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Abstract

We introduce the class of periodic-finite-type (PFT) shift spaces. They are

the subclass of shift spaces defined by a finite set of periodically forbidden words.

Examples of PFT shifts arise naturally in the context of distance-enhancing codes

for partial-response channels. We show that the class of PFT shifts represent a

proper superset of the finite-type shift spaces and a proper subset of almost-finite-

type shift spaces. We prove several properties of labeled graphs that present PFT

shifts. For a given PFT shift space, we identify a finite set of forbidden words

– referred to as “periodic first offenders” – that define the shift space and that

satisfy certain minimality properties. Finally, we present an efficient algorithm for

constructing labeled graphs that present PFT shift spaces.

1 Introduction

Magnetic recording systems often make use of binary codes that disallow the appearance

of certain sequences that are problematic in the data recording or retrieval process. In

systems using partial-response equalization and sequence detection, so-called “distance-

enhancing” constrained codes have been proposed to increase the minimum distance at

the output of the underlying intersymbol-interference channel by forbidding a finite set

of binary patterns, e.g., [1, 2, 3]. The set of allowable code sequences are generated by

paths in a labeled, directed graph. Such sets of constrained sequences are referred to as
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sofic shift spaces in the symbolic dynamics literature and form a subset of the class of

shift spaces [4], often referred to simply as shifts.

Recently, several distance-enhancing constrained codes have been introduced that

forbid the appearance of certain patterns in a periodic manner. For example, the time-

varying maximum-transition-run (TMTR) constraint forbids the string 111 from begin-

ning at odd indices of a sequence, e.g., [5, 6, 7]. In this paper, we examine properties of

sets of sequences that satisfy such time-varying constraints, and establish their relation-

ship to, and position within, the more familiar class of shift-invariant code constraints.

In Section 2, we review basic concepts and terminology from the theory of constrained

systems, and we formally define the class of periodic-finite-type (PFT) sequence spaces.

In Section 3, we show that PFT sequence spaces are sofic shift spaces, and we prove

several properties of labeled graphs that present them. In particular, we demonstrate

that finite-type shift spaces are a proper subclass of PFT shift spaces, which, in turn, are

a proper subclass of almost-finite-type shifts. In Section 4, for a given PFT shift space,

we identify a finite set of forbidden words – referred to as “periodic first offenders” – that

define the shift space and that satisfy certain minimality properties. Finally, in Section

5, we present an efficient algorithm for constructing labeled graphs that present a PFT

shift space specified by a given list of forbidden words. The complexity of the method

grows linearly with the length of the longest word and the number of words in the list.

Section 6 concludes the paper.

2 Periodic-Finite-Type Sequence Spaces

2.1 Background and notation

Let AZ denote the set of bi-infinite sequences

x = . . . x−3x−2x−1x0x1x2 . . .

whose symbols are drawn from a finite alphabet A,

AZ def
= {x|xi ∈ A, ∀i ∈ Z}.
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A finite block of consecutive symbols in such a sequence x will be referred to as a word.

To specify the position of a word within a sequence x, we use the notation

x[i,j]
def
= xixi+1 · · ·xj ,

where i ≤ j. (When the context is clear, we will also sometimes use x to denote a word.)

We define A∗ to be the collection of all words over A, including the empty For x ∈ A∗,

we denote by |x| the length of x, i.e., the number of x contains w, if there exist indices

i ≤ j such that w = x[i,j]. The shift map σ takes a sequence x to the sequence y = σ(x)

with ith coordinate yi = xi+1. The inverse of the shift map takes a sequence y to

x = σ−1(y) with ith coordinate xi = yi−1.

Let F be a collection of words over A and let XA
F denote the subset of AZ consisting of

all bi-infinite sequences that do not contain a word from F . In this context F is referred

to as a forbidden list. A shift space is a set X = XA
F . This terminology reflects the fact

that X is invariant under the operation of the shift map, i.e., σ(X) = X. A shift space

is a shift of finite type if there exists a finite set F such that X = XA
F .

It will be useful to have a concept for the collection of words contained in a shift

space. Let Bn(X) denote the set of all length-n words that occur in elements of a shift

space X. The language of X is the collection

B(X)
def
=

∞⋃
n=0

Bn(X),

where B0(X) = ε, the empty word. The language of a shift space completely determines

the space [4, Proposition 1.3.4], i.e., two shift spaces are equal if and only if they have

the same language.

Consider BN (X) as an alphabet and define the Nth higher power code γN : X →

(BN (X))Z by

(γN(x))[i] = x[iN,iN+N−1].

The image of X under γN , X
N def
= γN(X), is referred to as the Nth higher power shift of

X.

Let X be a shift space over A, and let Ψ : Bm+a+1(X) → Γ be a map from allowed

(m+a+1)-blocks in X to symbols in an alphabet Γ. The sliding block code with memory
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m and anticipation a induced by Ψ is the map ψ : X → ΓZ defined by

y = ψ(x),

where, for x ∈ X,

yi = Ψ(x[i−m,i+a]).

A sliding block code ψ : X → Y is a conjugacy from X to Y if it is invertible. In such a

case, the shifts X and Y are said to be conjugate.

2.2 Periodic-Finite-Type Sequence Spaces

We now introduce the notion of a PFT sequence space. Let F be a finite collection

of words over a finite alphabet A where each wj ∈ F is associated with a non-negative

integer index nj . We write F =
{
w

(n1)
1 , w

(n2)
2 , . . . , w

(n|F|)

|F|

}
and associate with the indexed

list F a period T , where T is a positive integer satisfying

T ≥ max{n1, n2, . . . , n|F|}+ 1.

