

