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Abstract—We study the class of periodic-finite-type (PFT) shift
spaces, which can be used to model time-varying constrained codes
used in digital magnetic recording systems. A PFT shift is deter-
mined by a finite list of periodically forbidden words. We show
that the class of PFT shifts properly contains all finite-type (FT)
shifts, and the class of almost finite-type (AFT) shifts properly con-
tains all PFT shifts. We establish several basic properties of PFT
shift spaces of a given period , and provide a characterization
of such a shift in terms of properties of its Shannon cover (i.e.,
its unique minimal, deterministic, irreducible graph presentation).
We present an algorithm that, given the Shannon cover of an ir-
reducible sofic shift , decides whether or not is PFT in time
that is quadratic in the number of states of . From any periodic
irreducible presentation of a given period, we define a periodic for-
bidden list, unique up to conjugacy (a circular permutation) for
that period, that satisfies certain minimality properties. We show
that an irreducible sofic shift is PFT if and only if the list corre-
sponding to its Shannon cover and its period is finite. Finally, we
discuss methods for computing the capacity of a PFT shift from a
periodic forbidden list, either by construction of a corresponding
graph or in a combinatorial manner directly from the list itself.

Index Terms—Capacity of constrained system, constrained code,
finite-type, periodic constraint, shift spaces, sofic system.

I. INTRODUCTION

D IGITAL data storage systems based upon magnetic
and optical recording typically use constrained modu-

lation codes designed to efficiently avoid sequences that are
problematic to data recording and retrieval [1]. The family of

-constrained run-length limited (RLL) codes over the
binary alphabet is a well known example. The code
sequences satisfy the constraint that the number of 0’s between
consecutive 1’s in a sequence is at least and no more than .
The purpose of these constraints is to aid in timing recovery and
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to limit intersymbol interference. The -RLL constraint is
characterized by a finite list of forbidden words. For example,
the (1, 3)-RLL sequences are precisely those in which neither
of the words appears. Such constraints are called
finite-type (FT).

Another widely used family of codes are the -charge con-
strained codes over the bipolar alphabet . Here, the code
sequences limit the running-digital-sums of subsequences to a
range of consecutive integer values. These codes, often
called dc-free, ensure that the average power spectral density
of code sequences vanishes at zero frequency. In contrast to the

-RLL constraint, the -charge constraint cannot be charac-
terized by a finite list of forbidden words. However, these con-
straints can be specified by a countably infinite set of forbidden
words. They are representative of constraints called almost fi-
nite-type (AFT).

During the past decade, advances in digital recording have led
to the introduction of constrained codes that are described by
time-varying constraints. An important example is the family of
Time-varying Maximum Transition Run codes with parameters

, denoted . These codes constrain the
run-lengths of 1’s to be at most starting at odd time indices and

beginning at even time indices [2]–[5]. These codes were
developed for systems employing higher-order partial-response
equalization and maximum-likelihood sequence detection. For
selected partial-response target channels, they are distance-en-
hancing codes; that is, they eliminate bit patterns occurring in
the dominant error events of the target-matched sequence de-
tector [6]–[8]. Recently, generalized TMTR codes, which limit
maximum runlengths of 1’s beginning at more than two phases,
have also been studied [9].

Time-varying constraints also arise in the context of con-
strained codes with unconstrained positions, introduced in [10]
and further studied in [11]–[13]. These codes permit the inser-
tion of parity bits generated by a systematic error-correcting
code into specified bit locations in a constrained code sequence,
thereby efficiently combining the modulation and error correc-
tion functions of the two codes.

In general, these time-varying constraints are not FT, but they
all have the property that they can be specified by a finite list of
periodically forbidden words. The study of such time-varying
constrained systems was initiated in [14], [15], where they were
called periodic-finite-type (PFT). The purpose of this paper is
to present a detailed analysis of their properties.

Section II reviews necessary concepts, terminology, and no-
tation for use in the rest of the paper.

In Section III, we formulate the definition of PFT constraints
in terms of shift spaces, and address their characteristics within
the framework of symbolic dynamics. We study basic properties
of PFT shifts that are characterized by a finite periodic list of

0018-9448/$26.00 © 2011 IEEE



3678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011

forbidden words for a given period . We refer to such shifts as
shifts, and we say that a shift is PFT if, for some period

, it is . We show that PFT shifts are sofic, and we
demonstrate that the family of PFT shifts properly contains the
family of FT shifts and is properly contained within the family
of AFT shifts [16]. We also explore the periods for which a
PFT shift can be .

Section IV gives several characterizations of an irreducible
PFT shift in terms of its graph presentations. In particular, we
give a necessary and sufficient condition for an irreducible sofic
shift to be a shift, based upon properties of its Shannon
cover (i.e., its unique minimal, deterministic, irreducible graph
presentation) [17]. This leads to an algorithm that, when pre-
sented with the Shannon cover of an irreducible sofic shift,
decides in time quadratic in the number of states of if the shift
is PFT.

In Section V, we study periodic forbidden lists that offer a
concise description of a PFT shift. From an irreducible presen-
tation with period , we derive a periodic forbidden list that sat-
isfies a minimality property for the chosen period . We prove
that the list, up to a permutation of the time indices, is unique
and independent of the choice of the presentation with period .
The notion of minimality, as well as the definition of the list, are
directly inspired by the construction of the set of first offenders
of a FT shift [18], [16], so we refer to the periodic forbidden list
as the set of periodic first offenders for the period. We then con-
sider the periodic first offenders corresponding to the Shannon
cover and the period of its underlying graph. We prove that an
irreducible sofic shift is PFT if and only if this list is finite.

We define the size of a periodic forbidden list to be the sum
of the lengths of its words. We prove that the minimum size
over all periodic forbidden lists for all periods is attained by a
periodic forbidden list for a period dividing the period of the
graph underlying the Shannon cover.

Finally, in Section VI, we discuss methods for computing the
capacity of a PFT shift from a periodic forbidden list descrip-
tion of the shift. The conventional method for computing the
capacity of a sofic shift is based upon determining the largest
real eigenvalue of the adjacency matrix of a lossless presenta-
tion of the system. We review a number of techniques, several of
which are formulated in terms of the theory of finite automata,
for constructing such a presentation from a finite list of period-
ically forbidden words.

