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Abstract—Polar codes provably achieve the capacity of binary

memoryless symmetric (BMS) channels with low complexity
encoding and decoding algorithms, and their finite-length perfor-
mance on these channels, when combined with suitable decoding
algorithms (such as list decoding) and code modifications (such
as a concatenated CRC code), has been shown in simulation
to be competitive with that of LDPC codes. However, magnetic
recording channels are generally modeled as binary-input in-
tersymbol interference (ISI) channels, and the design of polar
coding schemes for these channels remains an important open
problem. Current magnetic hard disk drives use LDPC codes
incorporated into a turbo-equalization (TE) architecture that
combines a soft-output channel detector with a soft-input, soft-
output sum-product algorithm (SPA) decoder. An interleaved
coding scheme with a multistage decoding (MSD) architecture
with LDPC codes as component codes has been proposed as an
alternative to TE for ISI channels. In this work, we investigate
the use of polar codes as component codes in the TE and MSD
architectures. It is shown that the achievable rate of the MSD
scheme converges to the symmetric information rate of the ISI
channel when the number of interleaves is large. Simulations
results comparing the performance of LDPC codes and polar
codes in TE and MSD architectures are presented.

I. INTRODUCTION

Channel polarization was originally proposed in [1] for
binary input discrete memoryless channels. This technique
allows transforming multiple copies of an arbitrary symmetric
binary-input discrete memoryless channel (B-DMC) to create
‘bit-channels’ that are either noiseless or completely noisy,
such that the fraction of bit-channels that are essentially
noiseless is close to the capacity of the original B-DMC. Iden-
tifying which bit-channels are noiseless after this polarization
transformation allows the construction of polar codes, a family
of codes that provably achieve the capacity of B-DMC with
low-complexity encoding and decoding algorithms.

Since construction of polar codes has complexity exponen-
tial in blocklength for channels other than the binary erasure
channel, a number of approximate construction methods that
have linear complexity have been proposed [2], [3], [4]. While
polar codes achieve the capacity with a successive cancellation
(SC) decoder at infinite blocklengths, the performance of
finite-length polar codes can be improved by the use of better
decoding algorithms. Successive cancellation list decoder was
proposed in [5] for hard-decision decoding and the perfor-
mance was comparable to that of LDPC codes with belief
propagation (BP) decoding. SC-list decoding operates like
SC decoding, but whenever a decision on an unfrozen bit is
needed, it splits the decoding path into two to try both 0 and
1. When the number of paths grows beyond the prescribed

threshold L, the decoder keeps only the L most likely paths.
BP decoding over the polar code factor graph was proposed in
[6] as a soft-output decoder for polar codes. Soft cancellation
(SCAN) decoder, proposed in [7], uses a message passing
schedule motivated by the SC decoder and improves the soft-
output decoding performance further.

Polar codes are closely related to Reed-Muller (RM) codes,
a connection that was identified in [1]. The rows of the
generator matrix for both codes are chosen from the rows of
the matrix [ 1 0

1 1 ]
⊗n where ⊗ denotes the Kronecker product.

For RM codes, the rows with the largest Hamming weight
are chosen. However, for polar codes, rows corresponding
to the noiseless channels obtained by the recursive channel-
polarization transforms are chosen. Thus the choice depends
on the channel and requires that the recursive transforms
polarize the channel. Magnetic recording channels are mod-
eled as a binary-input channel with finite memory due to
intersymbol interference. The polarization phenomenon for
stationary, ergodic, finite-order Markov processes through the
polarization transform has been shown in [8]. However, it
is only conjectured that the polarization result extends to
intersymbol interference channels. Also, code construction
for channels with memory remains an open problem as the
code construction techniques in [2], [3], [4] only apply for
memoryless channels. Thus, the construction of capacity-
achieving polar codes for magnetic recording channels is a
challenging problem.

Current magnetic recording technologies use LDPC codes
as error-correction codes (ECC) incorporated into a turbo-
equalization (TE) architecture that combines a soft-output
channel detector with a soft-input soft-output (SISO) LDPC
decoder. An interleaved coding with multistage decoding
(MSD) architecture with LDPC codes as component codes
has been proposed in [9] as an alternative to TE for ISI
channels. In this scheme, M independent codewords are
interleaved at the encoder. At the receiver, the M codewords
are decoded sequentially, with each decoded codeword being
used for decoding subsequent interleaves. It is known that
the achievable rate of this MSD scheme converges to the
symmetric information rate (SIR) of the ISI channel when
M →∞.