We will refer to an indexed list with its period as the pair {F , T}.

Definition 1 For a pair {F , T} and alphabet A, define the sequence space XA
{F ,T}

def
=

{x|x ∈ AZ and ∃k ∈ [0, T−1] such that for each w
(nj)
j ∈ F and for all m ∈ Z, if m mod T =

nj then σk(x)[m,m+|wj |−1] �= wj} where, for m < 0,

m mod T
def
=




0 , if |m| mod T = 0

T − |m| mod T , otherwise.

For {F , T} finite, we say XA
{F ,T} is a periodic-finite-type sequence space. �

We will often simply write X{F ,T} in place of XA
{F ,T} when the particular alphabet is

clear or not relevant. X{F ,T} denotes the set of bi-infinite sequences which can be shifted

such that the shifted sequence does not contain a word w
(nj)
j ∈ F starting at any index

m with m mod T = nj . Note that X{F ,T} is shift-invariant, i.e., σ(X{F ,T}) = X{F ,T}.

A sequence space X{F ,T} can be described by many different pairs of indexed lists and

periods. For example, if one forms a list F ′ from F by adding one, modulo T , to the
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index of each word in F then X{F ,T} = X{F ′,T}. We can also construct a pair {F ′, T} such
that X{F ,T} = X{F ′,T} and all words in F ′ have the same length, or the same index, or

both. The first may be accomplished by replacing each w in F with the words obtained

by appending all |A|l−|w| suffixes to w, where l > maxw∈F |w|, so that each word in F ′

has length l. The second may be accomplished by replacing each w(n) in F for n �= 0

with the words obtained by prepending all |A|n prefixes of length n to w and associating

index 0 with each resulting word. A list that satisfies both properties can be constructed

by applying the second transformation followed by the first.

3 Graph Presentations of Periodic-Finite-Type Spaces
In this section, we show that periodic-finite-type (PFT) sequence spaces are sofic shifts

and discuss some properties of the graphs that present them. We begin by introduc-

ing some relevant definitions and notation from symbolic dynamics and the theory of

constrained systems. A more thorough discussion of these topics may be found in [4].

3.1 Background on Labeled Graphs and Sofic Systems

A graph G = (V, E ,L) consists of a finite set V = V(G) of vertices (or states), a set

E = E(G) of edges connecting the states, and a labeling L : E → A, that assigns a label

to each edge. Each edge e will be directed, with an initial state, i(e) ∈ V, and terminal

state, t(e) ∈ V. A path in the graph denotes a finite block of edges π = e1e2 · · · eN such

that t(ej) = i(ej+1) for j = 1, . . . , N − 1. For a path π = e1e2 · · · eN , we say the initial

state i(π) = i(e1), and the terminal state t(π) = t(eN ). A path π is a cycle if i(π) = t(π).

The label of π is the word L(π) = L(e1)L(e2) . . .L(eN).

A walk on G is a bi-infinite sequence of edges ξ = · · · e−1e0e1 · · · such that t(ej) =

i(ej+1) for all j. The label of a walk ξ is the sequence

L∞(ξ)
def
= · · · L(e−1)L(e0)L(e1) · · · .

A graph G is irreducible if for any pair of states I, J ∈ V there exists a path π in G
with i(π) = I and t(π) = J . An irreducible component of a graph G is a maximal (with

respect to inclusion of vertices) irreducible subgraph of G.

A vertex I ∈ V is stranded if either no edges start at I or no edges terminate at I. A

graph is essential if no vertex is stranded.
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A graph has local anticipation a if a is the smallest nonnegative integer such that, for

each i ∈ V(G), all paths of length a+1 that start at i and have the same label start with

the same edge. Similarly, a graph has local memory m if m is the smallest nonnegative

integer such that, for each i ∈ V(G), all paths of length m+1 that end at i and have the

same label end with the same edge. G is deterministic if it has local anticipation 0, i.e.,

if edges with the same initial state have distinct labels.

A sofic shift XG is the set of sequences obtained by reading the labels of walks on G,

XG
def
= {x |L∞(ξ) = x for some ξ a walk on G}.

Any graph G has a unique essential subgraph H such that XG = XH [4, Proposition

2.2.10].

We say G is a presentation of XG, or G presents XG . Every sofic shift has a determin-

istic presentation [4, Theorem 3.3.2] and we say a sofic shift is irreducible if it has an

irreducible presentation. We say a sofic shift is almost-finite-type if it has a presentation

with finite local anticipation and finite local memory. Since all sofic shifts have a deter-

ministic presentation, a sofic shift is almost-finite-type if and only if it has a deterministic

presentation with finite local memory.

All sofic shifts are shift spaces [4, Theorem 3.1.4]. Hence, for every XG there exists a

set of words F such that XG = XF .

Although there are many graphs which present the same sofic shift, there is a unique,

up to graph isomorphism, deterministic graph presenting an irreducible sofic shift with

the minimal number of states [4, Theorem 3.3.18]. This graph is referred to as the

Shannon cover of the shift. Given a graph presenting an irreducible sofic shift, one can

obtain the Shannon cover via determinizing and state-minimizing algorithms, e.g., [4, pp.

92], [8, pp. 68].

The follower set FG(I) of state I in G is the collection of labels of paths starting at I,

FG(I)
def
= {L(π)|L(π) ∈ B(XG) and i(π) = I}.

