
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014 1

Quantized Iterative Message Passing Decoders with
Low Error Floor for LDPC Codes

Xiaojie Zhang, Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—The error floor phenomenon observed with LDPC
codes and their graph-based, iterative, message-passing (MP)
decoders is commonly attributed to the existence of error-prone
substructures – variously referred to as near-codewords, trapping
sets, absorbing sets, or pseudocodewords – in a Tanner graph
representation of the code. Many approaches have been proposed
to lower the error floor by designing new LDPC codes with fewer
such substructures or by modifying the decoding algorithm. Us-
ing a theoretical analysis of iterative MP decoding in an idealized
trapping set scenario, we show that a contributor to the error
floors observed in the literature may be the imprecise implemen-
tation of decoding algorithms and, in particular, the message
quantization rules used. We then propose a new quantization
method – (q+1)-bit quasi-uniform quantization – that efficiently
increases the dynamic range of messages, thereby overcoming
a limitation of conventional quantization schemes. Finally, we
use the quasi-uniform quantizer to decode several LDPC codes
that suffer from high error floors with traditional fixed-point
decoder implementations. The performance simulation results
provide evidence that the proposed quantization scheme can,
for a wide variety of codes, significantly lower error floors with
minimal increase in decoder complexity.

Index Terms—Low-density parity-check (LDPC) codes, itera-
tive message-passing decoding, sum-product algorithm, message
quantization, error floors, trapping sets.

I. INTRODUCTION

THE outstanding performance of low-density parity-check
(LDPC) codes and iterative, message-passing (MP) de-

coding algorithms [1], [2] has attracted considerable attention
over the past decade and these techniques are being deployed
in a growing number of practical applications. At high signal-
to-noise ratio (SNR), however, LDPC codes and MP decoders
may be subject to the error floor phenomenon, which manifests
itself as an abrupt change in the slope of the error-rate curve.
Since many important applications, such as data storage and

Manuscript received November 28, 2012; revised May 18 and September
6, 2013. The editor coordinating the review of this paper and approving it for
publication was H. Pishro-Nik.

This research was supported in part by the Center for Magnetic Recording
Research at University of California, San Diego and by the National Science
Foundation under Grants CCF-0829865 and CCF-1116739, and University of
California Lab Fees Research Program, Award No. 09-LR-06-118620-SIEP.

The material in this paper was presented in part at the IEEE International
Symposium on Information Theory, Cambridge, MA, July 1–5, 2012, and
IEEE International Conference on Signal Processing and Communication,
Bangalore, India, July 22–25, 2012.

X. Zhang was with the Department of Electrical and Computer Engineering
and the Center for Magnetic Recording Research, University of California,
San Diego, La Jolla, CA 92093. He is now with Samsung Research America
– Dallas, Richardson, TX 75082 (e-mail: snuzxj@gmail.com).

P. H. Siegel is with the Department of Electrical and Computer Engineering
and the Center for Magnetic Recording Research, University of California,
San Diego, La Jolla, CA 92093 (e-mail: psiegel@ucsd.edu).

Digital Object Identifier 10.1109/TCOMM.2013.112313.120917

high-speed digital communication, often require extremely low
error rates, the study of error floors in LDPC codes remains
of considerable practical, as well as theoretical, interest.

The error floor phenomenon is commonly attributed to
the existence of certain error-prone substructures (EPSs) in a
Tanner graph representation of the code. In the binary erasure
channel (BEC), it has been shown that substructures known
as stopping sets determine the error-rate performance and the
observed error floor [3]. However, for general memoryless
binary-input output-symmetric (MBIOS) channels such as
the binary symmetric channel (BSC) and the additive white
Gaussian noise channel (AWGNC), the EPSs that dominate
the error floor performance have not yet been fully charac-
terized, although some classes of EPSs have been identified
and studied, such as near-codewords [4], trapping sets [5],
absorbing sets [6], and pseudocodewords [7].

One common way to improve the error floor performance
of LDPC codes has been to redesign the codes to have
Tanner graphs with large girth and without problematic EPSs
which usually consist of small number of variable nodes [8]–
[10]. However, for LDPC codes that have been standardized,
approaches are needed that do not modify the codes. In the
literature, many modifications to the iterative MP decoding
algorithms have been proposed in order to improve high
SNR performance, such as averaged decoders [11], reordered
decoders [12], [13], and decoders with post processing [14]–
[18]. In [11], the authors noticed that the emergence of errors
in EPSs is heuristically related to a sudden magnitude change
in the values of certain variable nodes (VNs). Hence, it was
proposed to average the messages in a belief-propagation (BP)
decoder over several iterations to avoid such sudden changes
and therefore slow down the convergence rate for variable
nodes in a trapping set and decrease the frequency of trapping
set errors. Another heuristic approach is to process messages
based on the order of node reliabilities computed at each
iteration [12], and it was suggested that the scheduled decoders
are able to resolve some standard trapping set errors [13]. Al-
though these general approaches are capable of improving the
average error rate performance to some extent, the resulting
decoders still fail on small EPSs and their effect on the error
floor is not significant.

To further improve the error floor behavior, decoders that
make use of the prior knowledge of some small size EPSs
have been designed to reduce the decoding failures due to such
EPSs. In [14] and [15], the authors proposed a post-processing
decoder that matches the configuration of unsatisfied check
nodes (CNs) to trapping sets in a precomputed list after con-
ventional MP decoding has failed. The size and completeness

0090-6778/14$31.00 c© 2014 IEEE

2 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

of the trapping set list directly affect the performance gain of
such decoders, but to obtain a complete list of small trapping
sets of a given LDPC code is generally quite computationally
complex. A symbol-selecting post-processing technique was
also developed in [16]. It saturates the channel messages on a
set of selected variable nodes at each stage after the conven-
tional MP algorithms fails. In [17], Han and Ryan proposed
a bi-mode erasure decoder that combines several problematic
check nodes into a generalized constraint processor, to which
a corresponding maximum a posteriori (MAP) algorithm,
such as the BCJR algorithm, is then applied. Another post-
processing approach that utilizes the graph-theoretic structure
of absorbing sets, proposed in [18], adjusts the appropriate
messages in the iterative MP decoding once the decoder enters
and remains in the absorbing set of interest.

All the above approaches either change the message update
rules of MP decoders or require extra processing steps after
conventional MP decoding fails, both of which increase the
decoding complexity relative to the original iterative MP
algorithms. Moreover, the post-processing approaches that
require prior knowledge of the set of EPSs causing the error
floor are only effective when applied to LDPC codes whose
EPSs have been carefully studied.

In fixed-point implementation of iterative MP decoding,
efforts have also been made to improve the error-rate per-
formance in the waterfall region and/or error-floor region by
optimizing parameters of uniform quantization [19]–[22]. In
[19], Zhao et al. studied the effect of message clipping and
uniform quantization on the performance of the min-sum (MS)
decoder in the waterfall region and heuristically optimized the
number of quantization bits and the quantization step size for
selected LDPC codes. In [20], a dual-mode adaptive uniform
quantization scheme was proposed to better approximate the
log-tanh function used in sum-product algorithm (SPA) decod-
ing. Specifically, for magnitudes less than 1, all quantization
bits were used to represent the fractional part; for magnitudes
greater than or equal to 1, all bits were dedicated to the
representation of the integer part. In [21], [22], Zhang et al.
proposed a conceptually similar idea to increase precision in
the quantization of the log-tanh function. Uniform quantization
was applied to messages generated by both variable nodes
and check nodes, but the quantization step sizes used in the
two cases were separately optimized. We note, however, that
none of these modified quantization schemes were primarily
intended to significantly increase the saturation level, or range,
of quantized messages, and in their reported simulation results,
error floors can still be clearly observed.

It has been observed that the high error floors associated
with certain EPSs of some LDPC codes are closely related
to the saturation level imposed on messages passed in the
SPA decoder. (See, for example, [23] and references cited
therein.) In this work, we investigate the cause of error
floors in binary LDPC codes from the perspective of the MP
decoder implementation, with special attention to limitations
that decrease the dynamic range of messages passed during
decoding. We show that, under certain idealized assumptions,
the EPSs which are commonly associated with high error
floors of some LDPC codes will not trap iterative MP de-
coders and cause high error floors if message magnitudes

and the number of iterations are not limited. Based upon
an analysis of the growth rate of messages outside an EPS
in an idealized scenario, we propose a novel quasi-uniform
quantization method that captures the essence of messages
in different ranges of reliability. The proposed quantization
method has an extremely large saturation level which prevents
iterative MP decoders from being trapped by an EPS. This
property, to the best of our knowledge, distinguishes it from
other quantization techniques for iterative MP decoding that
have appeared in the literature. With the new quantization
method, it is possible to have a fixed point implementation of
iterative MP decoders that achieves low error floors without
an additional post-processing stage or a modification of either
the decoding update rules or the graphical code representation
upon which the iterative MP decoder operates. We present
simulation results for min-sum decoding, SPA decoding, and
some of their variants, that demonstrate a significant reduction
in the error floors of four representative LDPC codes, with no
increase in decoding complexity.

The remainder of the paper is organized as follows. Sec-
tion II gives some notation and definitions used throughout the
paper. In Section III, we analytically investigate the impact that
message quantization can have on MP decoder performance
and the error floor phenomenon. In Section IV, we propose
an enhanced quantization method intended to overcome the
limitations of traditional quantization rules. In Section V,
we incorporate the new quantizer into SPA and min-sum
decoding and, through computer simulation of several LDPC
codes known for their high error floors, demonstrate the
significant improvement in error-rate performance that this
new quantization approach can afford. Section VI concludes
the paper.