In this work, we investigate the use of polar codes in system
architectures based on turbo-equalization and interleaved cod-
ing with multistage decoding. First we study the incorporation
of polar codes for use with the TE architecture. Since this
requires a soft-output polar decoder, neither SC decoding nor



Fig. 1. Encoder and decoder for turbo-equalization.

SC-list decoding can be used. Instead, we need a soft-output
variant of the SC decoder, such as the BP decoder, or the
SCAN decoder. We compare some methods to construct polar
codes for use in this architecture.

We also propose the use of an interleaved coding scheme
with multistage decoding with polar codes as component
codes. The MSD architecture has several attractive features
when polar codes are used as component codes. First, this
architecture does not require soft outputs from the component
polar decoders, so SC and SC-list decoders may be used.
Second, the component polar code for each stage can be
designed using techniques developed for memoryless channels.
Finally, common hardware designs for encoding and decoding
can be shared among the interleaves.

The rest of the paper is organized as follows. The channel
model and the TE and MSD architectures are presented in
Sections II, III, and IV, respectively. Simulation results are
presented in Section V. Conclusions are discussed in Section
VI.

II. CHANNEL MODEL

Magnetic recording channels are modeled as binary-input
intersymbol-interference channels with additive white Gaus-
sian noise (AWGN). More specifically, if X = {xk} is
the input sequence drawn from a binary alphabet {±1}, the
channel output at time n is given by yn =

∑ν
i=0 hixn−i+an.

Here {hi} is a known channel impulse response associated
with the transfer function h(D) =

∑ν
i=0 hiD

i and an is
i.i.d. Gaussian noise with zero mean and variance σ2. Such
a channel is referred to as a partial-response (PR) channel. A
well known example is the dicode channel which has transfer
function h(D) = 1−D. We note here that the results presented
in [8] regarding polarization in the presence of memory do not
apply to PR channels.

III. TURBO-EQUALIZATION ARCHITECTURE

Current magnetic storage drives use a decoding architecture
based upon turbo-equalization [10] that combines a SISO
sequence detector and a SISO decoder exchange information
iteratively as shown in Figure 1. Here, the user data sequence
is denoted by W, the output of the ECC encoder is denoted by
X, and the channel output sequence is denoted by Y. To decode
the user data, the BCJR algorithm [11] is used to determine the
log-a-posteriori probability (APP) ratios L. An ECC decoder
feeds back soft information to the sequence detector until it
can decode to the codeword X̂.

There are two issues in using polar codes as ECC in this
architecture. First, we need to use a soft-output decoder to be
able to feed back soft information to the sequence detector
as priors. While BP and SCAN decoders can provide soft-
outputs, a larger coding gain is obtained when polar codes
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SCAN Decoder

   8 iterations

BP Decoder

   20 iterations

SC−List Decoder

   L = 1 (SC)

   L = 16

   L = 8, CRC = 16

Fig. 2. Performance of a rate-0.7, blocklength-4096 polar code on AWGN
channel when decoded using BP, SCAN, SC and SC-list decoders. Concate-
nation with an outer 16-bit CRC code is used for SC-list with L = 8.
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Polar (TE)

   Opt. for AWGN (1.0 dB)

   Opt. for AWGN (1.5 dB)

   Opt. for AWGN (2.0 dB)

   Opt. for AWGN (2.5 dB)

   Opt. for Dicode (3.5 dB)

   Opt. for Dicode (4.3 dB)

Fig. 3. Performance of polar codes optimized for various AWGN and
dicode channels with rate 0.83 (corresponding to design SNR 2.5 dB) and
blocklength 16384, decoded using SCAN on dicode channel.

are decoded by the SC-list decoder which only provides hard
decisions. This is demonstrated in Figure 2 which shows the
performance of the BP, SCAN, SC, and SC-list for a rate 0.7
polar code on a AWGN channel. The second issue is that the
choice of unfrozen bit-channels during polar code construction
depends on the underlying channel. The equivalent channel
seen by the ECC decoder is not memoryless and there is
no method known for making the optimal choice. Therefore,
we use the following two sub-optimal approaches. In the first
approach, we construct polar codes using the method of [3] for
AWGN channels with different noise variances. In the second
approach, the conditional output density of the equivalent
channel seen by the ECC decoder on the first iteration of TE,
that is P(Lj |Cj), is estimated using Monte-Carlo simulation.
Polar codes are constructed for this equivalent channel by
assuming it to be memoryless (not necessarily true). The
simulation results obtained for codes constructed by these two
approaches are shown in Figure 3.



Fig. 4. Encoder for interleaved coding scheme.

Fig. 5. Multi-stage decoding scheme.