Note that ⋃
I∈V(G)

FG(I) = B(XG).
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The Nth higher power graph GN of G is the graph with vertex set V(GN) = V(G),
and one edge in GN from I to J with label L(π) for each path π of length N from I to J

in G. The Nth higher power graph presents the Nth higher power shift, XGN = (XG)
N .

G is T -partite if the vertices of G may be divided into T disjoint subsetsD0, D1, . . . , DT−1

such that any edge that begins in Di terminates in D
(i+1) mod T

. For I, J ∈ V(G), let
AIJ denote the number of edges from I to J in G. The adjacency matrix of G is the

|V(G)| × |V(G)| matrix AG = [AIJ ]. The period of state I, denoted per(I), is the great-

est common divisor of those integers n for which (An
G)II > 0. The period of a matrix

A, denoted per(A), is the greatest common divisor of the periods of the states in A.

The period of a graph G, denoted per(G), is the period of its adjacency matrix; i.e.,

per(G) def
= per(AG). For irreducible G, the periods of the states are the same [4, Lemma

4.5.3], hence if per(AG) = T then G is T -partite, and the sets D0, D1, . . . , DT−1 are

referred to as the T period-classes of the graph.

The T -cascade of a graph G is the T -partite graph with vertex set given by T copies

V0,V1, . . . ,VT−1 of the vertex set V(G) and exactly one edge e from I ∈ Vi to J ∈
V

(i+1) mod T
for each edge e from I to J in G.

Finally, we note that if G is irreducible with per(AG) = p, and T is a positive integer,

then GT decomposes into q irreducible componentsH0,H1, . . . ,Hq−1, where q = gcd(p, T )

[9, Theorem 3.5]. Moreover, it is easy to verify that each component XHi has period p/q,

and all of the components are conjugate.

3.2 Graph Presentations of Periodic-Finite-Type Sequence Spaces

The following theorem, an analogue to [4, Theorem 3.1.5] for shifts of finite type, estab-

lishes that PFT sequence spaces are sofic shifts.

Theorem 1 Every periodic-finite-type sequence space is a sofic shift space.

Proof: Let X{F ,T} be a PFT sequence space. Assume, without loss of generality, that

all elements of F have length l and index 0. Construct a labeled graph G as follows.

LetH be the graph with vertex set V(H) = Al, the set of all l-blocks of letters fromA.
For any two states I = a1a2 . . . al and J = b1b2 . . . bl in V(H), if a2a3 . . . al = b1b2 . . . bl−1

then there is an edge in E(H) from I to J with label bl.
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Let G′ be the T -cascade of H with vertex sets V0,V1, . . .VT−1. Form the graph G

from G′ by deleting each vertex, as well as the edges starting and terminating at the

vertex, I = a1a2 . . . al ∈ V
l mod T

such that I = w for some w ∈ F . We will show that

X{F ,T} = XG.

Choose x = · · ·x−1x0x1 · · · ∈ XG. Let Vk ⊆ V(G) be the set of vertices such that

i(L−1(x0)) ∈ Vk. Then ∀m ∈ Z and each w ∈ F , if m mod T = 0 then σk(x)[m,m+l−1] �=
w. Therefore x ∈ X{F ,T} and XG ⊆ X{F ,T}.

To show the reverse inclusion, choose x ∈ X{F ,T}, and let k be an integer such that

∀m ∈ Z and each w ∈ F , ifm mod T = 0 then σk(x)[m,m+l−1] �= w. Since G′ presents AZ,
σk(x) is the label of a walk on G′. Let ξ be the walk on G′ such that L∞(ξ) = σk(x) and

i(ξo) ∈ V0. Suppose an edge in ξ is deleted when constructing G. Then σk(x)[m,m+l−1] = w

for some w ∈ F and m ∈ Z with m mod T = 0, a contradiction. Therefore x ∈ XG and

X{F ,T} ⊆ XG. �
The constructive proof of Theorem 1 provides a straightforward method to obtain a

graph presenting a PFT shift. The drawback of using this method in practice is the size

of the initial representation, which grows exponentially with the length of the longest

element in F . In Section 5 we discuss an algorithm whose complexity grows linearly in

F .

In view of Theorem 1, we make the following definitions.

Definition 2 A shift space X is a shift of periodic-finite-type if there exists a pair {F , T}

with |F| and T finite such that X = X{F ,T}.

Definition 3 X is a proper periodic-finite-type shift space if X is periodic-finite-type

but there is no pair {F , T} with |F| finite and T = 1 such that X = X{F ,T}.

The proper PFT shifts are those that have a non-trivial description as a finite indexed

forbidden list. For any proper PFT shift there exists a word that is allowed in some, but

not all, positions.

Example 1 The well-known “biphase shift” is a PFT shift with F = {00(0), 11(0)}, and
T = 2. Let G be the corresponding graph constructed by following the steps described

in the proof of Theorem 1. Fig. 1 illustrates G, where the cascade is represented by

re-drawing V1 and deletions are shown as dashed lines. The Shannon cover, illustrated

in Fig. 2, may be obtained by applying a state-minimization algorithm to Fig. 1. One
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can verify that XG is not finite-type [4, Theorem 3.4.17]; i.e., there is no finite list F such

that XG = XF . Therefore, the biphase shift is a proper PFT shift space �

V1 V1V0

00 00

01 01

10 10

11 1111

10

00

01

0 0

0

0

0

1

1

1

1

1

1

1

1

0

00

0

Figure 1: G presenting X{{00(0),11(0)},2}.