We then present a quite different method which relies upon
the Inclusion-Exclusion Principle [19], [20] from enumerative
combinatorics. It extends to PFT shifts the technique presented
by Pimentel and Uchôa-Filho in [21] for computing the capacity
of FT shifts from a finite list of forbidden words. It appears to
be quite effective when the size of the periodic forbidden blocks
is large compared to the number of blocks in the list, as is the
case for some TMTR constraints.

Section VII concludes the paper.

II. BACKGROUND AND TERMINOLOGY

In this section we review terminology and background re-
sults to be used in the remainder of the paper. The notation in
Sections II-A and II-B follows that found in the text by Lind and
Marcus [16], and a thorough presentation may be found there.

Section II-C contains terminology on finite automata relevant to
the construction procedures in Section VI-A. A more detailed
exposition on automata may be found in [22].

A. Shift Spaces

Let denote the set of bi-infinite sequences

whose symbols are drawn from a finite alphabet ,

A word or block , for some integer , is a finite string
of consecutive symbols. We say that is a subword, subblock,
or factor of the sequence , or equivalently that contains , if

for some index . We denote this fact by
. To conveniently specify the position of a word within

a sequence, we write

where . We sometimes write to denote . When the
context is clear, we will use similar concepts and notation when

denotes a word.
Let be the collection of words over , including the empty

word, and let denote the subset of nonempty words in .
The length of a word, , is the number of symbols in , and
we refer to a block of length as an -block. The shift map
takes a sequence to the sequence with th coordinate

. The inverse of the shift map takes a sequence to
with th coordinate .

When speaking of a finite collection of words , we say that
is antifactorial or nonredundant if no word is a factor

of any word with .
Let be a collection of words over and denote the

subset of consisting of all bi-infinite sequences that do not
contain a word from . In this context is referred to as a
forbidden list. A shift space is a set . This terminology
reflects the fact that is invariant under the operation of the
shift map, i.e., . A shift space is a shift of finite type
if there exists a finite set such that .

Let denote the set of all length- words that occur as
factors of sequences in . The language of is the collection

where , and denotes the empty word. The lan-
guage of a shift space determines the space [16, Prop. 1.3.4].
That is, a bi-infinite sequence belongs to the shift space
if and only if all of its subblocks belong to . Considering

as an alphabet, the th higher power code
is the mapping

which takes a sequence from and breaks it into a sequence of
nonoverlapping -blocks. The image of under ,

, is called the th higher power shift of .
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Let be a shift space over , and let
be a mapping from allowed -blocks in to

symbols in an alphabet . The sliding block code with memory
and anticipation induced by is the mapping

defined by

where, for ,

A sliding block code is a conjugacy from to if
it is invertible. The shifts and are conjugate if
and is a conjugacy.

B. Sofic Shifts

A labeled directed graph consists of a directed
graph with a finite set of states , a
finite set of directed edges connecting the states,
and a labeling that assigns a label to each edge.
Each directed edge has an initial state, and a terminal
state . A path in the graph is a finite sequence of edges

such that . The initial state of a path
is defined as , and the terminal

state is defined as . A path is a cycle if .
The label of is the word .

Whereas a path is finite, a walk on is a bi-infinite sequence
of edges such that . The
label of a walk is the sequence

A graph is irreducible if for any pair of states ,
there exists a path with and . An irreducible
component of a graph is a maximal (with respect to inclusion
of vertices) irreducible subgraph of .

A vertex is stranded if either no edges start at or no
edges terminate at . A graph is essential if no vertex is stranded.

A graph has local anticipation if is the smallest nonneg-
ative integer such that, for each , all paths of length
that start at and have the same label start with the same edge.
Similarly, a graph has local memory if is the smallest non-
negative integer such that, for each , all paths of length

that end at and have the same label end with the same
edge. A graph is deterministic if it has local anticipation 0, i.e.,
if edges with the same initial state have distinct labels.

A graph is -definite if, given any word ,
the set of paths that generate all agree
in the edge . If a graph is -definite for some integers
and , it is said to be definite. An irreducible graph is definite if
and only if no two distinct cycles generate the same word (see,
for instance, [23, Prop. 2.4]). An -definite graph is said to
be finite-memory.

A sofic shift is the set of bi-infinite sequences obtained by
reading the labels of walks on :

We say that is a presentation or cover of , or presents .
A sofic shift is irreducible if it has an irreducible presentation.
The set of finite words generated by paths in , denoted ,
is called a constrained system, and similar terminology is used
in that context.

Let be a deterministic graph. For any word , we
denote by the set of terminal states of all paths with label

. If the cardinality of is 1, then is called a synchronizing
word, and it is said to focus to the single state in .

An irreducible sofic shift is almost-finite-type (AFT) if it
has a presentation with finite local anticipation and finite local
memory. Since every sofic shift has a deterministic presentation
[16, Th. 3.3.2], a sofic shift is AFT if and only if it has an irre-
ducible, deterministic presentation with finite local memory.

Sofic shifts are shift spaces [16, Th. 3.1.4]. Hence, for every
there exists a forbidden list, , of words over such that

.
There is a unique, up to labeled graph isomorphism, deter-

ministic graph presenting an irreducible sofic shift with the min-
imal number of states [16, Th. 3.3.18]. This graph is referred
to as the Shannon cover of the shift. It is also called the Fis-
cher cover. One can obtain the Shannon cover from any presen-
tation via determinizing and state-minimizing algorithms, e.g.,
[16, pp. 92], [22, p. 68]. A Shannon cover always has at least
one synchronizing word [17]. An irreducible sofic shift is FT
(resp. AFT) if and only if the Shannon cover is definite (resp.
has finite local memory) [17].

The follower set of state in is the collection of
labels of paths starting at :

Note that for a graph, :

The follower set of a collection of states is simply the union
of their respective follower sets. The th higher power graph

of is the labeled graph with underlying
graph and the naturally induced labeling . Specifically,
the vertex set is , and there is one edge in

from to with label for each path
of length from to in . The th higher power graph

presents the th higher power shift, .
For , , let denote the number of edges from

to in . The adjacency matrix of is the matrix
.