IV. MULTISTAGE DECODING ARCHITECTURE

An interleaved code design with a multi-stage decoding
(MSD) algorithm is considered as an alternative to turbo
equalization for binary ISI channels in [9]. In this scheme,
M independent codewords of potentially different rates are
interleaved at the encoder. At the receiver, each of the
M codewords are decoded sequentially, with each decoded
codeword being used for decoding subsequent interleaves.
Figure 4 shows the block diagram for the encoder. The user
data, W, is partitioned into M blocks, {U〈i〉}Mi=1 of lengths
K〈1〉,K〈2〉, . . . ,K〈M〉 respectively. Each of these M blocks
are encoded using codes C1, . . . ,CM of rates Ri = K〈i〉

N such
that the codewords {C〈i〉}Mi=1 are all of length N bits, denoted
as
(
C
〈i〉
1 , . . . , C

〈i〉
N

)
for each i. These M codewords are then

randomly interleaved into a sequence X which is transmitted.
Figure 5 presents the decoder architecture for multi-stage

decoding. Given received word Y, the decoding proceeds to
recover the interleaved codewords in M stages. In stage i,
let Ĉ

〈k〉
denote the estimate for the kth codeword obtained

by the decoder at stage k = 1, 2, . . . , i − 1. Then, the
channel detector determines the log-APP ratio vector L〈i〉 =(
L
〈i〉
1 , L

〈i〉
2 , . . . , L

〈i〉
N

)
according to

L
〈i〉
j = log

(
1− P 〈i〉j
P
〈i〉
j

)
,

where,

P
〈i〉
j = P

(
C
〈i〉
j = 1

∣∣∣Y, C〈1〉 = Ĉ
〈1〉
, . . .C〈i−1〉 = Ĉ

〈i−1〉)
.

L〈i〉 can be computed efficiently using the BCJR algorithm on
the entire received sequence while assuming that the estimates
for codeword at previous stages are correct and assuming
the codewords belonging to the future stages are distributed
independently and uniformly. These log-APP ratios are then

Fig. 6. Equivalent sub-channel for ith stage with C〈k〉, k = 1, . . . , i − 1,
known to decoder.

used by the ith component decoder to estimate the ith codeword
as Ĉ

〈i〉
.

The channel, as seen by the code at the ith stage, can be
represented by the equivalent sub-channel shown in Figure 6.
It is shown in [9] that a rate

R〈i〉 , I
(
C
〈i〉
j ;L

〈i〉
j

)
= 1− E

[
log2

(
1 + e−L

〈i〉
j

) ∣∣∣ C〈i〉j ]
(1)

is an achievable information rate for the ith stage, even when
the decoder has only the knowledge of the marginal channel
law P

(
C
〈i〉
j , L

〈i〉
j

)
. It is shown in [9] that random codes achieve

these bounds with decoders that assume that the equivalent
sub-channels are memoryless and that use only partial knowl-
edge about the channel in the form of the marginal output
densities. The overall rate, Rav,M = 1

M

∑M
i=1R

〈i〉, is shown
to converge to the SIR of the ISI channel as M → ∞. The
paper then optimizes component LDPC codes for each sub-
channel to achieve thresholds close to the achievable rates.

In this work, we propose the use of polar codes in place
of LDPC codes as interleaved codes in the MSD scheme
described in [9]. One can simulate the equivalent sub-channel
assuming perfect decision feedback from the component de-
coders to obtain a set of input and output sequences. The
densities P

(
C
〈i〉
j , L

〈i〉
j

)
can then be estimated using the his-

tograms for each of the M stages. A different polar code is
constructed for each stage by choosing the frozen bits for a
memoryless channel according to the method described in [3],
starting with the channel law given by the densities estimated
by the Monte-Carlo simulations.

We now explain how interleaved polar codes can achieve the
symmetric information rate of the magnetic recording channel
when the number of interleaves is large. First, consider the use
of a windowed APP-detector that determines the APP based
on a fixed window of channel observations with side-length
ω. For large enough ω and codeword length N , the window-
APP detector achieves the performance of the BCJR algorithm
[12]. For such a windowed detector, the output log-APP
ratios that are sufficiently separated in time are conditionally
independent. Therefore, with large enough M , the equivalent
sub-channel seen by each stage is memoryless. Once these
equivalent sub-channels have been estimated with sufficient
accuracy using the Monte-Carlo simulations described above,
the methods known for construction and decoding of polar
codes for memoryless channels may be used to achieve rates
given by (1). The overall rate Rav,M has been shown to
converge to the SIR of the ISI channel asymptotically [9],
which completes the argument.



Fig. 7. Achievable rates for 2 stages and average rate for MSD scheme on
the dicode channel.