How can one, in general, determine if a graph presents a PFT shift? The following

propositions address this question. Proposition 1 gives a necessary condition for an

irreducible sofic shift to be a proper PFT shift. Proposition 2 gives a sufficient condition

for an irreducible sofic shift to be PFT, and a method to determine a corresponding

indexed list and period. Proposition 3 is a converse to Proposition 2.

Proposition 1 Let G be an irreducible presentation of XG. If XG is a proper periodic-

finite-type shift with XG = X{F ,T} then gcd(per(AG), T ) �= 1.

Proof: Let G be an irreducible presentation of a proper PFT shift. Choose {F , T} with

T > 1 and F finite such that XG = X{F ,T}. Suppose that gcd(per(AG), T ) = 1. Choose

a word w(n) ∈ F and state I ∈ V(G) such that w ∈ FG(I). From irreducibility of G, we

can choose a word v such that L−1(wv) is a cycle. Choose a cycle π with i(π) = t(π) = I
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0

1

0

1

Figure 2: Shannon cover of X{{00(0) ,11(0)},2}.

such that T and l = |π| have no common divisors greater than 1. Put u = L(π). One

can choose q0, q1, . . . , qT−1 such that

x = · · ·w(n)vuq0w(n)vuq1 · · ·w(n)vuqT−1 · · ·

is the label of a path on G and w appears in x at all indices 0, . . . , T − 1, mod T .

Therefore, x /∈ X{F ,T}, contradicting the assumption that XG = X{F ,T}. We conclude that

gcd(per(AG), T ) �= 1. �

Example 2 Magnetic recording channels often use a code to control the maximum and

minimum spacing between transitions in the two-level recorded waveform. The corre-

sponding code constraints are referred to as (d, k) run-length-limited (RLL) constraints,

where d and k denote the minimum and maximum number of 0’s between 1’s in the al-

lowed set of binary sequences. In this context, referred to as NRZI notation, a 0 denotes

no transition in the recorded signal and a 1 denotes a transition. Hence d constrains the

minimum spacing between transitions and k constrains the maximum spacing between

transitions. Fig. 3 illustrates a graph which presents the shift space containing all valid

(d, k) sequences. Aside from the trivial case where d = k, we find per(AG) = 1; hence

(d, k) shifts are not proper PFT. �

Example 3 The graph G in Fig. 4 is the Shannon cover of a finite-type constraint that

we will refer to as the abcd shift. Clearly per(AG) = 2, but the shift is not proper PFT.�
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0 1 d-1 d d+1 k-1 k
0

1 111

0 0 0 0 0

Figure 3: Graph presenting the (d, k) shifts.

a b

c d

Figure 4: Graph presenting the abcd shift.

Example 4 The time-varying maximum-transition-run (TMTR) shift [5, 6, 7] is a PFT

shift with F = {111(0)}, and T = 2. The Shannon cover G is shown in Fig. 5. Note that

per(AG) = 2. It is easy to verify that the TMTR shift is not finite-type; for example, note

that G contains the Shannon cover of the biphase shift, Fig. 2, as a subgraph. Hence,

the TMTR shift is proper PFT. �

0

1

0

01

1

0

Figure 5: Shannon cover of the TMTR shift.

Example 5 The even shift is presented by the irreducible graph in Fig. 6. It is well-

known and easily verified that this shift is not finite-type. By inspection, we see that

per(AG) = 1. Therefore the even shift is not proper PFT. �

Let φ denote the mapping that assigns indices to words, φ(w, k)
def
= w(k), and φ−1(w(k))

def
=

w. We use the notation φ(F , k) to denote the indexed list of words obtained by assigning

the index k to each of the words in F .

Proposition 2 Let G be an irreducible presentation of XG. If there exists an integer

T ≥ 1 such that an irreducible component of GT is finite-type over AT then XG is periodic-

finite-type. Furthermore, if H is an irreducible component of GT and F ′ ⊆ (AT )∗ is a
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0

1

0

Figure 6: A presentation of the even shift.

finite list such that XAT

F ′ = XH, then XG = X{F ,T} where F = φ(F ′, 0).

Proof: Let G be an irreducible graph, and H an irreducible component of GT such that

XH = XAT

F ′ . Assume, without loss of generality, that all words in F ′ have length l. Let

F = φ(F ′, 0). We will show that X{F ,T} = XG .

Choose x ∈ XG and an integer k such that y = γT (σ
k(x)) is presented by a walk on

H. The sequence y does not contain any w ∈ F ′. Hence ∀m ∈ Z and each w ∈ F , if m

mod T = 0 then σk(x)[m,m+l−1] �= w. Therefore x ∈ X{F ,T} and XG ⊆ X{F ,T}.

For the reverse inclusion, choose x ∈ XG
c. For each integer k, put

y(k) = γT (σ
k(x)).