Given a nonnegative matrix , the period of state I, ,
is the greatest common divisor of those integers for
which , if such integers exist. Otherwise, we de-
fine . The period of is defined as the
greatest common divisor of the finite periods , or as if
none of the state periods is finite. The period of a graph,

, is the period of its adjacency matrix. It is the same as
the greatest common divisor of the lengths of cycles in . The
periods of the states in an irreducible graph are equal. For a la-
beled graph , the period of is defined as .
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Let be a labeled graph. If is a positive integer, a coloring
of in colors, or a -coloring for short, is a function from

to such that, whenever there is an edge
from a state to a state , . Note that an
irreducible presentation has a coloring in colors if and only if
its period is a multiple of .

We say that a graph is -partite if the vertices of may
be divided into disjoint subsets such that
any edge that begins in terminates in . If is
irreducible and then is -partite, and the sets

are referred to as the period classes of the
graph.

The -cascade of a graph is the -partite graph with vertex
set given by copies of the vertex set
and exactly one edge from to for
each edge from to in . For a sofic shift presented by

, the -cascade of is the shift presented by the
-cascade of with the natural labeling induced by .
If is irreducible with , then

decomposes into irreducible compo-
nents. Moreover, it is easy to verify that each component has
period .

C. Finite Automata

A language over is a subset . A finite automaton
is defined by a quadruple , where is the

input alphabet, is a finite-state labeled graph,
is the initial state, and is the set of final states.

Elements of are accepting states of the automaton; any other
state is a nonaccepting state.

An automaton is deterministic if is deterministic. A word
is accepted by automaton if there exists

a path on with , , and .
The language accepted by the automaton, , is the set of
words accepted by the automaton. A regular language (or set)
is a language accepted by a finite automaton. In a deterministic
automaton, there exists a unique path from the initial state to an
accepting state that generates each .

There is a natural correspondence between languages of sofic
shifts and regular languages. The language of a sofic shift is a
regular language [16], [18, eq. A.12]. However, not all regular
languages are languages of sofic shifts. In particular, if

, then does not necessarily equal .
Simple counter-examples may be constructed from graphs with
initial or final states that are stranded.

III. PERIODIC-FINITE-TYPE (PFT) SHIFT SPACES

In this section, we formally introduce the class of periodic-
finite-type (PFT) shift spaces and study their relationship to FT
shifts and AFT shifts.

A. Periodic Forbidden Words

In Section II-A, we defined a shift space in terms of a for-
bidden list . Here, we will define a sequence space in terms of
a set of periodically forbidden words. A subtlety is required in
the definition to ensure shift invariance.

The notion of periodically forbidden words [14] generalizes
the notion of minimal forbidden words (or minimal forbidden
factors) of a bi-infinite sequence (see for instance [24]–[26]).

Let be a finite alphabet. Let be a positive integer (the
period), and let be a list of possibly
empty sets of finite-length words. The list is said to be regular
(resp. finite) if all its sets are regular (resp. finite) sets.

Let be the set of bi-infinite sequences over such that,
for each integer , one has

Hence, at position , the bi-infinite sequence avoids the words
in , for all . A word is said to have phase
equal to , and we sometimes denote such a word together with
its phase by . The set of all bi-infinite sequences obtained
by all integer shifts of the bi-infinite sequences in defines a
subshift . The list is called a periodic forbidden list of the
shift for the period . Note that the definition of depends
on the choice of the alphabet .

More formally, we have the following definition.

Definition 1: Given a period and a periodic forbidden list
, the shift is defined as

the set of all bi-infinite sequences over the alphabet such
that there exists some integer with the property
that the -shifted sequence satisfies

for every integer . Note that may depend upon .
Shift invariance of is an immediate conse-

quence of the definition. Sometimes we will use the simpler no-
tation or to denote the shift when the context
prevents any confusion.

Proposition 1: A shift is a sofic shift if and only if it has a
regular periodic forbidden list for any period.

Proof: Let be a sofic shift over a finite alphabet . Hence
is a regular language. For any positive integer , the list

defined by , for any ,
is a regular periodic forbidden list of for the period .

Conversely, suppose for a period where
is a regular language for any . Let be

a finite-state automaton accepting the regular language
. The finite-state labeled graph ob-

tained from this automaton by removing the nonfinal states of
and by keeping its essential part (i.e., the states belonging to a
bi-infinite path) is a presentation of the shift . Note that if the
essential part is empty, then the shift is empty and thus sofic.

It follows from the definition that the list

formed by adding one, modulo , to the phase of each pair
in , satisfies . We refer to the periodic for-
bidden lists obtained by repeated application of this procedure
as the conjugates of the list .
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Fig. 1. The periodic-finite-type shift for the period 2 over ��� �� with
� � ���, � � �.

B. PFT Shifts

A shift space is periodic-finite-type (PFT) for a positive
integer period if it can be described as , where
is a finite periodic forbidden list . We
say that such a shift is . Note that a shift is finite-type
if and only if it is PFT(1).

Example 1: Consider the PFT sofic shift over the alphabet
presented by the graph shown in Fig. 1. For ,

the shift has the periodic forbidden list , with
, .

It is easy to see that, for a shift over the alphabet
, one can construct a periodic forbidden list in which all

words have the same phase, the same length, or both. A common
phase is obtained by taking each word , prepending
each of the prefixes of length to , and associating phase
0 with each of the resulting words. The sets corresponding to
the other phases are defined to be empty sets. A common word
length is achieved by replacing each in with the words ob-
tained by appending each of the suffixes to , where

, so that each word has length . Finally, a list
that satisfies both properties may be constructed by applying the
first transformation followed by the second.

C. PFT Sofic Shifts

The following theorem, an analog to [16, Th. 3.1.5] for shifts
of finite type, establishes that PFT shift spaces are sofic shifts
by explicitly constructing a presentation.