II. NOTATION AND DEFINITIONS

The study of the phenomenon of error floors began shortly
after LDPC codes were rediscovered about a decade ago. It has
been shown that the EPSs known as stopping sets cause the er-
ror floor in the BEC, and such EPSs have a clear combinatorial
description. Enumeration of these structures makes it possible
to accurately estimate the error floor [3]. However, for other
MBIOS channels such as the BSC and the AWGNC, it is more
difficult to establish the relationship between EPSs and error
floors. In [4], it was first pointed out that the near-codewords
caused error floors in simulations of Margulis and Ramanujan-
Margulis LDPC codes on the AWGNC. The term trapping set
proposed by Richardson [5] is operationally defined as a subset
of VNs that is susceptible to errors under a certain iterative MP
decoder over an MBIOS channel. Hence, this concept depends
on both the channel and the decoding algorithm. In [6], the
error floor is associated with some combinatorial substructures
within the Tanner graph, named absorbing sets, which are
defined independently of the channel. The absorbing sets
correspond to a particular type of near-codewords or trapping
sets that are stable under bit-flipping operations. All these
EPSs have been believed to be the cause of error floors, and for
some LDPC codes, techniques such as importance sampling
used to estimate the error floor are based on the probability of
decoding failures on such EPSs [5], [24]. In this section, we
will show that under certain idealized assumptions about the

ZHANG and SIEGEL: QUANTIZED ITERATIVE MESSAGE PASSING DECODERS WITH LOW ERROR FLOOR FOR LDPC CODES 3

computation trees of variable nodes within a given EPS, as
well as the correctness of variable node messages outside the
EPS, conventional iterative decoders that accurately represent
messages will eventually correct errors supported by the EPS.

To facilitate our discussion, we define a substructure called
an absolute trapping set from a purely graph-theoretic per-
spective, independent of the channel and the decoder. Let
G = (V ∪ C,E) denote the Tanner graph of a binary LDPC
code with VNs V = {v1, . . . , vn}, CNs C = {c1, . . . , cm},
and edge set E.

Definition 1: A stopping set of size a is a configuration of
a variable nodes such that the induced subgraph has no check
nodes of degree-one. An (a, b) trapping set is a configuration
of a variable nodes, for which the induced subgraph is
connected and has b odd-degree check nodes. If the induced
subgraph of an (a, b) trapping set does not contain a stopping
set, it is called an absolute trapping set.

In the literature, all trapping sets of interest that contribute
to the error floor of an LDPC code are of size smaller than the
minimum stopping set size of the code, since otherwise the
stopping sets would be the dominant contributor to the error
floor [3]. Note that the requirement that an absolute trapping
set contain no stopping set also implies that it must have at
lease one degree-one check node. As we will discuss later
in this section, these degree-one check nodes are essential
because they are able to pass correct extrinsic messages into
the trapping set. To the best of our knowledge, almost all
trapping sets of interest in the literature are absolute trapping
sets. For example, both of the well-known (5,3) trapping sets
in the Tanner code of length 155, the notorious (12,4) trapping
sets in the (2640,1320) Margulis code, and the (5,5) trapping
set in some codes of variable-degree five are all absolute
trapping sets. Unless otherwise indicated, all trapping sets
referred to in this paper are absolute trapping sets, as well.

In analogy to the definition of computation tree in [25], we
define a k-iteration computation tree as follows.

Definition 2: A k-iteration computation tree Tk(v) for an
iterative decoder in the Tanner graph G is a tree graph
constructed by choosing variable node v ∈ V as its root and
then recursively adding edges and leaf nodes to the tree that
participate in the iterative message-passing decoding during k
iterations. To each vertex that is created in Tk(v), we associate
the corresponding node update function in G.

Let S be the induced subgraph of an (a, b) trapping set
contained in G, with VN set VS ⊆ V and CN set CS ⊆ C.
Let set C1 ⊆ CS be the set of degree-one CNs in the subgraph
S, and let set V1 ⊆ VS be the set of neighboring VNs of CNs
in C1. We refer to a message on an edge adjacent to VN v
as a correct message if its sign reflects the correct value of v,
and as an incorrect message, otherwise. Let D(u) be the set
of all descendants of the vertex u in a given computation tree.

Definition 3: Given a Tanner graph G and an induced
subgraph S of a trapping set, a variable node v ∈ V1 is said to
be k-separated if, for at least one of its neighboring degree-
one check nodes, c ∈ C1, no variable node v′ ∈ VS belongs
to D(c) ⊂ Tk(v). If every v ∈ V1 is k-separated, the induced
subgraph S is said to satisfy the k-separation assumption.

In Fig. 1(a), we show the graph of a (4, 4) trapping set
and some of its neighboring nodes. The set of VNs in the

trapping set is VS = {v1, v2, v3, v4}, represented as solid black
circles. The set of CNs in the trapping set is CS = {ci},
1 ≤ i ≤ 8. In this trapping set, every VN has a neighboring
degree-one CN, i.e., V1 = VS , and C1 = {c1, c2, c3, c4}. For
example, the 3-iteration computation tree of VN v1 is shown
in Fig. 1(b). It can be verified from this computation tree
that v1 is 2-separated but not 3-separated, because v2 ∈ VS

is a descendant of c1 in T3(v1), but not in T2(v1). It is
worth noting that whether or not a trapping set satisfies the
k-separation assumption depends on the Tanner graph outside
the trapping set, not the trapping set itself.

We want to point out that the k-separation assumption
is much weaker than the isolation assumption in [26]. The
separation assumption here only applies to the VNs that have
neighboring degree-one CNs in the induced subgraph S, and
these neighboring degree-one CNs do not have any VNs from
the trapping set as their descendants in the corresponding k-
iteration computation tree. With the separation assumption, the
descendants of c ∈ C1 are separated from all the nodes in the
trapping set, meaning that the incorrect messages passed in the
trapping set do not affect the extrinsic messages sent towards
c in the computation tree.

III. ERROR FLOORS OF LDPC CODES

A. Trapping Sets and Min-Sum Decoding

To get further insight into the connection between trapping
sets and decoding failures of iterative MP decoders, we first
consider a simple iterative MP decoder, the min-sum decoder,
which can be viewed as a simple approximation of the sum-
product algorithm. We now briefly recall the VN and CN
update rules of min-sum decoding.

A VN vi receives an input message Lch
i from the channel,

typically the log-likelihood ratio (LLR) of the corresponding
channel output, defined as follows

Lch
i = log

(
Pr (Ri = ri| ci = 0)

Pr (Ri = ri| ci = 1)

)
, (1)

where ci ∈ {0, 1} is the code bit and ri is the corresponding
received symbol.

Denote by Li→j and Lj→i the messages sent from vi to cj
and from cj to vi, respectively, and denote by N(k) the set of
neighboring nodes of VN vk (or CN ck). Then, the message
sent from vi to cj in min-sum decoding is given by

Li→j = Lch
i +

∑
j′∈N(i)\j

Lj′→i , (2)

and the message from CN j to VN i is computed as

Lj→i =

⎡
⎣ ∏
i′∈N(j)\i

sign(Li′→j)

⎤
⎦ · min

i′∈N(j)\i
|Li′→j |. (3)

In the initialization step, we set Li→j = Lch
i . It can been

seen from (2) and (3) that the min-sum decoding algorithm is
insensitive to linear scaling, meaning that linearly scaling all
input messages from the channel would not affect the decoding
performance.

For the MS decoder, we can show that a trapping set does
not cause decoding failure if its induced subgraph in the
Tanner graph satisfies certain criteria.

4 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

c10c7 c6 c5

c4 c3 c2 c1

v7v6v4 v3 v2 v1

c11c9c8

v5

(a) (4, 4) trapping set and part of its neighboring nodes

v7
v6

v5

v1

c1c5c6

c11c9

c6

v2

T1(v1)

T2(v1)

T3(v1)

(b) Computation tree with root v1

Fig. 1. Example of a (4, 4) trapping set and its corresponding computation tree.

Theorem 1: Let G be the Tanner graph of a variable-regular
LDPC code that contains a subgraph S induced by a trapping
set. Assume that the channel is either a BSC or an AWGNC,
and that the messages from the channel to all VNs outside
S are correct. If S satisfies the k-separation assumption for
sufficiently large k, then the corresponding min-sum decoder
will successfully correct all erroneous VNs in S.

Proof: See Appendix A.
In general, the error-rate performance of MS decoding is not

as good as that of SPA decoding. However, there are several
quite simple but effective ways to adjust the CN update rule of
MS decoding to get comparable performance to SPA decoding.
One method is attenuated-min-sum (AMS) decoding [27],
where the magnitudes of messages are attenuated at CNs. The
corresponding CN update rule of AMS is as follows

Lj→i =

⎡
⎣ ∏
i′∈N(j)\i

sign(Li′→j)

⎤
⎦ · α · min

i′∈N(j)\i
|Li′→j |, (4)

where 0 < α < 1 is the attenuation factor, which can
be a fixed constant or adaptively adjusted. Another way to
improve the error-rate performance of MS decoding is offset-
min-sum (OMS) decoding, which applies an offset to reduce
the magnitudes of CN output messages. The resulting CN
update equation is

Lj→i =

⎡
⎣ ∏
i′∈N(j)\i

sign(Li′→j)

⎤
⎦

·max{ min
i′∈N(j)\i

|Li′→j | − β, 0}, (5)

where β > 0 is the offset which, like the attenuation factor,
can be a fixed constant or adaptively adjusted. In some imple-
mentations, for additional simplicity, the attenuation factor or
offset is set to be the same fixed constant for all CNs and all
iterations [27].

Theorem 1 can be extended to both AMS and OMS
decoding, where we assume that, in each iteration, all CNs
use the same attenuation factor α in AMS or the same offset
β in OMS.

Corollary 2: Let G be the Tanner graph of a variable-
regular LDPC code that contains a subgraph S induced by
a trapping set. Assume that the channel is either a BSC or

an AWGNC, and that the messages from the channel to all
VNs outside S are correct. If S satisfies the k-separation
assumption for sufficiently large k, then both the AMS and
OMS decoder will successfully correct all erroneous VNs in
S.