Suppose that, for some k, y(k) is presented by a walk on H. Then y(k) ∈ XH ⊆ XGT ,

and σk(x) = γ−1
T (y(k)) ∈ XG , a contradiction. Hence, for all k, y(k) ∈ Xc

H, and each

y(k) contains a word in F ′. Therefore, for all k, there exists m ∈ Z and w ∈ F such

that m mod T = 0 and σk(x)[m,m+l−1] = w. Hence x ∈ Xc
F and XG

c ⊆ X{F ,T}
c, implying

X{F ,T} ⊆ XG. �

Example 6 Let G be the Shannon cover of the interleaved-biphase shift illustrated in

Fig. 7. G has four period classes, emphasized in the figure by use of different symbols for

the corresponding vertices. One can show that T = 4 is the smallest integer for which

an irreducible component of GT is finite-type over AT . Letting H denote the irreducible

component of G4 consisting of the central state in Fig. 7, we have XH = XF ′ , where

F ′ = {0000, 0001, 0010, 0100, 0101, 0111,

1000, 1010, 1011, 1101, 1110, 1111}.

12



Hence, by Proposition 2, the interleaved-biphase shift is PFT, i.e., XG = X{F ,T}, where

F = {0000(0), 0001(0), 0010(0), 0100(0), 0101(0), 0111(0),

1000(0), 1010(0), 1011(0), 1101(0), 1110(0), 1111(0)},

and T = 4, which may be verified via the constructive proof of Theorem 1. �

00

0 1

01

01

1

101

Figure 7: Shannon cover of interleaved-biphase shift.

Proposition 3 Let X{F ,T} be periodic-finite-type. Then there exists a presentation G of

X{F ,T} such that a component of XGT is finite-type over AT .

Proof: Assume, without loss of generality, all elements of F have length kT , for some

integer k, and index 0. Let G be the T -partite graph constructed following the proof of

Theorem 1 with vertex sets V0, . . . ,VT−1. Let H be the component of GT with vertex set

V0. We claim that

XH = XAT

F ′

where F ′ = φ−1(F) is the list obtained by removing the indices of words in F .

Indeed, the vertices of H are the allowed kT -blocks in XAT

F ′ , and there is an edge e

from a1a2 . . . ak to b1b2 . . . bk if and only if a2a3 . . . ak = b1b2 . . . bk−1 and a1a2 . . . akbk is in

B(XAT

F ′ ), where ai, bi ∈ AT . Hence H is a presentation of XAT

F ′ , e.g., [4, Theorem 3.1.5]. �
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The following lemma provides a sufficient condition for a sofic shift to be almost-

finite-type.

Lemma 1 Let G be an irreducible, deterministic presentation of a shift X. If there exists

an integer T such that an irreducible component of GT presents a finite-type shift over

AT , then X is almost-finite-type.

Proof: Suppose the shift space presented by an irreducible component of GT is finite-

type over AT . The spaces presented by the components of GT are conjugate, hence they

are all finite-type [4, Theorem 2.1.10]. Choose i ∈ V(G) and let H be the component

of GT with i ∈ V(H). Since H is deterministic and finite-type, there exists an integer m

such that for any sequence x = x−m, · · · , x0 ∈ (AT )m+1 the set of paths e = e−m, · · · , e0

on H that generate x all agree in edge e0. Now let γ = γ−(m+1)T+1, · · · , γ0 and γ′ =

γ′
−(m+1)T+1, · · · , γ′

0 be paths of length (m + 1)T on G that terminate at i and generate

the same sequence. Then γ0 = γ′
0, hence G has finite local memory and X is almost-

finite-type. �
We will make use of the following lemma, which is a restatement of [9, Lemma 2.8].

Lemma 2 Let X be an irreducible sofic shift, and let G be such that X ⊆ XG. Then

there exists an irreducible component G′ of G such that X ⊆ XG′. �

The following Theorem is an immediate consequence of Proposition 3 and Lemmas 1

and 2.

Theorem 2 The irreducible periodic-finite-type shift spaces are almost-finite-type. �

Remark The biphase shift and interleaved-biphase shift of Examples 1 and 6, re-

spectively, are both proper PFT. The theorem confirms the well-known fact that both

shifts are almost-finite-type. On the other hand, the even shift of Example 5 is almost-

finite-type, but it is not PFT.

It is known that the sliding block coding theorem [4, Theorem 5.5.6] holds for almost-

finite-type systems [10]. Therefore there exist sliding-block-decodable finite-state codes

into irreducible PFT shifts at rational rates less than or equal to the Shannon capacity

of the shift.

Fig. 8 illustrates how PFT shift spaces fit into the family of subclasses of shift spaces.

14



Finite-type

Periodic-finite-type

Almost-finite-type 

(d,k) Even system

Sofic

abcd

Biphase

Biphase
Interleaved

TMTR

Figure 8: Relations between shift spaces.

4 Periodic First Offenders
A shift space may be represented by various forbidden lists. For example, the space

X
{0,1}
{11111,0111} is equivalent to X

{0,1}
{111}, since 11111 and 0111 are forbidden to occur in a

sequence if and only if 111 is forbidden to occur. It is useful to have a unique, minimal

forbidden list that describes a shift space. Such a minimal description is well known for

general shift spaces, e.g., [11],[4, Exercises 1.3.8,2.1.20].

Result 1 For any shift space X, there exists a unique forbidden list O that is minimal

relative to any other list F in the sense that

1) if F ⊆ O and X = XF = XO, then F = O,

2) if F is finite and X = XF = XO, then
∑
w∈O

|w| ≤
∑
w∈F

|w|.

The set satisfying these properties is referred to as the list of first offenders. The set

is composed of all words w such that w does not appear in any word of X, but every

sub-word of w does. �

We now extend the concept of first offenders to PFT shift spaces.