Theorem 2: Every periodic-finite-type shift space is sofic.
Proof: Let be a shift space. Assume, without

loss of generality, that for , and that
each word has length .

For , let be the graph with vertex set
, the set of all -blocks of letters from . For each pair of

vertices and in with
, draw an edge from to with

label .
Let be the -cascade of with vertex sets

. Let be the graph formed from
by deleting the edges starting and ending at each vertex

such that where ,
as well as the vertex itself.

Let be the essential subgraph of . We will show
that . Choose . Sup-
pose that .

Let . Then for each and
with . Therefore and we conclude

that .
To show the reverse inclusion, choose , and let

be an integer such that satisfies

for each and with . Since
presents , is the label of a walk on . Let

be the walk on such that
and . Suppose an edge in is deleted when con-
structing (so that ). This occurs only if

for some and with , contra-
dicting the properties of . Therefore and .

The constructive proof of Theorem 2 provides a method to
obtain a presentation of a PFT shift. However, the complexity
grows exponentially with the length of the longest element in .
In Section VI, we discuss alternative algorithms for generating
presentations of PFT shifts.

The construction in Theorem 2 actually implies a stronger
result, namely, that any PFT shift is AFT.

Theorem 3: Irreducible PFT shifts are AFT.
Proof: Let be a shift over the alphabet .

It is easy to see that the graph constructed in Theorem 2 is de-
terministic. Therefore, to prove that is AFT, it suffices to
show that has finite local memory. In fact, since ,
and the operation of passing to a subgraph preserves the prop-
erty of finite local memory, it suffices to verify that
has this property. Without loss of generality, consider a vertex

, with . Let and
be two paths of length that terminate in

and generate the word . Let and .
From the definition of , it follows that and

, and, moreover, both and correspond to the
state . The edge from this state
to state with label is unique, implying that . Thus

has finite local memory.

The sliding block coding theorem [16, Th. 5.5.6] holds for
AFT systems [27]. Therefore there exist sliding-block-decod-
able finite-state codes into irreducible PFT shifts at rational
rates less than or equal to the Shannon capacity of the shift. (In
Section VI, we address the computation of the capacity of PFT
shifts.)

D. Proper PFT Shifts

We further distinguish a PFT shift as proper if it is not FT.
For any proper PFT shift, there exists a word that is allowed in
some, but not all, phases. Hence proper PFT shifts are
only for . The PFT(2) shift of Example 1 is proper. Here
are two further examples of proper PFT constraints that have
found practical application in magnetic recording systems. His-
torically, these constraints provided the motivation for the defi-
nition and study of PFT shifts.

Example 2: The well-known biphase shift is a PFT(2) shift
over the binary alphabet with and .
Fig. 2 illustrates , as described in the proof of The-
orem 2, where the cyclic nature of the cascade is represented by
redrawing . Deleted edges and states are drawn with dashed
lines. The Shannon cover is illustrated in Fig. 3. It is easily
shown and well known that the biphase shift is not FT (see, for
example, [16, Th. 3.4.17], [17, p. 1657]) and hence is proper
PFT.
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Fig. 2. ���� ���� presenting the biphase shift.

Fig. 3. Shannon cover of the biphase constraint.

Fig. 4. Shannon cover of the TMTR shift.

Example 3: The time-varying maximum-transition-run
(TMTR) shift [2]–[4] is a binary PFT(2) shift with
and . The Shannon cover is shown in Fig. 4. It is easy
to verify the TMTR shift is not FT; for example, note that the
Shannon cover contains the cover for the biphase shift, Fig. 3,
as a subgraph. Therefore it cannot be definite, implying that the
TMTR shift is a proper PFT shift.

E. Periods of PFT Shifts

We now explore the periods with which a PFT shift can be
associated.

Lemma 4: If is an irreducible shift, then is
for any positive integer .

Proof: If with , then
we have trivially also with and

.

Proposition 5: If is an irreducible shift
which has an irreducible presentation of period , then
is .

Proof: Let with .
Let and . Let with

and . It is straightforward
to see that . We now show that which implies

and the conclusion.
Let us assume that there is a bi-infinite sequence in .

Suppose is periodic. Since , for each integer
, there are integers , , a

positive integer , and a finite factor of at position
such that . Moreover, since is periodic, one may
assume without loss of generality that the distance between two
positions is greater than the maximal length of the

Fig. 5. The Shannon cover of the ���� shift.

words in the list . Let be a path labeled by in the irreducible
presentation of of period . Let be the state in at position

. Since the presentation is irreducible and of period ,
there is a finite number of cycling paths of lengths
around the state such that .

It is well known that for any integer greater than the Frobe-
nius number [28] of the , can be expressed as a
nonnegative integer linear combination of the . As
a consequence, there is a positive integer such that for any
nonnegative integer , can be expressed as a nonneg-
ative integer linear combination of the and there is
thus a cycle around of length . Since ,
there are integers , such that . One can
moreover choose . Let be a positive integer such that

. We choose . Hence
there is a cycle around of size .
Its length is thus equal to .

The bi-infinite sequence labeling a path obtained from by
inserting this cycle at position belongs to . At the
position , equal to , this sequence
contains a factor in . By inserting such cycles simul-
taneously into at all positions , we get a sequence
which belongs to since it labels a path in . However, every
shift by positions of the sequence has a factor at a position
equal to which belongs to . Hence ,
a contradiction.

This shows that any periodic must in fact belong to
. Since is irreducible, any word in the language is

a factor of a periodic sequence in and, therefore,
. Since a shift is determined by its language, we conclude

that , as desired.

Let be a presentation of a shift . The following
proposition gives a condition that can be used to determine if

is not a proper PFT shift, namely, the period of and the
period associated with the forbidden list must share a non-
trivial common factor if is proper.

Corollary 6: If is an irreducible presentation of a proper
shift over an alphabet , then .

Proof: Indeed, if , then by Proposition
5, is PFT(1), and therefore FT.

Note that the PFT shifts in Examples 2 and 3 above—the
biphase and TMTR shifts—are not FT. The period associated
with each of their respective forbidden lists is , and
the graph period of each of their respective Shannon covers is
also 2. Hence, , in accordance with
Corollary 6.