Proof: See Appendix B.
As shown in Appendix B, the extension to AMS decoding

follows easily from Theorem 1. On the other hand, the
proof of the extension to the OMS decoder makes use of
ideas introduced in the analysis of SPA decoding in the next
subsection.

B. Trapping Sets and Sum-Product Algorithm Decoding

In this subsection, we further extend Theorem 1 to sum-
product algorithm decoding. The optimality criterion in the
design of the SPA decoder is symbol-wise maximum a pos-
teriori probability (MAP), and it is an optimal symbol-wise
decoder on Tanner graphs without cycles.

In SPA decoding, VN nodes take log-likelihood ratios
of received information from the channel as initial input
messages. The VN update rule is the same as that of MS
decoding described in (2), which involves the summation of
all incoming extrinsic messages. In the CN update rule of SPA
decoding, the message sent from CN j to VN i is computed
as

Lj→i = 2tanh−1

⎛
⎝ ∏

i′∈N(j)\i
tanh

Li′→j

2

⎞
⎠ . (6)

In practical implementations of the SPA, the following
equivalent CN update rule is often used

Lj→i =

⎡
⎣ ∏
i′∈N(j)\i

sign(Li′→j)

⎤
⎦·φ−1

⎛
⎝ ∑

i′∈N(j)\i
φ(|Li′→j |)

⎞
⎠

(7)
where φ(x) = − log[tanh(x/2)] = log ((ex + 1)/(ex − 1)),
φ−1(x) = φ(x), and φ(∞) = 0. In some fixed-point
implementations, in order to have better approximation, dif-
ferent look-up tables could be used to compute φ(x) and
φ−1(x) [22].

We note that the hyperbolic tangent function, tanh(x),
has numerical saturation problems when computed with finite

ZHANG and SIEGEL: QUANTIZED ITERATIVE MESSAGE PASSING DECODERS WITH LOW ERROR FLOOR FOR LDPC CODES 5

precision. For example, in 64-bit floating-point (in IEEE 754
standard format [28]) computer implementation, it can be
shown that tanh(x/2) would be rounded to 1 when x > 38,
meaning that φ−1 (φ(x)) = ∞ for x > 38 [29]. In order
to avoid such problems that can arise from limited precision,
thresholds on the magnitudes of messages must be applied in
simulation studies [22].

In order to maintain the performance advantage of SPA
decoding over MS decoding, the quantization method has
to preserve the self-inverse property of the φ(x) function
and to accurately compute the CN update function in (7).
However, it is difficult to have a good approximation of the
φ(x) function with limited resolution, because this requires
both fine precision and large range. Efforts have been made
to design quantization methods that work effectively with the
φ(x) function. For example, a variable-precision quantization
scheme proposed in [20] uses larger quantization step size
for magnitudes greater than 1, and smaller step size for
magnitudes less than 1. An adaptive uniform quantization
method proposed in [21] uses different quantization step sizes
for the outputs of the φ(x) and the φ−1(x) function in (7). If
the output of the φ(x) function is quantized with finite pre-
cision ε, inputs greater than φ−1(ε) can not be distinguished,
and φ−1(ε) is quite small even for extremely fine precision,
e.g., φ−1(10−3) ≈ 7.6 and φ−1(10−6) ≈ 14.5. Hence, the
largest supported magnitude during decoding depends on the
finest precision of quantization. This means that increasing
the quantization range without improving the precision is not
beneficial.

In order to avoid dealing with the φ(x) function, a variety
of other CN update rules, most of which are approximations
to the SPA, have been proposed. Some of these approximation
are based on the following equivalent version of the SPA CN
update rule represented by (6) or (7),

Lj→i = �
i′∈N(j)\i

Li′→j (8)

where � is the pairwise “box-plus” operator defined as

x� y = log

(
1 + ex+y

ex + ey

)
= sign(x)sign(y) · {min(|x|, |y|) + s(|x|, |y|)} (9)

= sign(x)sign(y)min(|x|, |y|) + s(x, y) (10)

with

s(x, y) = log
(
1 + e−|x+y|

)
− log

(
1 + e−|x−y|

)
. (11)

The proof of equivalence between (6) and (8) can be
found in [30]. We call such an implementation box-plus
SPA decoding. The formulation above does not have the
precision problem that (6) and (7) have, and, in fact, in 64-bit
double-precision floating-point implementation, the maximum
magnitude of a message that can be supported is approx-
imately 1.8 × 10308, which is the largest double-precision
value supported by the IEEE 754 standard. Moreover, unlike
the φ(x) function, the function log

(
1 + e−|x|) can be well

quantized or approximated with piecewise linear functions
[29]–[31].

If the term s(x, y) is omitted when using (8) to calculate
the CN output in box-plus decoding, the result is the same

as that produced by the MS algorithm using (3). Therefore,
box-plus SPA decoding can be viewed as MS decoding with
a correction factor. It is known that the magnitude of s(x, y)
is bounded above by log 2 (see, for example, [33, p. 232]). In
fact, as shown in [27], [32], given the same inputs, a message
produced by a CN in SPA decoding has the same sign as
the corresponding message in MS decoding, with equal or
smaller magnitude. Because of their relevance to the proof of
Theorem 4 below, we summarize these observations relating
the CN updates produced by the SPA and MS decoders in
Lemma 3.

Lemma 3: Let LMS denote the message from CN j to VN i
as computed in (3), and let LSPA denote the message from CN
j to VN i as computed in (6), (7), and (8). Then sign(LSPA) =
sign(LMS) and |LSPA| ≤ |LMS |. The correction term s(x, y)
in (11) satisfies − log 2 < s(x, y) < log 2, and sign(s(x, y)) =
−sign(xy) when xy 	= 0.

Proof: See Appendix C.
Finally, we note that if the correction term s(|x|, |y|) in (9) is
replaced with a fixed constant, the resulting CN update rule
corresponds to that of the OMS decoder in (5).

As we discussed earlier, no matter how one designs the
fixed-point implementation of the original SPA using the φ(x)
function, or even with the floating-point implementation, the
function

∣∣x− φ−1 (φ(x))
∣∣ is unbounded. Even if we saturate

both the input and the output of the φ(x) function, the value of∣∣x− φ−1 (φ(x))
∣∣ is still unbounded and linear in x. Therefore,

the CN output of a practical implementation of (6) or (7) can
significantly differ from the true computed value. However,
since box-plus SPA decoding can be considered as min-sun
decoding with a correction factor, the implementation error
mainly comes from the computation and quantization of the
correction factor, which is a small bounded value, as shown in
Lemma 3. Now, we can extend Theorem 1 to SPA decoding.

Theorem 4: Let G be the Tanner graph of a variable-regular
LDPC code that contains a subgraph S induced by a trapping
set. Assume that the channel is either a BSC or an AWGNC,
and that the messages from the channel to all VNs outside
S are correct. If S satisfies the k-separation assumption for
sufficiently large k, then the SPA decoder will successfully
correct all erroneous VNs in S.

Proof: See Appendix D.
Remark 1: As will be shown in the simulation results, lin-

ear scaling of the input LLRs to the SPA decoder will indeed
affect the decoding performance, because the correction factor
s(x, y) is not linear in either x or y.

For most LDPC codes, the trapping sets typically satisfy
the k-separation assumption only for small values of k.
Nevertheless, as described more fully in Section V, in our
64-bit double-precision floating-point computer simulations of
MS decoding and box-plus SPA decoding applied to several
LDPC codes traditionally associated with high error floors, we
have not observed, in tens of billions of channel realizations
of both the BSC and the AWGNC, any decoding failure in
which the error patterns correspond to the support of a small
trapping set. Moreover, when we force every VN in a trapping
set to be in error and all other VNs to be correct, the floating-
point decoders can successfully decode, whereas a decoder
implementation that limits the magnitude of messages may

6 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

not be able to resolve the errors in the trapping set and would
then fail to decode to the correct codeword.

We emphasize that the analytical and numerical results
in this paper are mainly for variable-regular LDPC codes.
Extension of this analysis to variable-irregular LDPC codes
does not appear to be straightforward.

IV. NEW QUANTIZED DECODERS WITH LOW ERROR

FLOORS

As mentioned above, several empirical studies have shown
that the range and the precision of quantized messages in
iterative LDPC decoders can influence the observed error
floor. Moreover, analytical models used to study the dynamical
evolution of messages show that message magnitudes can
exhibit exponential growth behavior as a function of the
number of decoder iterations. Likewise, the proofs of the
theorems and corollaries in Section III suggest that iterative
decoder performance can be improved by allowing for the
exponential growth of message magnitudes. These results
serve as the motivation for a new quantization method that
we refer to as (q + 1)-bit quasi-uniform quantization, which
we now describe.

Consider first the uniform quantizer with quantization step
Δ. For any real number x, it is defined by

QΔ(x) = sgn(x)Δ

⌊ |x|
Δ

+
1

2

⌋
.

The outputs of the uniform quantizer are of the form mΔ.
The quantization intervals can be visualized by expressing the
quantization rule as

QΔ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mΔ, if mΔ− Δ
2 ≤ x < mΔ+ Δ

2 ,
for m > 0

0, if −Δ
2 < x < Δ

2

mΔ, if mΔ− Δ
2 < x ≤ mΔ+ Δ

2 ,
for m < 0

(12)

Now, let N = 2q−1 − 1, where q is an integer value
q ≥ 1. The q-bit uniform quantizer combines the uniform
quantization intervals corresponding to the output values
mΔ, ∀m ≥ N into a single semi-infinite interval whose
elements are quantized to NΔ and, similarly, combines the
intervals corresponding to the output values mΔ, ∀m ≤ −N
into a single semi-infinite interval whose elements are quan-
tized to −NΔ. Denoting the q-bit quantizer with step Δ by
QΔ,q(x), we have

QΔ,q(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

NΔ, if NΔ− Δ
2 ≤ x

mΔ, if mΔ− Δ
2 ≤ x < mΔ+ Δ

2 ,
for N > m > 0

0, if −Δ
2 < x < Δ

2

mΔ, if mΔ− Δ
2 < x ≤ mΔ+ Δ

2 ,
for 0 > m > −N

−NΔ, if x ≤ −NΔ+ Δ
2

(13)
The number of intervals is 2N + 1 = 2q − 1, and the

quantizer output levels mΔ, −N ≤ m ≤ N , can be
denoted by the signed q-bit binary representation of m, that is,
[m0,m1, . . . ,mq−1], where the last q − 1 bits are the binary

representation of |m|, and m0 is the sign bit with value 0 (resp.
1) when m is positive (resp. negative). Note that the output
level 0 has two such binary representations; one of them can
be selected using any preferred convention.