Let G be the Shannon cover of an irreducible sofic shift, T = per(AG), andD0, D1, . . . , DT−1

the period classes of G. An indexed word w(n) = (w0, w1, . . . , wl−1)
(n) is a periodic first

offender for period class n if w /∈
⋃

I∈Dn
FG(I) but, for all i, j ∈ [0, l− 1], with i ≤ j and

w[i,j] �= w, w[i,j] ∈
⋃

I∈D(n+i) mod T
FG(I). Note that if T = 1 the periodic first offenders are

the first offenders.
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Theorem 3 Let XG be an irreducible sofic shift, T the period of the Shannon cover, and

O the collection of all periodic first offenders. Then XG = X{O,T}.

Proof: Let G be the Shannon cover of an irreducible sofic shift. Put T = per(AG) and

let D0, D1, . . . , DT−1 be the period classes of G. Let O be the collection of periodic first

offenders for XG.

Choose x ∈ XG. Let DT−k be the period class such that i(L−1(x0)) ∈ DT−k. Choose

w
(nj)
j ∈ O and an integer m such that m mod T = nj . Note that i(L−1(xk+m)) ∈

D(T−k+k+m) mod T = Dnj . Hence σk(x)[m,m+|wj |−1] = x[k+m,k+m+|wj|−1] �= wj. Therefore

x ∈ X{O,T} and XG ⊆ X{O,T}.

To show the reverse inclusion, choose

v ∈ B(XG)
c =

⋂
I∈V(G)

FG(I)
c.

Put v = v0v1v2 · · ·vl−1. For each Dk, v is either a periodic first offender for Dk or a

sub-word v[p,q] is a periodic first offender for D
(k+p) mod T

, i.e., for each k ∈ [0, T − 1],

∃w(nj)
j ∈ O and p ∈ Z such that (k + p) mod T = nj and v[p,p+|wj|−1] = wj. Let x

be a bi-infinite sequence that contains v. Suppose x[n,n+l−1] = v. Then for any (n −

k) mod T , there exists p ∈ Z and w
(nj)
j ∈ O such that (n − k + p) mod T = nj and

σk(x)[n+p−k,n+q−k] = v[p,q] = wj. In other words, for each k ∈ [0, T − 1], ∃w(nj)
j ∈ O and

m ∈ Z such that m mod T = nj and σk(x)[m,m+|wj |−1] = wj. Hence v ∈ B(X{O,T})
c,

B(XG)
c ⊆ B(X{O,T})

c, and XG ⊇ X{O,T}. �

Example 7 Let G be the Shannon cover of the interleaved-biphase shift discussed in

Example 6 and illustrated in Fig. 7. In this case, T = per(AG) = 4, and one can show

that the list of periodic first offenders is given by

O = {000(0), 000(1), 010(0), 010(1),

101(0), 101(1), 111(0), 111(1)}.

�

The following theorem establishes that the periodic first offenders are the unique

minimal forbidden word description of the space for the given period.
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Theorem 4 Let O, T be the periodic first offenders of the irreducible shift X{O,T}. Sup-

pose X{F ,T} = X{O,T} for some pair F , T. If F ⊆ O, then F = O. If F is finite then

|O| ≤ |F| and
∑

w∈O |w| ≤
∑

w∈F |w|.

Proof: Construct the Shannon cover and associate the period classes D0, D1, . . . , DT−1

with the corresponding indices of words in O and F , i.e., such that there is no path

starting from period class Dk with label w(k). Choose w(k) ∈ O, w = w0w1 . . . wl−1.

Construct a right infinite path with i(L−1(w1)) ∈ D
k+1 mod T

and corresponding label

w1w2 · · ·wl−1ulul+1 · · ·

and a left infinite path with label

· · ·u−2u−1w0w1 · · ·wl−2.

By definition, there is no bi-infinite path on the graph with i(L−1(w1)) ∈ D
k+1 mod T

and label

· · ·u−2u−1w0w1 · · ·wl−2wl−1ulul+1 · · ·

Therefore, a sub-word of this sequence is not allowed from the associated period class.

Hence there exists v ∈ F with appropriate index that contains w and no other element

of O with matching index. This establishes a bijective mapping of O to F . �
We have seen that the periodic first offenders may offer a finite description of shifts

that are not finite-type. It is possible that the list of periodic-first-offenders provides a

minimal description of an irreducible sofic shift among all forbidden lists, in the sense of

the following conjecture.

Conjecture 1 Let X be an irreducible periodic-finite-type shift and O the list of periodic

first offenders. For any pair {F , T} such that X = X{F ,T}, |O| ≤ |F| and
∑

w∈O |w| ≤
∑

w∈F |w|.

Example 8 The list of first offenders of the abcd shift of Example 3 is:

O = {aa, ad, ba, bb, bc, cb, cc, cd, da, dd}.
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For T = 2, the list of periodic first offenders, which we denote by {O, 2} is:

{O, 2} = {{a(0), d(0), ba(0), cd(0), b(1), c(1)}, 2}.

Clearly, |{O, 2}| ≤ |O|. �

5 Graph Construction

The constructive proof of Theorem 1 describes one method to generate a graph presenting

a PFT shift from a list of forbidden words. However, the complexity of the procedure,

measured by the number of states in the graph, grows exponentially with the length

of the longest word in the forbidden list. This section describes a method to construct

a graph whose complexity grows linearly with the length of the longest word and the

number of words in the list.