Example 4: The graph in Fig. 5 is the Shannon cover of
a shift that we will refer to as the abcd shift. The abcd shift is
clearly FT, and therefore not proper PFT. Since any FT shift
may be described as a shift for arbitrary period by
assigning all phases to each word in a finite
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Fig. 6. Graph presenting the ��� �� shifts for � � �.

Fig. 7. Shannon cover of the even shift.

forbidden list, we may choose such that
is PFT (2). Since , . This

demonstrates that the converse of Corollary 6 is not true.

Example 5: Fig. 6 illustrates a graph that presents valid
sequences for . Aside from the trivial case where ,
we find ; hence shifts with are not
proper PFT. (A similar argument holds for the case .)

The following example shows that not all AFT shifts are PFT
shifts.

Example 6: Fig. 7 is the Shannon cover of the even shift, so
called because its bi-infinite sequences contain only even num-
bers of consecutive 0’s. It is easily verified that the even shift
is AFT but not FT. By inspection, we see that .
Therefore, by Corollary 6, the even shift is not for any

.

Example 6 shows that the PFT shift spaces are a proper subset
of the AFT shift spaces.

Remark: Manada and Kashyap [29], [30] have examined the
relationship between the period inherent in the definition of
a PFT shift and properties of the shift. They also
study the relationship of the smallest such period, which they
call the descriptive period, , to the periods of periodic
sequences in and to the periods of its graphical presenta-
tions. In particular, they showed that if is an irreducible
PFT shift, and is an irreducible presentation of , then

.

IV. CHARACTERIZATION AND DECIDABILITY

In this section, we further characterize PFT shifts in terms
of properties of their presentations. The characterizations
imply the decidability of the PFT property, and they suggest
a testing algorithm that is quadratic in the number of states of
the Shannon cover.

A. Graphical Characterization

The following proposition proves the decidability of the PFT
property for an irreducible sofic shift.

Proposition 7: Let be an irreducible sofic shift, its
Shannon cover of period , and a positive integer. Then the
following assertions are equivalent.

1) is .
2) The irreducible components of are definite

graphs.

Fig. 8. Shannon cover of interleaved-biphase shift.

Proof: Let us assume that is . Let be the pe-
riod of the Shannon cover of and . By Lemma
5, is . We prove that the irreducible components of

are definite. Let be one of these components. Let us sup-
pose that is not definite over the alphabet . Then has
two distinct cycles with the same label, one around a state ,
another around a state distinct from . Hence there is in a
cycle around (resp. ) labeled by a word of length for
some positive integer . Since and belong to a common ir-
reducible component of , there is a path labeled by from
to in of length for some positive integer . Let be a
left-infinite sequence ending with a synchronizing word that fo-
cuses to in . Since is the Shannon cover of , the states
and have different follower sets. Let be a right-infinite se-
quence generated by some path in starting at that is not the
label of a path starting at . For any nonnegative integer , the
bi-infinite sequence belongs to . Since is

, this implies that, for a large enough ,
belongs to , which is a contradiction of the fact that is not
generated by a path starting at .

Conversely, let us assume that each irreducible component
of is a definite graph. Since has period , one can order

the irreducible components of into , such
that there is at least one edge from some state in to some
state in in . Each component presents a shift of
finite type over the alphabet , where is a finite
subset of . Let be the set of words in with symbols in
the alphabet . Let with . By
construction . It follows that is and also, by
Lemma 4, .

Corollary 8: Let be an irreducible sofic shift and be
the period of the Shannon cover of . Then the following
assertions are equivalent.

1) is PFT.
2) is .
3) The irreducible components of are definite graphs.

Proof: comes from Proposition 7. We prove
. If is ) for some positive integer , we

get from Lemma 5 that is . It is then also
by Lemma 4. Finally follows from the def-

inition of a PFT shift.

Example 7: The Shannon cover of the interleaved-biphase
shift is illustrated in Fig. 8. The period of the graph is 4, and one
can show that the irreducible components of are finite-type.
If denotes the irreducible component consisting of the central
state in Fig. 8, then , where
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Hence the interleaved-biphase shift is PFT(4), with
and .

This example suggests the following conjecture.
Conjecture 1: Let be irreducible with period . If an ir-

reducible component of is FT with , then
where and , for .

B. Decidability of PFT Property

We now derive from the previous propositions a quadratic-
time algorithm to check whether an irreducible sofic shift pre-
sented by its Shannon cover is PFT.

Proposition 9: Let be an irreducible sofic shift presented
by its -state Shannon cover. It is decidable in time
whether is PFT.

Proof: Let be the Shannon cover of . One first com-
putes the period of . This operation can be performed with
one depth-first search of the graph of in time
(see [31] and [32]).

Since has period , one can define a coloring function
from to such that, whenever there is an
edge from a state to a state , . The
color of each state can be computed through a depth-first-search
of the graph of in time .

One then computes the fiber product graph whose
set of states is the set of pairs , where , are states of

[17]. There is an edge labeled by from to if
and only if there are two edges labeled by from to and
from to . The graph is deterministic over and has at
most states. Then is PFT if and only if there is no cycle
in going through a state with and , having
the same color. Indeed, the existence of such a cycle is equiva-
lent to the existence of two identically labeled cycles in , one
starting at , the other one at with and , in the same
irreducible component of . The existence of such cycles can
be determined in time that is linear in the size of , for in-
stance by inspection of the irreducible components of . The
final worst-case time-complexity is therefore .

Example 8: Let us consider again the biphase shift of Ex-
ample 2. The Shannon cover, shown in Fig. 9, has period 2. For
any 2-coloring, the states 0 and 2 have the same color while 1
has a different color, as illustrated. The fiber product is rep-
resented in Fig. 10. (States and are not shown, as
there are no edges in starting or ending in these states.) Since
the cycles go only through pairs of states with and of
different colors or through pairs with and of the same color
but also with , we conclude that the biphase shift is PFT.

V. PERIODIC FIRST OFFENDERS

In this section, we define a notion of minimal periodic for-
bidden list of a PFT shift for a given period.