One approach to expanding the range of quantized messages
is to increase the step size Δ, without changing the resolution
q. This approach, however sacrifices the precision of the
quantization. Alternatively, one could maintain the value of
Δ and increase q to resolve larger magnitudes. This would
increase implementation complexity when incorporated into
the decoding hardware.

In the context of our application, the (q + 1)-bit quasi-
uniform quantizer represents a compromise between these
conflicting objectives of retaining fine precision, allowing
large dynamic range, and controlling implementation com-
plexity as messages grow exponentially in the number of
decoder iterations. The definition of the quantizer involves
another parameter d > 1, which we refer to as the growth
rate parameter. Roughly speaking, the underlying idea behind
the quantizer is as follows. For input values in the inter-
val (−dNΔ, dNΔ),we use q-bit uniform quantization with
step size Δ. The intervals corresponding to quantized values
mΔ, −(N − 1) ≤ m ≤ (N − 1) are exactly like those of the
q-bit uniform quantizer. For values NΔand −NΔ, the semi-
infinite intervals are shortened to have length dNΔ−NΔ+Δ

2 .
For input values with magnitude larger than dNΔ, the quan-
tizer outputs can take an additional N + 1 = 2q−1 values of
the form drNΔ, 1 ≤ r ≤ N+1, with corresponding intervals
that increase exponentially in length with growth rate d. More
precisely, the (q + 1)-bit quasi-uniform quantizer, denoted by
Q∗

Δ,q(x) is defined as follows.

Q∗
Δ,q(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN+1NΔ, if dN+1NΔ ≤ x
drNΔ, if drNΔ ≤ x < dr+1NΔ,

for N ≥ r ≥ 1
QΔ,q(x), if −dNΔ < x < dNΔ
−drNΔ, if −dr+1NΔ < x ≤ −drNΔ,

for 1 ≤ r ≤ N
−dN+1NΔ, if x ≤ −dN+1NΔ

(14)
From (14), we see that the quantization levels can be

represented with only q + 1 bits. The levels mΔ, −N ≤
m ≤ N are represented by [m0,m1, . . . ,mq−1,mq], where
[m0,m1, . . . ,mq−1] is the signed binary representation of the
integer m and the final indicator bit, mq is set to zero, i.e.,
mq = 0, to reflect the fact that the q-bit uniform quantizer has
been applied. The 2q quantized levels drNΔ, 1 ≤ r ≤ N +1
are denoted by [r0, r1, . . . , rq−1, rq], where [r0, r1, . . . , rq−1]
is the signed binary representation of r − 1, and the indi-
cator bit rq is set to 1, i.e., rq = 1, to indicate that non-
uniform quantization has been used. Similarly, we denote
the 2q quantized levels −drNΔ, 1 ≤ r ≤ N + 1 by
[r0, r1, . . . , rq−1, rq], where [r0, r1, . . . , rq−1] is the signed
binary representation of −(r − 1), and the indicator bit rq
is again set to 1, i.e., rq = 1. It is sometimes convenient to
represent these quantization levels in the form (y, b), where
y is the decimal integer representation of the signed binary
q-tuple [m0,m1, . . . ,mq−1] or [r0, r1, . . . , rq−1], and b is the
indicator bit mq or rq .

ZHANG and SIEGEL: QUANTIZED ITERATIVE MESSAGE PASSING DECODERS WITH LOW ERROR FLOOR FOR LDPC CODES 7

TABLE I
(3+1)-BIT QUASI-UNIFORM QUANTIZATION WITH Δ = 1 AND d = 3.

Input Quantized value Binary
range (decimal) form
[0,0.5] 0 0000

(0.5,1.5] 1 0010
(1.5,2.5] 2 0100
(2.5,9) 3 0110
[9,27) 9 0001

[27,81) 27 0011
[81,243) 81 0101
[243, ∞) 243 0111

TABLE II
4-BIT QUASI-UNIFORM QUANTIZATION WITH Δ = 1, d = 3, AND Nu = 5.

Input Quantized value Binary
range (decimal) form
(0,0.5] 0 0000

(0.5,1.5] 1 0001
(1.5,2.5] 2 0010
(2.5,3.5] 3 0011
(3.5,12) 4 0100
[12,36) 12 0101
[36,108) 36 0110
[108,∞) 108 0111

Table I shows an example of (3+1)-bit quasi-uniform quan-
tization with Δ = 1, q = 3, and d = 3. Here N = 3. The
operation of the quantizer is shown only for non-negative real
inputs. The operation on negative reals can be obtained by odd
symmetry. The first bit is the sign bit, and the last bit is the
indicator bit. The quantizer behaves just like the 3-bit uniform
quantizer in the interval [0, 9). When x ≥ 9, the quantizer
uses intervals of exponentially increasing length, with input
x quantized to the smallest value in the interval in which x
falls. For example, all values within the quantization interval
[27, 81) are quantized to 27. The decimal values are used in the
VN and CN update computations, and then the corresponding
quantized binary messages are passed between VNs and CNs.

We can further extend the idea of (q+1)-bit quasi-uniform
quantization, as follows. The (q + 1)-bit quasi-uniform quan-
tizer uses q + 1 bits in total to represent 2N + 1 = 2q

different output magnitudes, or 2q+1−1 quantization intervals
if signs are taken into account. As described in (14) and
illustrated in Table I, N + 1 = 2q−1 output magnitudes,
including 0, are allocated to the uniform quantization domain
and the remaining N + 1 = 2q−1 magnitudes correspond
to exponentially growing quantization interval lengths. The
generalized (symmetric) (q + 1)-bit quasi-uniform quantizer
represents the same number of magnitudes, but it can assign
any number, say Nu, to the uniform quantization range and the
remaining 2q−Nu magnitudes to the exponential quantization
range. With a quantization rule similar to (14), the quantized
values of the general q+1-bit quasi-uniform quantization are
mΔ for −Nu < m < Nu; dr−Nu+1NuΔ for r ≥ Nu, and
−dr−Nu+1NuΔ for r ≤ −Nu. Table II shows an example
of a general 4-bit quasi-uniform quantization with Nu = 5,
Δ = 1, and d = 3. The uniform quantization range in this
example is from −4 to 4 with uniform step size 1, and the
exponential range is above 4 or below −4 with exponential
step sizes 4 · (3r − 3r−1) for 1 ≤ r ≤ 3.

The motivation for the proposed quasi-uniform quantization
method was the analysis of message-passing decoder behavior
on trapping sets that satisfy the k-separation assumption for
large k. Although this property is generally not satisfied by
trapping sets in practical LDPC codes, the simulation results
in the next section demonstrate that, for a variety of LDPC
codes that were examined, this quantization approach can
substantially lower error floors when used with standard MS-
based and SPA-based decoders.

V. NUMERICAL RESULTS

In this section we compare the error-rate performance
obtained with the proposed quasi-uniform quantization method
to that obtained using uniform quantization. We consider four
known LPDC codes covering a range of rates and lengths:
a rate- 3

10 , (640,192) quasi-cyclic (QC) LDPC code [17];
the rate- 12 , (2640,1320) Margulis LDPC code [4]; the rate-
4
5 , (1280, 1024) AR4JA LDPC code [36]; and MacKay’s
(4095,3358) regular LDPC code (the 4095.737.3.101 code in
[35]) with rate approximately 0.82. Results are shown for
various combinations of the BSC and AWGN channels using
the MS, OMS, AMS, SPA, and approximated-SPA decoders.

All of the frame error rate (FER) curves are based on Monte
Carlo simulations that generated at least 200 error frames for
each plotted error rate, and the maximum number of decoding
iterations was set to 200, unless otherwise indicated.

A. Dynamical Range of Message Magnitudes

We first present some empirical data in support of the
contention that some benefit may come from allowing message
magnitudes to grow during iterative decoding.

Fig. 2 shows the empirical probability density functions
(pdf) of the message magnitudes observed during decoding
simulations for two LDPC codes. Fig. 2(a) shows the pdf for
the MS decoder applied to the (640,192) QC-LDPC code on
the BSC with p = 0.03, where the magnitude of all input LLRs
is scaled to 1. Fig. 2(b) shows the pdf of the SPA decoder
applied to the Margulis code on the AWGNC with Eb/N0 =
2.25 dB. The data used to create these figures were obtained
using floating-point decoder implementations and more than
10 million channel output symbols. The messages passed on
all edges during all decoding iterations were collected to
generate the pdfs. In the simulations, the iterative MP decoders
stopped when a codeword was found or when the maximum
number of iterations (200) was reached. The figures confirm
that a substantial fraction of messages had “large” magnitudes.
Moreover, upon further examination of the simulation data,
we found that such “strong” messages, in general, helped to
successfully decode the received symbols, as suggested by the
idealized theoretical analysis in Section III.

B. Simulation Results for Min-Sum Decoding and Variants

Figs. 3 and 4 show simulation results for the (640,192) QC-
LDPC code using various types of quantized MS decoders
and floating-point MS decoders, extending some of the results
presented in [37]. For the BSC, we scaled the magnitudes of
decoder input messages from the channel to 1 since, for linear

8 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

0 50 100 150 200 250 300 350 400
10

−8

10
−6

10
−4

10
−2

10
0

Magnitude of messages

P
ro

ba
bi

lit
y

(a) MS decoder on the (640,192) QC-LDPC code on BSC of p = 0.03
and |LLR| = 1.