An algorithm with linear complexity for constructing a graph presenting a shift of

finite algorithm draws on the connections between symbolic dynamics and automata

theory. Similar construction methods have been described in [12, 13]. In this section we

present a generalization of the procedure from [14] to construct graphs presenting PFT

shifts. An alternative construction method for PFT shifts may be found in [13]. Note that

the class of PFT shifts include some almost-finite-type shifts, which were not included

in the constructions in [14, 12]. We begin by defining some notation and stating a few

results from automata theory relevant to the construction procedure. A more detailed

exposition on automata theory may be found in [8].

5.1 Background on Automata Theory

As before, let A denote a finite set of symbols. A language over A is a subset L ⊆ A∗.

A finite automaton is given by the quadruple M = (G,A, q0, F ), where A is referred to

as the input alphabet, G = (V, E ,L) is a finite-state labeled graph, q0 ∈ V is the initial

state, and F ⊆ V is the set of final states. We refer to elements of F as accepting states

of the automaton. Any other state is a non-accepting state.

We say an automaton is deterministic if G is deterministic. A word w is accepted by

the automaton M = (G,A, q0, F ) if there exists a path e on G with i(e) = q0, t(e) ∈ F ,

and L(e) = w. The language accepted by the automaton, denoted L(M), is the set of
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words accepted by the automaton. A regular language is a language accepted by a finite

automaton. Note that in a deterministic automaton, for all w ∈ L(M) there exists a

unique path from the initial state to an accepting state that generates w.

There are clearly strong connections between regular languages and sofic shifts, e.g., [15,

16]. Although sofic shifts are sets of bi-infinite sequences that have no designated start-

ing or accepting states, there is a natural correspondence between languages of sofic

shifts and regular languages. The language of a sofic shift is a regular language [11,

A.12]. However, all regular languages are not languages of sofic shifts. In particular, if

M = (G,A, q0, F ), then B(XG) is not necessarily equal to L(M).

The following well-known result, e.g., [8, Theorem 3.2], will be important to our

construction.

Result 2 The class of regular languages is closed under complementation, i.e., if L is

accepted by a finite automaton, then Lc is accepted by a finite automaton. �

In the following section we describe an algorithm to construct a graph presenting a PFT

shift. The method, a generalization of the construction in [14], proceeds as follows. We

first construct a non-deterministic finite automaton that accepts the complement of the

language in which we are interested. It turns out to be straightforward to construct this

automaton. An automaton accepting the language is formed by following a constructive

proof of Result 2. By deleting the non-accepting states of the resulting automaton, we

obtain a graph representing the shift space.

5.2 Graph Construction

Fix a pair consisting of an indexed list and period,

F = {w(n1)
1 , w

(n2)
2 , . . . , w

(n|F|)

|F| }, T.

For i = 0, 1, 2, . . . , T − 1, define the language

Li
def
= {v| putting v = vivi+1 · · · vi+|v|−1,

∀m, p ∈ [i, i+ |v| − 1] with m ≤ p and all w
(nj)
j ∈ F ,

if m mod T = nj then v[m,p] �= wj},
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and, subsequently, its complement,

Lc
i = {v| putting v = vivi+1 · · · vi+|v|−1,

∃m, p ∈ [i, i+ |v| − 1] with m ≤ p and w
(nj)
j ∈ F ,

such that m mod T = nj and v[m,p] = wj}.

Note that B(X{F ,T}) ⊆
⋃T−1

i=0 Li.

Construct a non-deterministic graph Gnd as follows. Fix T states labeled q0, q1, . . . , qT−1.

Draw an edge for each a ∈ A and each i ∈ [0, T − 1] from qi to q
(i+1) mod T

with label a.

Fix a state labeled x and draw an edge(cycle) for each a ∈ A from x to x with label a.

Now draw paths, as shown in Fig. 9, from qi to x for each word wj = wj,0wj,1 · · ·wj,|wj|−1

in F with index i.

...
...

· · ·

· · ·

· · ·

· · ·
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· · ·
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w
(0)
1,1

w
(0)
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w
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...

w
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A

A

A

A

...
...

qT−1

q1

q0

w
(T−1)
1,0

Figure 9: Non-deterministic graph Gnd underlying Mnd,i.

Note that we may reduce the number of states in Gnd by sharing common suffixes

of forbidden words. From this observation, we have a simple relation for the number of
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states in Gnd when suffixes are shared,

|V(Gnd)| = T + 1 +
(∑

lengths of distinct suffixes of words in F
)
.

PutMnd,i = (Gnd,A, qi, x). It is straightforward to show that L(Mnd,i) = Lc
i . Indeed, a

word in Lc
i is of the form uwv, where u and v are arbitrary elements of A∗, w = w

(nj)
j ∈ F ,

and (i+ |u|) mod T = nj . These are precisely the words accepted by Mnd,i.

Example 9 Put A = {0, 1},F = {101(0), 010(1)}, T = 2. The distinct suffixes are 01

and 10, with length 2. Gnd is illustrated in Fig. 10 and |V(Gnd)| = 2 + 1 + 2 + 2 = 7, as

predicted.

x

q0

1

0

0,1 0,1

1

0
1

0,1

q1

0

Figure 10: Gnd corresponding to A = {0, 1},F = {010(0), 101(1)}, T = 2.

Example 10 Put A = {0, 1},F = {00(0), 00(1), 11(0)}, T = 2. The distinct suffixes are 0

and 1, with length 1. Gnd is illustrated in Fig. 11 and |V(Gnd)| = 3 + 1 + 1 = 5.