Let be a periodic forbidden list of
a shift for some positive period . We say that is periodic
antifactorial if and only if for any and any ,

Fig. 9. A 2-coloring of the Shannon cover of the biphase shift.

Fig. 10. Graph � for checking if the biphase constraint is PFT. Names of
shaded states are shown in bold font. Stranded states are not shown.

The notion of periodic antifactorial list was introduced in [13].
It generalizes the notion of antifactorial language (see [25]). In
particular, the sets of a periodic antifactorial list are prefix-
free and suffix-free codes.

Example 9: The list

with is periodic antifactorial, while the list

with is not periodic antifactorial. Indeed, in the latter list,
, , and .

For any regular periodic forbidden list of a shift , there is
a regular and periodic antifactorial forbidden list of such
that for any . Indeed, one can choose

Periodic antifactorial lists do not seem to satisfy any useful kind
of minimality property among periodic forbidden lists of a PFT
shift. We consider, instead, periodic forbidden lists based upon
sets of periodic forbidden words called periodic first offenders
that were introduced in [14], [15]. Their definition is intended to
mimic that of the first offenders of a shift [18] and to refine the
notion of periodic antifactorial list. A key difference, however,
is that their definition is not intrinsic; rather, it refers specifically
to a presentation of the sofic shift.

We first recall the key properties of the set of first offenders.
A word is a first offender for a shift if but
every proper subword of is in . The collection of first
offenders, , describes the space, , and satisfies the fol-
lowing minimality properties [18], [16, Exercises 1.3.8, 2.1.10]:

1) if and , then ,
2) if is finite and , then

.
Clearly, the words in form an antifactorial list.
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We now introduce an analogous construction for the periodic
scenario. Let be an irreducible presentation of period of
an irreducible sofic shift . The states of are colored in
colors by a coloring function . One has

whenever there is an edge from to .
We denote by the set of states of color , for . We
also say that these states are in phase . We denote by
the list where the sets are the sets of finite
words such that

1) ;
2) for any , ;
3) for any , .

Note that the second condition can be replaced by
, and the third one can be replaced by

. Hence, for , the sets can also
be defined by

Note also that, when is changed into an-
other coloring of the graph in colors, the list

is changed into one of
its conjugates .

Proposition 10: Let be an irreducible presentation with a
coloring of its states in colors. The list is a regular
and antifactorial periodic forbidden list of the sofic shift pre-
sented by .

Proof: Let and let be the sofic shift pre-
sented by . It follows from the definitions that . Con-
versely, let . We will show that every subword of is
in . Up to a power of the shift of the sequence , for any
integers , , we have . We prove by induction
on that and for any .
Since and , we have and

. By definition of , from , we
get . Let us now assume that
and . By definition of , we get

. This implies also . Thus, any
subword of belongs to . This shows that . It is
clear that is antifactorial.

We denote by the size of a periodic forbidden list
for a period . It is defined by

Proposition 11: Let be an irreducible sofic shift and be
an irreducible presentation of with a -coloring . Let be
any regular periodic forbidden list of for the period . If is
finite, is finite and .

Let be another irreducible presentation of with a -col-
oring of its states. Up to a conjugacy, and
are equal.

Proof: We first prove that, up to a conjugacy of , we have
for all . Let us assume that this is

false. For any such that , there exists an integer
, with , such that there is a word

. That is, the word is the label of a
path starting at some state in and .

Since is irreducible, there is a bi-infinite path of labeled by
which contains all the paths as subpaths. Moreover, since
has a -coloring and , one can choose the path

such that and for all integers .
Since , there is an integer such that, for any integer
, . By taking , we get that

, which is a contradiction.
Next, we change into another list such that each proper

prefix of a word in belongs to . For this, one replaces
each word in by its shortest prefix which is not in .
Thus we define by the formula

where . Note that the new
list is still a regular periodic forbidden list of for the period

. Indeed, it is clear that . Conversely, let .
Up to some shift, the word is the label of a path in

such that . Hence, for any , we have
and thus . Thus, and

.
Now, we remove each word which is not in

and add at most one word shorter than into some
as follows, in order to still have a periodic forbidden list

of . If , there are indices , such that
. We add and

remove from . It is important to note that , are unique
in this case. Indeed, let us assume that there are two factors

and of , both shorter than , with in
and in . Since

, and is a suffix of ,
or vice-versa. This contradicts the fact that is periodic
antifactorial. Hence at most one word is added whenever one
is removed.

The new list that we get satisfies . Hence
. Conversely, let . For any integer , there

is an integer such that there is a word with
and . If , then

. If , then there
is (and hence ) such that

. As a consequence . Hence,
and we conclude that .

We now show that . Assume the contrary and
let be a word in . By definition of ,
if with , , we have ,

, and . Hence is the label of a
path in starting at a state and is the label of a path
ending in a state . For any left-infinite word

labeling a path ending at , and any right-infinite word la-
beling a path starting at , the word is in . It is possible
to choose and such that , which contradicts
the fact . Hence . By construction, if is
finite, then is also, and . Thus,

.
We now prove the second statement of the proposition. We

first transform into as above. The size of is less
than the size of if . We then transform

into . Again, the size of is less than the size
of if . It follows that
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Fig. 11. A shift of finite type � over the alphabet � � ��� �� �� �� ��. We
have � � with � � ��� �� �� ��� ��� for the period � � �. We also have
� � with � � ��� �� �� ��, � � ��� �� �� �� for the period � � �. The
size of � is less than the size of � and the period of the Shannon cover of �
is 2.

and the two sets are equal whenever the sizes are equal. By re-
versing the roles played by and ,
we conclude that equality holds and that the two lists are equal,
up to some conjugacy.

Example 10: The Shannon cover of the interleaved-biphase
shift, Fig. 8, has period 4. The periodic first offenders are

The following corollary, a direct consequence of Proposition
11, provides a method to determine whether a sofic shift is PFT,
based on the periodic first offenders.

Corollary 12: Let be an irreducible sofic shift with presen-
tation that admits a coloring . Then the following assertions
are equivalent.