0 20 40 60 80 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Magnitude of messages

P
ro

ba
bi

lit
y

(b) SPA decoder on the Margulis code of length 2640 on AWGNC of
Eb/N0 = 2.25 dB.

Fig. 2. Probability density function of magnitude of messages.

decoders such as Gallager-B and MS, the scaling of channel
input messages does not affect the decoding performance.
The uniform quantization step size Δ is set to 1 or 0.5.
So, for example, when Δ = 1, the 3-bit uniform quantizer
produces values {±3,±2,±1, 0}, and the (3+1)-bit quasi-
uniform quantizer with d = 3 yields the values described in
Table I. Notice that setting step size to 0.5, which is half
of the input LLR magnitude, is equivalent to having Δ = 1
while scaling the input LLR magnitude to 2. In the simulation,
the parameter d was heuristically chosen by testing different
values. When q is large, a small d proved to be enough to
represent a large range of message magnitudes.

In Fig. 3, we see that the slope of the error floor resulting
from uniform quantization with either step size, Δ = 1 or
Δ = 0.5, is similar to that of the Gallager-B decoder error
floor. This is because, when most messages have the same
magnitude, MS decoding essentially degenerates to Gallager-
B decoding, which relies solely upon the signs of messages.

Comparing uniform quantizers with the same number of bits
but different step sizes, we see that smaller step size produces
better performance in the waterfall region but a higher error
floor. This observation can be explained by the saturation
level of these quantizers. For example, 3-bit and 4-bit uniform
quantizers with step size Δ = 1 saturate at magnitudes 3 and
7, respectively, whereas with step size Δ = 0.5, they saturate
at magnitudes 1.5 and 3.5, respectively. The stronger mes-
sages, i.e., the messages with larger magnitudes, can be helpful

0.01 0.02 0.03 0.04 0.05
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Crossover Prob. p

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

Gallager−B
Floating−point MS
3−bit uniform MS, Δ=1
4−bit uniform MS, Δ=1
(3+1)−bit MS, Δ=1
3−bit uniform MS, Δ=0.5
4−bit uniform MS, Δ=0.5
(3+1)−bit MS, Δ=0.5

Δ=1

Δ=0.5

Fig. 3. FER results of min-sum (MS) decoder on the (640,192) QC-LDPC
code on BSC, where Δ = 1 or 0.5, and d = 3.

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

4−bit uniform MS
5−bit uniform MS
6−bit uniform MS
7−bit uniform MS
8−bit uniform MS
Floating−point MS
(3+1)−bit quasi−uniform MS

Fig. 4. FER results of min-sum (MS) decoder on the (640,192) QC-LDPC
code on AWGNC, where Δ = 0.5 and d = 3.

or harmful to the decoding process, depending on whether
they are correct or not. The correct ones can help overcome
the incorrectly received bits, but the incorrect ones tend to
negatively influence the recovery of correctly received bits.
In the error-floor region, when channel conditions are good,
very few bits are received incorrectly, and as suggested by
the proofs of Theorems 1 and 4, large saturation levels allow
messages corresponding to correct bits to grow sufficiently
to overcome the “incorrect” messages in trapping sets. This
behavior is evident in Fig. 3, where the error floors produced
by the different uniform quantizers monotonically decrease as
the saturation levels increase.

On the other hand, in the waterfall region where many
bits are received incorrectly, reducing the saturation level may
limit the propagation of strong incorrect messages. Moreover,
in this specific case, quantization with the smaller step size
Δ = 0.5 may be expected to improve performance relative to
that achieved with the larger step size Δ = 1 or with a floating-
point MS decoder implementation. The reasoning is that, since
the magnitudes of input LLRs to the MS decoder from the
BSC are scaled to 1, the low saturation level and the possible
appearance of non-integral saturated messages may reduce the
possibility of the messages at a VN summing to zero. Because
having VNs summing to zero could result in oscillatory
behavior in the decoder and failure to decode correctly, this
could explain why in Fig. 3 the MS decoder using (3+1)-bit
quasi-uniform quantization and step size Δ = 0.5 yields better

ZHANG and SIEGEL: QUANTIZED ITERATIVE MESSAGE PASSING DECODERS WITH LOW ERROR FLOOR FOR LDPC CODES 9

2 2.5 3 3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

5−bit uniform OMS
6−bit uniform OMS
7−bit uniform OMS
8−bit uniform OMS
9−bit uniform OMS
Floating−point OMS
(4+1)−bit quasi−uniform OMS

Fig. 5. FER results of OMS decoder on the AR4JA LDPC code of k = 1024
and r = 0.8 on AWGNC, where Δ = 0.5, d = 1.5, and offset factor
β = 0.5,.

performance than the floating-point decoder.
Fig. 4 shows the performance of MS decoding of the

(640,192) QC-LDPC code on the AWGNC channel. Here
the (3 + 1)-bit quasi-uniform quantizer yields substantial
reduction of the error floor in comparison not only to 8-
bit uniform quantization but also to the floating-point results.
This is consistent with, and more impressive than, the results
shown in [37] for the Margulis code, where (5+1)-bit quasi-
uniform quantization surpassed 6-bit uniform quantization and
paralleled floating-point results. Heuristic reasoning along the
lines used above suggests that codes with higher variable-
node degree would benefit even more from the quasi-uniform
quantization. However, it is important to point out that the
gains can be code-dependent, so further performance studies
are needed to confirm this.

Quasi-uniform quantization can be directly applied to modi-
fied MS decoders, such as AMS and OMS, with the possibility
of significant reduction in the error floor. This was illustrated
in [37] for the (640,192) QC-LDPC code with AMS decoding
on the BSC and with OMS decoding on the AWGNC. In
case of AMS decoding, (3+1)-bit quasi-uniform quantization
dramatically reduced the error floor relative to 4-bit uniform
quantization, achieving the performance of the unsaturated
AMS decoder. For OMS decoding with (4 + 1)-bit quan-
tization, the comparisons to 5-bit uniform quantization and
unsaturated decoding were analogous.

Here we consider the performance of AMS and OMS de-
coding on longer codes with higher rates, specifically, the rate-
0.8, (4095,3358) regular code and the rate-0.8, (1280, 1024),
irregular AR4JA code. Fig. 5 compares the quasi-uniform
quantization method with uniform quantization in OMS de-
coding. The performance of the floating-point OMS decoder
is also shown. With uniform quantization ranging from 5 bits
to 9 bits, we can see that 8 bits suffice to closely approach
the error-rate performance of floating-point OMS, whereas
the (4+1)-bit quasi-uniform quantization actually surpasses
floating-point decoder. Fig. 6 shows a similar comparison for
AMS decoding of MacKay’s (4095,3358) LDPC code. The
attenuation factor α was set to the value 0.7, which was
found empirically to give the best error floor performance
among integer multiples of 0.1 in the range [0.5, 0.9]. After
normalization by this factor in every CN update, we found that

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

5−bit uniform AMS
6−bit uniform AMS
7−bit uniform AMS
8−bit uniform AMS
9−bit uniform AMS
Floating−point AMS
(5+1)−bit quasi−uniform AMS

Fig. 6. FER results of AMS decoder on the (4095,3358) LDPC code on
AWGNC, where Δ = 0.5, d = 1.3, and attenuation factor α = 0.7.

the quantized value lost precision due to the coarse step size
Δ = 0.5. As a consequence, the floating-point AMS decoder
had better performance than any of the quantized decoders,
most noticeably in the waterfall region. Uniform quantization
with 7 or more bits appears to eventually achieve floating point
performance at FER below 3×10−6, as does (5+1)-bit quasi-
uniform quantization.

C. Simulation Results for Sum-Product Algorithm Decoding

We now consider the application of quasi-uniform quanti-
zation to SPA decoding. In our simulations of quantized SPA
decoding, the input LLRs and the messages passed between
CNs and VNs are quantized values. For convenience, the CN
updates are carried out with floating-point arithmetic using
the box-plus update rule in (8); the resulting message is then
quantized appropriately.

In [38], we illustrated the performance of quasi-uniform
quantization with SPA decoding of the (640,192) QC-LDPC
code on the BSC. We saw that with LLR magnitudes scaled
to 2, the (6+1)-bit quasi-uniform quantizer with step size
Δ = 0.25 and d = 1.5 performs significantly better than 7-bit
uniform quantization with the same step size. Its performance
is comparable to that of the floating-point SPA decoder, which
is superior to floating-point SPA decoding with exact LLR
magnitudes log 1−p

p when the channel error probability p is
small.

Here we consider the same code and channel, with step size
again set to Δ = 0.25, but with quantization value scale factor
reduced to d = 1.3. With LLR magnitudes scaled to 2, we
simulated 6-bit through 10-bit uniform quantization, (5+1)-bit
quasi-uniform quantization, and floating-point SPA decoding
with LLR magnitudes scaled to 2 as well as with exact LLR
magnitudes.

The simulation results, shown in Fig. 7, indicate that the
(5 + 1)-bit quasi-uniform quantizer provides the best perfor-
mance for p < 0.06. Comparing to the results in [38], the
performance of the (5 + 1)-bit quantizer with d = 1.3 is
only slightly worse than that of the (6+ 1)-bit quantizer with
d = 1.5.

We note that the selection of the input LLR magnitude,
here set to 2, is heuristic and code-dependent. The value 2
was found empirically to give much better performance than,

10 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover Prob. p

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

6-bit uniform SPA, |LLR| = 2
7-bit uniform SPA, |LLR| = 2
8-bit uniform SPA, |LLR| = 2
9-bit uniform SPA, |LLR| = 2
10-bit uniform SPA, |LLR| = 2
Floating-point SPA, |LLR| = log 1−p

p

Floating-point SPA, |LLR| = 2
(5+1)-bit quasi-uniform, |LLR| = 2

Fig. 7. FER results of SPA decoder on the (640,192) QC-LDPC code on
BSC, where Δ = 0.25, and d = 1.3.

for example, the value 1, but does not necessarily represent
the optimal LLR magnitude scaling.