0, 1xq0

0, 10, 1

1

0

0

0

1

q1

Figure 11: Gnd corresponding to A = {0, 1},F = {00(0), 00(1), 11(0)}, T = 2.

Following the constructive proof of Theorem 2 in [8], we will build a deterministic

automaton that accepts L(Mnd,i)
c = Li. First, construct a deterministic graph Gd from

Gnd via the well-known subset construction algorithm, e.g., [4, Theorem 3.3.2], as follows.

V(Gd) is the set of all nonempty subsets of V(Gnd). For every edge e in E(Gnd) from i(e)

to t(e) put edges in E(Gd) with labels L(e) from each I ∈ V(Gd) to each J ∈ V(Gd) such

that i(e) ∈ I and t(e) ∈ J .

Put M ′
i = (Gd,A, qi, F ), where F is the subset of V(Gd) consisting of those states that

contain the accepting state of Mnd,i, i.e., x. M ′
i is deterministic and one can show that
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L(M ′
i) = L(Mnd,i), e.g., [8, Theorem 2.1].

Let Mi = (Gd,A, qi,V(Gd)−F ), i.e., the automaton constructed fromM ′
i by switching

the roles of the accepting and non-accepting states. Since Gd is deterministic, Mi accepts

a word w if and only if w is in Lc(M ′
i), therefore L(Mi) = Lc(M ′

i) = Li. Note that the

underlying labeled graph Gd and the set of accepting states V(Gd)− F are the same for

each i ∈ [0, . . . , T − 1], i.e., for each automaton Mi.

No accepting state of Mi may be reached from a non-accepting state. Hence we can

delete the non-accepting states from Gd without changing the language accepted by Mi.

Let G denote the graph that results from deleting the non-accepting states from Gd. The

following theorem establishes that XG = X{F ,T}.

Theorem 5 Let {F , T} be an indexed list and period. Let G be the graph constructed

following the method described in this section. Then X{F ,T} = XG.

Proof: Choose x ∈ XG . Since |V(G)| is finite and every state in G is reachable from some

qi, choose a starting state qi such that any sub-word of x lies on a path originating from

qi. Let π be a path starting at qi and terminating at i(L−1(x0)). Put k = −(|π|+i). Then

for all m and all w
(nj)
j ∈ F , if m mod T = nj then σk(x)[m,m+|wj |−1] �= wj. Therefore

σk(x) ∈ X{F ,T} and XG ⊆ X{F ,T}.

For the reverse inclusion, choose w ∈ B(X{F ,T}). Then there exists i such that w ∈ Li.

In addition, w is left extendible by words in B(X{F ,T}). Hence we can choose uw ∈
B(X{F ,T}) such that uw ∈

⋃T−1
i=0 Li and w ∈ B(XG), i.e., we can choose some u such that

w lies on the essential subgraph of G. Therefore B(X{F ,T}) ⊆ B(XG) and X{F ,T} ⊆ XG . �

The construction may be simplified by keeping in mind that all accepting states will be

deleted from Gd, hence there is no need to distinguish between different accepting states

nor to draw edges between different accepting states when constructing the deterministic

automaton. In addition, only the subgraph of G which may be reached from the starting

states needs to be considered.

Finally, take the essential subgraph of G and apply a state-minimization algorithm,

e.g., [4, pp. 92]. If the shift is irreducible, this will result in the Shannon cover. In

Table 5.2, we summarize and repeat the construction procedure including these simplifi-

cations.

Example 11 Let F = {101(0), 010(1)}, T = 2. Gd, constructed from Gnd in Fig. 10, is
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Table 1: Summary of Graph Construction

1. Construct the non-deterministic graph Gnd as described.

2. Construct a deterministic graph Gd using the subset construction algorithm includ-
ing only those states which may be reached from one of the starting states, and
directing any edge which terminates in an accepting state into a single accepting
state.

3. Construct G by deleting the accepting state and all edges which begin or terminate
there.

4. Take the essential subgraph of G, and apply a state-minimization algorithm.

illustrated in Fig. 12, and Fig. 13 illustrates the resulting Shannon cover.

0

1

0, 1x

0

1
0

0

0

1

1
1

1

0

Figure 12: Gd corresponding to F = {010(0), 101(1)}, T = 2.

0

1
0

0

1

1

1

0
1 0

Figure 13: Shannon cover corresponding to F = {010(0), 101(1)}, T = 2.

Example 12 Let F = {00(0), 00(1), 11(0)}, T = 2. Gd, constructed from Gnd in Fig. 11, is

illustrated in Fig. 14, and Fig. 15 illustrates a deterministic graph presenting the shift.

Note this shift space is not irreducible.

6 Conclusions
We have introduced the class of periodic-finite-type (PFT) shift spaces. This class of

sofic shifts lie between the class of finite-type shifts and almost-finite-type shifts. We

proved several properties of graph presentations of these spaces. For a given PFT space,

we identified a particular list of periodically forbidden words, the periodic first-offenders,
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q1

0, 1x1

1
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Figure 14: Gd corresponding to F = {00(0), 00(1), 11(0)}, T = 2.

1

0 1 0 1

Figure 15: Deterministic graph corresponding to F = {00(0), 00(1), 11(0)}, T = 2.

that enjoy certain minimality properties with respect to other forbidden lists defining the

space. Finally, we developed an algorithm that, for a given periodic forbidden list, pro-

duces a graph presenting the corresponding shift space. The complexity of the algorithm

grows only linearly in the number, lengths, and period of the given forbidden list.
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