• is PFT.
• is finite.

Moreover, a list of periodic first offenders provides a minimal
description of a PFT shift.

Proposition 13: Let be an irreducible PFT shift with pre-
sentation that has period . For that divides , let
denote the periodic first offenders for the -coloring of . Then

Proof: Let be a finite periodic forbidden list of an irre-
ducible PFT shift for a period . By Proposition 5, one can
obtain from a finite periodic forbidden list of for pe-
riod such that the size of is less than or equal
to the size of . By Proposition 11, .
Hence , which completes the proof.

It was conjectured in [14], [15] that the periodic first offenders
of the Shannon cover, with a period corresponding to the period
of the cover, are the minimal periodic forbidden list for any pe-
riod. The following example shows that this is not true.

Example 11: Let be the shift on the alphabet
presented by the Shannon cover of

Fig. 11. The shift is FT and its minimal periodic for-
bidden list for the period , i.e., its list of first offenders,
is . For the period , which is the
period of the Shannon cover, the periodic first offenders are

. Hence
.

VI. CAPACITY OF PFT SHIFTS

The base-2 capacity, or simply capacity of a sofic shift space
over an alphabet is defined as

It measures the growth rate of the number of words of length
in . In this section, we discuss methods for computing the

capacity of a PFT shift.
It is well known that the capacity of a sofic shift is the log-

arithm of the largest real eigenvalue of the adjacency matrix of
a lossless presentation of the shift [17]. Hence it is straightfor-
ward to determine the capacity from a lossless presentation. In
Section VI-A, we review techniques for generating lossless pre-
sentations of PFT shifts.

In Section VI-B, we present a combinatorial technique for
computing the capacity directly from a periodic forbidden
list. It extends to PFT shifts the computation of the capacity
of FT shifts presented by Pimentel and Uchôa-Filho in [21],
relying on the well-known Inclusion-Exclusion Principle from
enumerative combinatorics [19], [20]. It is also known as
the Goulden–Jackson Cluster Method [34]–[36, III.7.4] (see
also [37]). This combinatorial method provides a much more
efficient means to compute the capacity than the conventional
graph-based method when the lengths of the periodically
forbidden words are large compared to the number of words.

A. Constructing a Lossless Presentation

Suppose one is given a finite, antifactorial list of forbidden
words over an alphabet . The proof of Theorem 2 provides
a method to construct a presentation of the shift with

states, where is the length of the longest word
in . Of course, this construction has complexity exponential
in .

An alternative algorithm was described in the unpublished
masters thesis of Sindhushayana [38]. The construction makes
use of the close connections between symbolic dynamics and
automata theory, a theme that underlies several of the other
techniques we will mention. Although generally more practical
than the straightforward approach, it is not computationally ef-
ficient in the sense of guaranteed time complexity polynomial
in . A similar construction appeared in the unpublished
doctoral dissertation of McEwen [39]. In [25], Crochemore et
al. gave an efficient, automata-theoretic construction of a deter-
ministic presentation that requires time only linear in .

These algorithms for FT shifts can be extended, often natu-
rally, to PFT shifts. McEwen [39] includes such an extension,
and [15] described a generalization of the procedure in [38]. Al-
though neither of these run in polynomial time, for many appli-
cations they are convenient to implement and give insights into
the properties of the PFT shift.

Constrained systems with unconstrained positions, intro-
duced by Wijngaarden and Immink [10] and further studied by
de Souza et al. [11], represent a natural example of PFT shift
spaces. Given a sofic shift , a positive integer , and a subset

of integers modulo , the authors of [11] construct a presen-
tation of the unique maximal subsystem such that any position
modulo in is unconstrained. Beginning with a finite-state
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Fig. 12. Shannon cover corresponding to � � ��� ��, � � �, � � �����,
� � �����.

presentation of the underlying shift , their algorithm in gen-
eral has exponential time and space complexity. However, for
FT shifts, under a certain gap condition that restricts relative
to the memory of the shift, their algorithm is efficient, requiring
only quadratic complexity in space and time. They also provide
an efficient construction for Maximum-Transition-Run (MTR)
constraints with parameter [8], the systems in which the
maximum allowable length of a run of consecutive 1’s is .

Béal et al. [13] also recognized the connection between PFT
shifts and constraints with unconstrained systems. Their con-
struction of a presentation for such a system consists of two
steps. First, they derive a periodic list of forbidden words that
define a maximal subsystem for and , given a prefix-free list

of forbidden words defining the underlying FT shift. The de-
scription of must be in the form of a tree-like deterministic
automaton called a trie [13]. (A linear time and space algorithm
for this step has recently been given in [33].)

In the second step, they invoke a general procedure for con-
structing a finite-state presentation of a PFT shift defined by a
periodic forbidden list. The input to the algorithm is a collection
of tries representing the periodically forbidden words associ-
ated with the phases . They show that this step
has time and space complexity that is linear in the size of the
periodic forbidden list.

Example 12: Suppose we would like to determine the ca-
pacity of the PFT(2) shift space over the alphabet with

and . Following the procedure in
[13], one may construct a lossless presentation of the shift, with
Shannon cover illustrated in Fig. 12. The corresponding adja-
cency matrix

has largest real eigenvalue

and the capacity is

B. Combinatorial Determination of Capacity

The method we describe here is a computation of the ca-
pacity directly from the periodic forbidden list. As mentioned

in the Introduction, it extends to periodic-finite-type shifts the
computation of the capacity of shifts of finite type presented by
Pimentel and Uchôa-Filho in [21], based upon the combinato-
rial Inclusion-Exclusion Principle [19], [20], also known as the
Goulden-Jackson Cluster Method [34, Sec. III.7.4]–[37].

Let us assume that , where is some finite antifac-
torial periodic forbidden list for a period . (Note that if the
given list is not antifactorial, it can be changed into one that is
in linear time [13].) Denoting the cardinality of by
for convenience, we define the generating series counting the
number of factors of :

(1)

It is known (see for instance [40]) that is a rational series
and that is , where is the radius of convergence
of .

Recalling the definition of the set in Section III-A, we
denote by (for ) the set of factors of
such that , for some .