Results for SPA decoding of the (640,192) QC-LDPC code
on the AWGN channel were also presented in [38]. The (6 +
1)-bit quasi-uniform quantizer with Δ = 0.25 and d = 1.5 was
found to significantly improve upon 7-bit uniform quantization
and match the performance of the floating-point box-plus SPA
decoder.

In [38], we found similar relative performance for the
Margulis code on the AWGNC. The (6+1)-bit quasi-uniform
quantizer outperformed 7-bit uniform quantization, with step
size parameters Δ = 0.25 and d = 1.2, and its performance
equaled that of the “approximated box-plus SPA” decoder.
The latter made use of a two-piece linear approximation for
ln(1 + e−|x|), taken from [31], in computing the correction
factor s(x, y) for box-plus SPA decoding in (11), namely,

ln
(
1 + e−|x|

)
=

{
0.6− 0.24|x|, if |x| < 2.5

0, otherwise.
(15)

The approximated decoder ran about five times faster than the
floating-point SPA decoder, with a performance penalty of less
than 0.02 dB in the waterfall region.

In Fig. 8 we show further results for the Margulis code on
the AWGNC. The plot shows the FER results for (5 + 1)-
bit quasi-uniform quantization, as well as 6-bit, 7-bit, and
8-bit uniform quantizers, with quantization parameters set
to Δ = 0.25 and d = 1.3. We also evaluated the dual
quantization SPA decoding proposed by Zhang et al. [21],
where the φ(x) function is quantized into a mapping table,
denoted as φ̄(x). Following the notation in [21], we considered
dual quantization with parameters Q4.2/1.5, Q5.2/1.6, and
Q6.2/1.7 for 6-bit, 7-bit, and 8-bit quantizers, respectively.
The Qm.f quantizer uses uniform quantization to represent
a signed fixed-point number with m bits to the left of the
radix point for the integer part and f bits to the right of
the radix point for the fractional part. For example, a Q4.2
quantizer has uniform quantization step size of 0.25 and
a range [−7.75, 7.75]. Hence, all the quantization methods
compared here have the same uniform step size of Δ = 0.25
when quantizing the input LLRs.

We know that the saturation level φ̄(0) is limited by the
quantization step size, because it is desirable to have φ̄(0) < x
for all x satisfying φ̄(x) = 0. In other words, in the dual

1.5 1.75 2 2.25 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

6−bit uniform SPA
6−bit dual−quan. SPA
7−bit uniform SPA
7−bit dual−quan. SPA
8−bit uniform SPA
8−bit dual−quan. SPA
Floating−point SPA
(5+1)−bit quasi−uniform SPA

Fig. 8. FER results of approx.-SPA decoder on the (2640,1320) Margulis
code on AWGNC, where Δ = 0.25 and d = 1.3.

quantization scheme, the saturation level has to match the res-
olution of the quantizer; otherwise the error-rate performance
in both the waterfall region and the error-floor region will be
significantly degraded. Based on error-rate simulations using
a range of saturation levels for dual quantization methods, we
chose the saturation level for φ̄(x) = 0 to be 5.5, 7, and 8 for
the 6-bit, 7-bit, and 8-bit dual quantizers, respectively. As the
figure reveals, the (5 + 1)-bit quasi-uniform quantizer yields
the best FER performance in the error-floor region.

We also evaluated the performance of quasi-uniform quan-
tization in the context of decoding an irregular LDPC
code, namely the rate- 45 , (1280, 1024) AR4JA code. This
protograph-based code has variable node degrees ranging from
1 to 6. Fig. 9 shows the FER obtained with approximated-
SPA decoding and (5+1)-bit quasi-uniform quantization, with
Δ = 0.5 and d = 1.3. Also shown are the results obtained with
the floating-point decoder, as well as those produced by 8-bit
uniform quantization with step size Δ = 0.125. The (5+1)-bit
scheme was superior to both of these alternatives. The figure
also includes two curves taken from [36], corresponding to
an 8-bit quantized SPA decoder with modified VN update
rules that were designed specifically for this code, as well
as a “fully-optimized” 8-bit decoder with more sophisticated
VN/CN update rules. The (5+1)-bit quasi-uniform quantizer’s
performance surpassed that of the former, but it could not
match that of the fully-optimized 8-bit decoder.

D. Effect of Iteration Limits

Figs. 4 – 9 show that (q+1)-bit quasi-uniform quantization
can provide attractive error-floor performance, sometimes even
better than the double-precision floating-point box-plus SPA
decoder. In generating these results, we observed from the
simulation data that the floating-point SPA generally requires
more iterations to decode a codeword than the quasi-uniform
quantized SPA, especially in the high SNR region. Since the
maximum number of iterations was set to 200 in our simula-
tions, the faster convergence of the quasi-uniform quantized
SPA allowed it to outperform the floating-point SPA scheme.
The convergence properties of the quasi-uniform quantized
SPA decoder appear to derive from its use of non-uniform,
exponentially growing step sizes. From the theoretical analysis
discussed in Section III, we know that the exponential growth

ZHANG and SIEGEL: QUANTIZED ITERATIVE MESSAGE PASSING DECODERS WITH LOW ERROR FLOOR FOR LDPC CODES 11

2 2.5 3 3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

8-bit uniform SPA, Δ = 0.125
8-bit SPA withVN processing (Fig.13 in [36])
Floating-point SPA
(5+1)-bit quasi-uniform SPA
8-bit optimized decoder (Fig.10 in [36])

Fig. 9. FER results of approx.-SPA decoder on the AR4JA LDPC code of
k = 1024 and r = 0.8 on AWGNC, where Δ = 0.5 and d = 1.3.

rate of correct messages is larger than that of incorrect
messages. We might expect that, with a properly designed
quasi-uniform quantizer, the correct messages can reach the
higher magnitude level earlier than the incorrect messages, and
therefore incorrect messages are more likely to be quantized
to lower magnitude levels. Hence, the correct messages can
“overcome” the incorrect messages more rapidly, allowing the
decoder to converge to a codeword after fewer iterations.

In Fig. 10, we explore the effect of limiting the number of
iterations in approximated-SPA decoding of MacKay’s rate-
0.82, (4095,3358) LDPC code. With the maximum number of
iterations set to 200, we show the results for 6-bit and 10-
bit uniform quantizers, the (5 + 1)-bit quasi-uniform quan-
tizer, and the floating-point decoder. We also compare the
performance of (5 + 1)-bit quasi-uniform quantization and
the floating-point decoder when the maximum number of
iterations is raised to 10K and even further to 100K.

With a limit of 200 iterations, this code manifested a high
error floor with floating-point SPA decoding. The error floor
was lower when the number of iterations could go as high as
10K, and dropped even further when up to 100K iterations
were allowed. However, even in the latter case, the FER was
only slightly lower than that found with the quasi-uniform
quantizer with no more than 200 iterations. The performance
of the quasi-uniform quantizer continued to improve in raising
the limit to 10K and then to 100K. These results seem to
be consistent with the intuition suggested by the theoretical
analysis.

VI. CONCLUSION

Trapping sets and other error-prone substructures are known
to influence the error-rate performance of LDPC codes with
iterative message-passing decoding. In this paper, we have
shown that the use of uniform quantization in iterative MP
decoding can be a significant factor contributing to the error
floor phenomenon in LDPC code performance. An analysis
of iterative MP decoding in an idealized setting suggests that
decoder message saturation plays a key role in the occurrence
of errors in small trapping sets, leading to observed error
floor behaviors. To address this problem, we proposed a novel
quasi-uniform quantization method that effectively extends
the dynamic range of the quantizer. Without modifying the
CN and VN update rules or adding extra stages to standard

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

6−bit uniform SPA, max itr. 200
10−bit uniform SPA, max itr. 200
Floating−point SPA, max itr. 200
Floating−point SPA, max itr. 10k
Floating−point SPA, max itr. 100k
(5+1)−bit quasi−uni. SPA, max itr. 200
(5+1)−bit quasi−uni. SPA, max itr. 10k
(5+1)−bit quasi−uni. SPA, max itr. 100k

Fig. 10. FER results of approx.-SPA decoder on the (4095,3358) LDPC
code on AWGNC, where Δ = 0.5 and d = 1.3.

iterative decoding algorithms, the use of this quantizer was
shown to significantly lower the error floors of several well-
studied LDPC codes when used with various iterative MP
decoding algorithms on the BSC and AWGNC. Simulation
results confirmed that this new quantization method can sig-
nificantly reduce the error floors of these codes with essentially
no increase in decoding complexity.

APPENDIX A
PROOF OF THEOREM 1

Proof: Assume VN vr ∈ V1 ⊆ S is k-separated and the
corresponding computation tree is T (vr). Let cr ∈ C1 be the
neighboring degree-one CN of vr in S. From the separation
assumption and the assumed correctness of channel messages
for VNs outside S, all descendants of cr in T (vr) receive
correct initial messages from the BSC. Like the LLRs of the
BSC outputs, all the initial messages in the decoder, Lch

i , 1 ≤
i ≤ n, have the same magnitude. Denote the subtree starting
with CN cr as T (cr). With the VN/CN update rules of the MS
decoder, we analyze the messages sent from the descendants of
cr in T (cr). First, according to the CN update rule described
in (3), all messages received by a VN from its children CNs
in T (cr) must have the same sign as the message received
from the channel by this VN, because all the messages passed
in T (cr) are correct. Therefore, the outgoing message from
any VN vi to its parent CN cj in T (cr) satisfies the following
equality

|Li→j | =
∣∣∣∣∣∣Lch

i +
∑

j′∈N(i)\j
Lj′→i

∣∣∣∣∣∣ =
∣∣Lch

i

∣∣+ ∑
j′∈N(i)\j

|Lj′→i| .