V. SIMULATION RESULTS

We demonstrate the performance of the proposed MSD
scheme on the dicode channel with h(D) = 1 − D. First,
we simulate the equivalent subchannels for different number of
levels to determine the achievable rates given by (1) at various
SNR points. The results with M = 2 stages are presented
in Figure 7. As expected, the rates for successive interleaved
stages increase and saturate at the capacity of the AWGN
channel with the same noise variance as the ISI channel.

We use the histograms obtained by the Monte-Carlo sim-
ulations to estimate the densities P

(
L
〈i〉
j = l

〈i〉
j

∣∣∣ C〈i〉j = c
)

and construct polar codes of the rates given by (1). The
choice of frozen bits for these polar codes was done using
the algorithm proposed in [3]. The codes were decoded
using a SC decoder in the probability domain using double
precision floating point numbers. The following results have
been obtained by simulations of a 2-stage MSD scheme for
the dicode channel. We constructed pairs of polar codes of
lengths N = 210, 212, 214, 216 such that R〈1〉 = 0.85 and
R〈2〉 = 0.93. We examined the performance of systematic and
non-systematic encoding of polar codes [13]. Figure 8 shows
the BER curves for systematic and non-systematic encoding
of polar codes. Clearly, the systematic encoding has much bet-
ter BER performance compared to non-systematic encoding.
These results are surprising, given that the SC decoder com-
putes the codeword bits indirectly by first making decisions on
the information bits and then encoding the information word
back to the codeword. One would expect any decoding errors
in the information word to be amplified in the re-encoding
process. However, simulation results shown here and those
presented earlier in the literature for AWGN channels [13]
show that this is not the case. An analytic justification for this
phenomenon is still lacking and this represents an important
open problem when considering reverse-concatenation with
constrained codes, an architecture that is favored in magnetic
recording systems.

Since polar codes are constructed for the underlying sub-
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Fig. 8. BER versus SNR for MSD scheme with various blocklengths, N . The
dashed and solid lines show the BER for the systematic and non-systematic
encodings, respectively.
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Fig. 9. BER for MSD scheme using SC decoder for polar codes of
blocklength N = 216 constructed at different SNR values.

channels which are obtained by Monte-Carlo simulations at
a certain SNR of the channel, we also examined how the
choice of the design SNR affects the performance of the polar
code. Figure 9 shows the BER performance for three pairs
of polar codes of the same rate but with different frozen-bit
sets which have been determined using simulations at different
SNRs. It can be seen that the codes optimized at a slightly
lower noise variance perform better. A similar result has been
reported for polar codes on memoryless channels in [14]. Also,
if the decoders for all polar codes of the same length share the
same SC decoding architecture, the knowledge of the operating
SNR will optionally allow one to exploit the difference in the
performance of these codes of the same rate.

Next we consider the use of the more powerful SC-list
decoder. Figure 10 shows the BER improvement as the list
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Fig. 10. BER versus SNR for MSD scheme for polar codes with rates
R〈1〉 = 0.69, R〈2〉 = 0.85 and blocklength N = 1024, decoded with
SC-list decoder for various list sizes without CRC-concatenation.

size increases. The list decoder with L = 32 performs 0.65
dB better than the SC decoder, which is plotted as list size = 1.
These results match those reported for memoryless channels
where at higher SNRs the SC-list decoder quickly approaches
the performance of the ML decoder with increasing list sizes.

In order to improve the SC-list decoder, concatenation with
an outer CRC code was proposed in [3]. During decoding, the
decoder searches for a survivor path which satisfies the CRC.
Results in [15] show that this concatenation improves the
minimum Hamming distance of the polar codes by eliminating
low-weight codewords. We obtained a list of minimum weight
codewords for two polar codes of length N = 214 and rates
R〈1〉 ≈ 0.77 and R〈2〉 ≈ 0.88. We found that a 16-bit CRC
could eliminate all weight-16 minimum Hamming weight
codewords we could find for those codes, using L ≤ 10000.
Figure 11 shows the FER performance of these polar codes.
We also plot the performance of the MSD scheme using
optimized LDPC codes of equal rates and blocklengths and the
performance obtained using the TE scheme, for comparison.
The performance of concatenated polar codes can be improved
further by increasing the list size as was noted in [15], or by
increasing the number of interleaves.

VI. CONCLUSIONS

The MSD scheme allows the decoder to assume that the
equivalent sub-channels are memoryless, allowing us to use
encoding/decoding methods designed for polar codes for bi-
nary memoryless channels. For long blocklengths and large
number of interleaved stages, polar codes are able to achieve
the SIR of the ISI channels. For small number of interleaves,
simulation results show that the MSD scheme outperforms the
TE scheme when polar codes are used as component codes and
are comparable to LDPC codes with the TE scheme.
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