We set , and define the generating series
of the integers :

(2)

For an irreducible PFT shift , it is known that

(3)

and is , where is the radius of convergence of
.

Let and let . If , we denote by
the number of occurrences of a factor of such that

and . We denote by the number
of ways to choose indices such that there is a factor of
with and . Note that .
Finally we define

By the Inclusion-Exclusion Principle, each word of length
contributes 0 to if it contains at least

one word , where . It contributes 1
otherwise, i.e., when it belongs to . Indeed, let be a
word of length with occurrences of words such
that and . Then

. It is equal to 0 if and to 1 if
.

We deduce that

(4)

We define the following bivariate generating series:

(5)
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Fig. 13. The word � belongs to ��� �� � ��� �� since � � ��, � � �	 and
� � � .

(6)

(7)

It follows from (2), (4), and (7) that

Example 13: We consider the PFT shift over the
alphabet for a period with

This list of periodically forbidden words defines the
TMTR(2,2,3,3) constraint. This constraint can be described
as follows. The number of consecutive 1’s ending at the time
indices and is at most 2, while the number
of consecutive 1’s ending at the time indices and

is at most 3. It is not difficult to see that this descrip-
tion is equivalent to saying that the block 111 is forbidden when
it begins at the time indices 0 or , and the block 1111
is forbidden when it begins at the time indices . Hence
the TMTR(2,2,3,3) constraint is described by the shift .

Let . It has the word 111 of as a factor
at position 4, the word 111 of as a factor at position 5, and
the word 1111 of as a factor at position 6. Hence it con-
tributes 1 to , 3 to , to , 1
to , and 0 to for . Its total contri-
bution to is .

Now let . It contributes 1 to the sum
since it contributes 1 to and

0 to for .
We now describe how to compute the bivariate series .

Let be a finite periodic forbidden list. If
is a nonempty set, we define the set .

If is the empty set we denote by the singleton containing
the integer . We denote by the union of the . Note that the
size of is at most .

Let and be in . We denote by the
set of nonempty words such that there are nonempty words ,

with , and (see Fig. 13).
We define a square matrix with entries indexed by

as follows. For any , , , in ,

Fig. 14. An example of a 3-overlapping decomposition of the word
� � � � � .

Example 13 (continued): The matrix for the periodic
forbidden list of period 4 of Example 13 is the following

matrix with .

Let . We denote by
the set of -tu-

ples of nonempty words such that, for
, (see Fig. 14).

The -tuple is called a -overlapping
decomposition of the word . Note that

is obtained by concatenating
all words in to all -tuples in

.
For any word , we denote by the number of
-overlapping decompositions of in all

such that and .
For , , we define the bivariate series

where .
We define the -matrix

We then define the matrix as follows: For any
, in , ,

if ,
otherwise,

Example 13 (continued): The matrix for the periodic
forbidden list for period 4 in Example 13 is an matrix
with .

We define a -matrix as follows. For any ,
in and ,

if ,
otherwise,
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if ,
otherwise.

Example 13 (continued): The matrix for the periodic
forbidden list for period 4 in Example 13 is an matrix
with .

Note that in this example and are square matrices
since .

Therefore, for , , we get

where is the column characteristic vector of .
Hence

where is the identity matrix.
Finally, we define a square matrix . For any ,

,

if ,
otherwise.

Example 13 (continued): The matrix for the periodic
forbidden list of period 4 of Example 13 is an matrix
with .

Let be an automaton, i.e, a la-
beled graph, whose edges are labeled in and defined as
follows. There is in an edge labeled by for each letter of
the alphabet from the state to the state . There
is an edge labeled by from the state to
the state for each word . The cover is pictured in Fig. 15
for .

We claim that, for any , the bivariate series
, seen as a series in

, enumerates the labels of paths in starting at the state . In-
deed, let be a word and let us choose indices such that
there is a factor of with and .
The sequence can be decomposed into sequences
of elements such that and, if

, ,
is an overlapping decomposition in .

Fig. 15. The automaton � for the period � .

Note that overlapping occurrences of periodic forbidden words
always correspond to a decomposition in some
since is antifactorial.

Thus the paths of starting at the state and labeled by
count all such choices of the indices . Since is the
number of choices of indices such that there is a factor
of with and , the series
enumerates the labels of paths in starting at the state . Hence
the bivariate series enumerates the labels of all paths
in .

As a consequence,

We get

(8)

As a consequence, is , where is the positive root
of minimum modulus of

(9)

Example 13 (continued): For the periodic forbidden list of
period 4 of Example 13, the series is1

The capacity of is , where is the positive root of
minimum modulus of

We get and .

Example 14: We consider the PFT shift over the
alphabet for a period with

1Obtained with a MuPAD computation.
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The matrices , and , with
are

The series is

The capacity of is , where is the positive root of

minimum modulus of We get . This
PFT shift has the same capacity as the PFT shift of Example 13.
See [9] for a classification of the capacities of the
constraints where is a positive integral vector with length up
to four.

Example 15: We consider the PFT shift over the
alphabet for a period with

The matrices , and , with
are

The series is

The capacity of is , where is the positive root of min-
imum modulus of . This time-varying constraint
has a capacity approximatively 0.8791464216. This capacity is
equal to the capacity of the MTR(2) constraint (see [41] for the
relationship between these two constraints).

VII. CONCLUSIONS

We have introduced the class of periodic-finite-type (PFT)
shift spaces. This class of sofic shifts lie between the class of
finite-type shifts and almost-finite-type shifts. We proved sev-
eral properties of graph presentations of these spaces. For a
given PFT space, we identified a particular list of periodically
forbidden words, the periodic first offenders, that enjoy cer-
tain minimality properties with respect to other forbidden lists
defining the space. Finally, we consider the calculation of the
capacity of a PFT shift. We present a straightforward algorithm
to construct a graph presenting a PFT space that can be used to
determine the capacity of the constraints. We also present a quite
different method which relies upon techniques from enumera-
tive combinatorics and that appears to be very effective when
the size of the periodic forbidden blocks is large compared to
the number of blocks in the list.
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