(16)
Moreover, since the LDPC code considered is variable-

regular and all the channel messages from the BSC have the
same magnitude, all incoming messages received by a VN
from its children CNs in T (cr) must have the same magnitude
as well. Therefore, all the messages sent from VNs in the same
level of the computation tree T (cr) have the same magnitude.
Let |Ll| be the magnitude of the messages sent by the VNs
whose shortest path to a leaf VN contains l CNs in T (cr); in
particular, |L0| is the magnitude of messages sent by leaf VNs,
as well as the magnitude of channel inputs. The discussion

12 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

above implies that

|Ll| = |L0|+(dv−1)|Ll−1| > (dv−1)|Ll−1| > (dv−1)l|L0|,
(17)

where dv is the variable node degree. Hence, it can be seen
that the magnitudes of messages sent towards the root CN cr
of the computation tree T (cr) grow exponentially, with dv−1
as the base, in every upper VN level. Therefore, for l ≤ k,
the magnitude of the message sent in the l-th iteration from
cr to its parent node vr, the k-separated root VN of T (vr), is
greater than (dv − 1)l|L0|.

Now, let us look at the subtree of T (vr) that has as its
root a child CN c′ ∈ CS \ C1 of the root vr. Denote this
subtree by T (c′). We assume that the message L′

l received
by vr from c′ after l iterations has a different sign than the
message received from cr ∈ C1; otherwise, vr would already
have been corrected. Now consider any subtree of T (c′) that
has as its root a VN v ∈ S and contains t levels of VNs. We
denote such a tree by T t(v). If t ≥ 2a, the subtree T t(v) must
include at least one CN from the set C1. To see this, recall that
the induced subgraph of the trapping set is connected. Since
there are a VNs in the trapping set, it follows that any two
VNs in the trapping set can be connected by a path of length
less than 2a. Therefore, for t ≥ 2a, T t(v) actually includes
all the CNs and VNs in the induced subgraph of the trapping
set, in particular a CN from C1. Of course, for most trapping
sets, T t(v) can include a CN from C1 with t much smaller
than 2a.

Now, consider T t(v) as a “super-node” with (dv − 1)t

children VNs. Since T t(v) includes a CN from C1, at least
one of these children VNs has the property that all of its
descendants receive correct messages from the channel. This
means that at least one of the incorrect messages going into
the super-node would be canceled out by one or more such
correct messages. So if the output message, Lout, of such a
super-node is incorrect, its magnitude satisfies

|Lout| < ((dv − 1)t − 1)|Lin|+ |L̄ch|, (18)

where |Lin| is the largest magnitude of all incoming incorrect

messages, and the second term |L̄ch| � |L0|
t−1∑
i=0

(dv − 1)i is

an upper bound on the sum of the channel input LLRs to all
of the VNs in the t-level subtree. Note that the leaf VNs of
T t(v) are not necessarily the leaf VNs of T (vr). Thus, we
can upper bound the magnitude of the incorrect message sent
from c′ to vr after l iterations by

|L′
l| < |L0| · [(dv − 1)t − 1]

�l/t�

+|L̄ch|
�l/t�−1∑

i=0

[(dv − 1)t − 1]
i

<
(|L0|+ |L̄ch|

) · [(dv − 1)t − 1]
�l/t�

(19)

where �x is the smallest integer greater than or equal to x.
The upper bound in (19) is extremely loose, and for most
small-size trapping sets, the upper bound is generally less than
|L0|(dv − 2)l.

Therefore, by taking the logarithms of |Ll| in (17) and |L′
l|

in (19), respectively, we have

log |Ll| > log |L0|+ l log(dv − 1)
= log |L0|+ l · 1

t · log(dv − 1)t,
(20)

and

log |L′
l| < log

(|L0|+ |L̄ch|
)
+ �l/t log [(dv − 1)t − 1

]
< log

(|L0|+ |L̄ch|
)
+ log

[
(dv − 1)t − 1

]
+l · 1

t
· log [(dv − 1)t − 1

]
. (21)

Note that the first term in (20) and the first two terms in (21)
are constants and independent of the number of iterations l.

Since log(dv − 1)t > log [(dv − 1)t − 1], if l is large
enough and there is no limitation imposed on the magnitude
of messages, it is easy to see from (20) and (21) that |Ll|
would be greater than |L′

l| multiplied by any constant. This
means that the correct messages coming from outside of
the trapping set to VNs in V1 through their neighboring
CNs in C1 will eventually have greater magnitude than the
sum of incorrect messages from other neighboring CNs, i.e.,
|Ll| > (dv−1)|L′

l|. Hence, all the erroneous VNs in V1 will be
corrected. Since, by definition, an absolute trapping set does
not contain a stopping set, the remaining erroneous VNs must
form a smaller absolute trapping set. Therefore, we can use
the same argument to show that as the number of iterations
continues to grow, the correct messages would eventually be
large enough to correct all erroneous VNs.

Now, we show that the proof technique above can be
extended to the AWGNC. Define |Lmin| and |Lmax| to be
the minimum and maximum magnitudes, respectively, of the
input LLRs from the AWGNC. In this setting, the bounds on
log |Ll| and log |L′

l| corresponding to those in (20) and (21)
take the form

log |Ll| > log |Lmin|+ l · 1
t
· log(dv − 1)t, (22)

and

log |L′
l| < log

(|Lmax|+ |L̄ch|
)
+ log [(dv − 1)t − 1]

+l · 1
t · log [(dv − 1)t − 1] .

(23)
Since the quantities log |Lmin| and log |Lmax| are constant and
do not change as l increases, we can conclude, as we did for
the BSC, that the correct messages from outside the trapping
set will eventually have greater magnitude than the incorrect
messages from within the trapping set. Therefore, all of the
VNs will eventually be correctly decoded.

APPENDIX B
PROOF OF COROLLARY 2

Proof: We first consider AMS decoding. Referring to the
proof of Theorem 1 for the BSC case, we can replace the
quantity (dv − 1) in (20) and (21) by α(dv − 1), where α is
the attenuation factor. In practice, we would always choose
α such that α(dv − 1) is greater than 1; otherwise, the error-
correction performance of the AMS decoder would be inferior
to that of the MS decoder. Similar reasoning to that used in
the proof of the theorem then leads to the desired conclusion.
For the AWGNC case, we make the corresponding changes in
(22) and (23), and argue similarly.

For the OMS decoder, the proof follows from the proof
of Theorem 4 in Appendix D. There, we simply replace the
quantity s̄ by the offset β.

ZHANG and SIEGEL: QUANTIZED ITERATIVE MESSAGE PASSING DECODERS WITH LOW ERROR FLOOR FOR LDPC CODES 13

APPENDIX C
PROOF OF LEMMA 3

Proof: The first statement regarding the relationship be-
tween the sign and magnitude of the CN messages LSPA and
LMS is proved in [32], [27]. For completeness, we include
here an elementary alternative proof.

First note that if xy = 0, then s(x, y) = 0. Now, if x and
y are nonzero and have the same sign (i.e., xy > 0), then
|x + y| > |x − y| and hence s(x, y) < 0. Hence, we can
see from (9) that the first statement is true if the inequality
min(x, y) + s(x, y) > 0 holds for any positive real values x
and y. Without loss of generality, if we assume x ≥ y > 0,
then the following inequalities are equivalent

min(x, y) + s(x, y) > 0

⇔ log ey + log 1+e−x+y

1+e−x−y > 0

⇔ ey + e−x − 1− e−x+y > 0
⇔ (ey − 1)(1 − e−x) > 0.

Since ey > 1 and e−x < 1, the final inequality holds. Hence,
the first statement is proved.

To prove the second statement, note that

s(x, y) = log 1+e−x−y

1+e−x+y

= log ex+e−y

ex+ey

≥ log ex+e−x

ex+ex

> log 1
2 = − log 2.

Therefore, − log 2 < s(x, y) < 0. When xy < 0, a similar line
of reasoning shows that s(x, y) > 0 and 0 < s(x, y) < log 2.

APPENDIX D
PROOF OF THEOREM 4

Proof: From Lemma 3, we know that a CN message in
SPA decoding has the same sign as the corresponding CN
message in MS decoding. Moreover, the magnitude of the
former is less than or equal to that of the latter. To compute
the output for a CN of degree dc, the box-plus SPA uses the
pairwise box-plus operation (10) at most log(dc − 1) times.
Hence, the difference between output messages of the SPA and
the MS algorithm is upper bounded by s̄ � �log(dc−1)·log 2.

By applying an approach similar to that used in the proof of
Theorem 1, we can lower bound the magnitude of messages
Ll in SPA decoding as follows

|Ll| > |L0|+ (dv − 1) (|Ll−1| − s̄)

> (dv − 1)l|L0| − s̄
l∑

i=1

(dv − 1)i

= (dv − 1)l
(
|L0| − dv − 1

dv − 2
s̄

)
+ s̄

dv − 1

dv − 2
.

Since all input messages to the decoder from the BSC have
the same magnitude, if we scale the magnitudes of all initial
messages such that

|L0| > dv − 1

dv − 2
s̄ =

dv − 1

dv − 2
· �log(dc − 1) · log 2, (24)

then the magnitudes of messages sent towards cr in the
computation tree T (vr) grow exponentially in the number of

iterations, with base dv − 1. Hence, using the same reasoning
as in the proof of Theorem 1, it can be shown that, if k is large
enough and there is no limit on the magnitudes of messages,
the correct messages from outside the trapping set eventually
overcome the incorrect messages passed within the trapping
set, thereby correcting all erroneous VNs in the trapping set.

The extension to the AWGNC case is analogous to that
used in Theorem 1. Let |L0| denote the minimum magnitude
of all input LLRs from the AWGNC, and linearly scale the
magnitudes of all the input messages such that the inequality
(24) is satisfied. Then, reasoning as in the proof of the BSC
case above, we can show that the magnitudes of correct
messages outside the trapping set still grow exponentially with
dv − 1 as the base, and eventually they correct all erroneous
VNs in the trapping set.

ACKNOWLEDGMENT

The authors would like to thank Yang Han and William
Ryan for providing the parity check matrix of the (640,192)
QC LDPC code, Brian Butler for helpful discussions, and
the anonymous reviewers for their numerous and detailed
suggestions that helped to improve this paper.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, pp. 21–28, Jan. 1962.

[2] D. J. MacKay and R. M. Neal, “Near Shannon-limit performance of low-
density parity check codes,” Electron. Lett., vol. 33, pp. 457–458, Mar.
1997.

[3] C. Di, D. Proietti, I. E. Telatar, T. Richardson, and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, Jun.
2002.

[4] D. MacKay and M. Postol, “Weakness of Margulis and Ramanujan-
Margulis low-density parity check codes,” Electron. Notes Theor. Comp.
Sci., vol. 74, 2003.

[5] T. Richardson, “Error-floors of LDPC codes,” in Proc. 2003 Allerton
Conf. Communication, Control, and Computing, pp. 1426–1435.

[6] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based LDPC
codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181–201, Jan. 2010.

[7] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-length
analysis of message-passing iterative decoding of LDPC codes,” CoRR,
arxiv.org/abs/cs.IT/0512078.

[8] D. Divsalar and C. Jones, “Protograph based low error floor LDPC coded
modulation,” in Proc. 2005 IEEE Military Commun. Conf., vol. 1, pp.
378–385.

[9] J. Lu and J. M. F. Moura, “Structured LDPC codes for high-density
recording: large girth and low error floor,” IEEE Trans. Magnetics, vol.
42, pp. 208–213, Feb. 2006.

[10] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of
LDPC codes on the binary symmetric channel,” in Proc. 2006 IEEE Int.
Conf. Commun., pp. 1089–1094.

[11] S. Laendner and O. Milenkovic, “Algorithmic and combinatorial analy-
sis of trapping sets in structured LDPC codes,” in Proc. 2005 Int. Conf.
Wireless Networks, Commun., Mobile Comp., pp. 630–635.

[12] V. Savin, “Iterative LDPC decoding using neighborhood reliabilities,”
in Proc. 2007 IEEE IEEE Int. Symp. Inform. Theory, pp. 221–225.

[13] A. Casado, M. Griot, and R. Wesel, “Informed dynamic scheduling for
belief-propagation decoding of LDPC codes,” in Proc. 2007 IEEE Int.
Conf. Commun., pp. 932–937.

[14] E. Cavus and B. Daneshrad, “A performance improvement and error
floor avoidance technique for belief propagation decoding of LDPC
codes,” in Proc. 2005 IEEE Int. Symp. Pers., Indoor and Mobile Radio
Comm., pp. 2386–2390.

[15] G. Kyung and C. Wang, “Exhaustive search for small fully absorbing
sets and the corresponding low error-floor decoder,” in Proc. 2010 IEEE
Int. Symp. Inform. Theory, pp. 739–743.

14 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

[16] N. Varnica, M. P. C. Fossorier, and A. Kavcic, “Augmented belief
propagation decoding of low-density parity-check codes,” IEEE Trans.
Commun., vol. 55, no. 7, pp. 1308–1317, Jul. 2007.

[17] Y. Han and W. E. Ryan, “Low-floor decoders for LDPC codes,” IEEE
Trans. Commun., vol. 57, no. 6, pp. 1663–1673, Jun. 2009.

[18] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright,
“Lowering LDPC error floors by postprocessing,” in Proc. 2008 IEEE
Global Telecom. Conf., pp. 1–6.

[19] J. Zhao, F. Zarkeshvari, and A. Banihashemi, “On implementation of
min-sum algorithm and its modifications for decoding LDPC codes,”
IEEE Trans. Commun., vol. 53, no. 4, pp. 549–554, Apr. 2005.

[20] T. Zhang, Z. Wang, and K. Parhi, “On finite precision implementation
of LDPC codes decoder,” in Proc. 2001 IEEE ISCAS, pp. 201–205.

[21] Z. Zhang, L. Dolecek, B. Nikolić, V. Anatharam, and M. Wainwright,
“Design of LDPC decoders for improved low error rate performance:
quantization and algorithm choices,” IEEE Trans. Wireless Commun., vol.
8, no. 11, pp. 3258–3268, Nov. 2009.

[22] Z. Zhang, “Design of LDPC decoders for improved low error rate
performance,” Ph.D. dissertation, Univ. of California at Berkeley, 2009.

[23] B. Butler and P. Siegel, “Error floor approximation for LDPC codes
in the AWGN channel,” in Proc. 2011 Allerton Conf. Communication,
Control, and Computing, pp. 204–211.

[24] L. Dolecek, Z. Zhang, M. Wainwright, and V. Anatharam. “Evaluation
of the low frame error rate performance of LDPC codes using importance
sampling,” in Proc. 2007 IEEE Inform. Theory Workshop, pp. 202–207.

[25] B. Frey, R. Koetter, and A. Vardy, “Signal-space characterization of
iterative decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 766–781,
Feb. 2001.

[26] S. K. Planjery, D. Declercq, S. K. Chilappagari, and B. Vasic, “Mul-
tilevel decoders surpassing belief propagation on the binary symmetric
channel,” in Proc. 2010 IEEE Int. Symp. Inform. Theory, pp. 769–773.

[27] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[28] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008,
Aug. 29, 2008.

[29] B. Butler and P. Siegel, “Numerical issues affecting LDPC error floors,”
in Proc. 2012 IEEE Glob. Telecom. Conf., pp. 3201–3207.

[30] X. Hu, E. Eleftheriou, D. Arnold, and A. Dholakia, “Efficient imple-
mentations of the sum-product algorithm for decoding LDPC codes,” in
Proc. 2001 IEEE Global Telecommun. Conf., vol. 2, pp. 1036–1036.

[31] G. Richter, G. Schmidt, M. Bossert, and E. Costa, “Optimization of
a reduced-complexity decoding algorithm for LDPC codes by density
evolution,” in Proc. 2005 IEEE Int. Conf. Commun., vol. 1, pp. 642–646.

[32] J. Chen and M. Fossorier, “Near optimum universal belief propagation
based decoding of low-density parity check codes,” IEEE Trans. Com-
mun., vol. 50, no. 3, pp. 406–414, Mar. 2002.

[33] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern.
Cambridge University Press, 2009.

[34] X. Zhang and P. H. Siegel, “Efficient algorithms to find all small error-
prone substructures in LDPC codes,” in Proc. 2011 IEEE Global Telecom.
Conf., pp. 1–6.

[35] D. J. C. MacKay, Encyclopedia of Sparse Graph Codes. Available: http:
//www.inference.phy.cam.ac.uk/mackay/codes/data.html

[36] J. Hamkins, “Performance of low-density parity-check coded modula-
tion,” IPN Progress Report 42-184, Feb. 2011. Available: http://ipnpr.jpl.
nasa.gov/progress report/42-184/184D.pdf

[37] X. Zhang and P. Siegel, “Quantized min-sum decoders with low error
floor for LDPC codes,” in Proc. 2012 IEEE Int. Symp. Inform. Theory,
pp. 2871–2875.

[38] X. Zhang and P. Siegel, “Will the real error floor please stand up?” in
Proc. 2012 IEEE Int. Conf. Signal Process. Commun., pp. 1–5.

Xiaojie Zhang (S’05–M’13) received the B.S. de-
gree in Electrical Engineering from Shanghai Jiao
Tong University, Shanghai, China, in 2004, the
M.S. degree in Electrical Engineering from Seoul
National University, Seoul, Korea, in 2006, and the
Ph.D. degree in Electrical Engineering from the
University of California in San Diego, La Jolla, in
2012. From 2006 to 2008, he was a system engi-
neer in Samsung Electronics, Suwon, Korea. Since
2013, he has been with Samsung Research America
– Dallas conducting research and development on

wireless cellular and local area networks. His research interests include
wireless communication, multiuser scheduling, cross-layer communication
system design, and error correction coding theory and its applications.

Paul H. Siegel (M’82–SM’90–F’97) received the
S.B. and Ph.D. degrees in mathematics from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1975 and 1979, respectively.

He held a Chaim Weizmann Postdoctoral Fellow-
ship at the Courant Institute, New York University.
He was with the IBM Research Division in San
Jose, CA, from 1980 to 1995. He joined the faculty
at the University of California, San Diego in July
1995, where he is currently Professor of Electrical
and Computer Engineering in the Jacobs School of

Engineering. He is affiliated with the Center for Magnetic Recording Research
where he holds an endowed chair and served as Director from 2000 to
2011. His primary research interests lie in the areas of information theory
and communications, particularly coding and modulation techniques, with
applications to digital data storage and transmission.

Prof. Siegel was a member of the Board of Governors of the IEEE
Information Theory Society from 1991 to 1996 and from 2009 to 2011. He
was re-elected for another three-year term in 2012. He served as Co-Guest
Editor of the May 1991 Special Issue on “Coding for Storage Devices” of
the IEEE TRANSACTIONS ON INFORMATION THEORY. He served the same
TRANSACTIONS as Associate Editor for Coding Techniques from 1992 to
1995, and as Editor-in-Chief from July 2001 to July 2004. He was also
Co-Guest Editor of the May/September 2001 two-part issue on “The Turbo
Principle: From Theory to Practice” of the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS.
Prof. Siegel was co-recipient, with R. Karabed, of the 1992 IEEE Informa-

tion Theory Society Paper Award and shared the 1993 IEEE Communications
Society Leonard G. Abraham Prize Paper Award with B.H. Marcus and J.K.
Wolf. With J.B. Soriaga and H.D. Pfister, he received the 2007 Best Paper
Award in Signal Processing and Coding for Data Storage from the Data
Storage Technical Committee of the IEEE Communications Society. He holds
several patents in the area of coding and detection, and was named a Master
Inventor at IBM Research in 1994. He is an IEEE Fellow and a member of
the National Academy of Engineering.

