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The investigation was carried out by formulating the problem in a
discrete form. This leads to the representation of a quadriphase code
by discrete Fourier transform and inverse discrete Fourier transform.
The coefficients of a mismatched filter are then calculated from (7) by
exploiting the discrete Fourier transform representation of the code.
The mismatched filter designed in this manner eliminates the sidelobes
as we have shown in Figs. 1, 2, and 6.

A mismatched filter has three drawbacks when compared to the
matched filter. The first drawback is that a mismatched filter has
infinitely many coefficients. However, we have explained and also
shown in Fig. 3 that the values of these coefficients go to zero rapidly.
Hence, this may not be problematic in practice. The second drawback
is that the discrete Fourier transform of the code might have zeros in
the frequency domain and we have shown that this is improbable. The
third problem is that its output SNR is less than the output SNR
of the respective matched filter. However, one can choose codes with
minimum SNR losses. We have presented the noise enhancement
factors for the best codes in Table I. These codes have been selected
from 1:466 � 1012 number of investigated codes based on their kvs
values. The quadriphase codes, which have smaller values of kvs than
the respective binary-phase codes, were selected. For code lengths
of 7; 10; 9; 15; 16; 17; 18; and 19, the optimal codes turned out to be
quadriphase codes. The other optimal codes are binary-phase codes.

The 13- and 15-element codes have 0:2136 and 0:3012 noise en-
hancement factors, respectively. For these codes we have shown that
the shape of the mismatched filter resembles the matched filter. In most
of the other codes, the noise enhancement factor is greater than 0:4.
One should evaluate the losses inSNR against the advantages of elim-
inating sidelobes. Finally, by carrying out a random search we have
shown that a randomly selected long code will most likely have large
noise enhancement factor.
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Improved Probabilistic Bounds on Stopping Redundancy
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Abstract—For a linear code , the stopping redundancy of is defined
as the minimum number of check nodes in a Tanner graph T for such
that the size of the smallest stopping set in T is equal to the minimum dis-
tance of . Han and Siegel recently proved an upper bound on the stopping
redundancy of general linear codes, using probabilistic analysis. For most
code parameters, this bound is the best currently known. In this correspon-
dence, we present several improvements upon this bound.

Index Terms—Binary erasure channel, iterative decoding, linear codes,
stopping redundancy, stopping sets.

I. INTRODUCTION

The stopping redundancy of a binary linear code characterizes the
complexity, measured in terms of the minimum number of check nodes,
of a Tanner graph for such that iterative decoding of this graph on the
binary erasure channel (BEC) achieves performance comparable (up to
a constant factor) to that of maximum-likelihood decoding. It is widely
believed [16], [19] that stopping redundancy and related concepts are
of relevance for channels other than the BEC as well.

Specifically, let be a linear code of length n, dimension k, and
minimum distance d, and letH = [hij ] be a t� n parity-check matrix1

for . The corresponding Tanner graph T (H) for is a bipartite graph
with n variable nodes and t check nodes such that the ith check node
is adjacent to the jth variable node iff hij 6= 0. A stopping set S is
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a subset of the variable nodes in T (H) such that all the check nodes
that are neighbors of S are connected to S at least twice. Equivalently,
a stopping set S is a set of columns of the parity-check matrix such that
the corresponding column submatrix of H does not contain a row of
weight one. It is well known [3], [19] that iterative decoding on the BEC
succeeds iff the set of erased positions does not contain a stopping set.
The size of the smallest stopping set, known as the stopping distance
s(H), is thus a limit on the number of erasures that iterative decoding
on the Tanner graph T (H) can guarantee to correct.

Note that the stopping distance is not a property of the code
itself, but rather of the specific choice of a parity-check matrix H for

. Moreover, it is known [19] that s(H) d for all possible choices
of H , and it is always possible to find a parity-check matrix for
such that this bound holds with equality. This motivates the following
definition.

Definition 1: Let be a linear code with minimum Hamming dis-
tance d. Then the stopping redundancy of is defined as the the
smallest integer �( ) such that there exists a parity-check matrix H
for with �( ) rows and s(H) = d.

Stopping redundancy was introduced by Schwartz and Vardy in [18],
[19]. It was subsequently studied in a number of recent papers [1],
[4], [6]–[13], [17] and [20]. Related concepts, such as stopping redun-
dancy hierarchy, trapping redundancy, and generic erasure-correcting
matrices were investigated in [8]–[13], [16], and [20]. Existing results
on stopping redundancy are of two types: bounds on the stopping re-
dundancy of specific families of codes (e.g., cyclic codes [8], MDS
codes [6], [7], [19], Reed–Muller codes [4], [19], and Hamming codes
[4], [20]) as well as bounds on the stopping redundancy of general (bi-
nary) linear codes [6], [10]–[13], [18], [19]. It is the latter type of re-
sults that we are concerned with here. Thus let us describe the known
bounds in some detail.

Let be an (n; k; d) binary linear code, and let r = n�k. The first
upper bound on the stopping redundancy of , established by Schwartz
and Vardy [18], [19, Theorem 4], is given by

�( )
r

1
+

r

2
+ � � �+

r

d� 2
(1)

provided d 3. This bound was improved (at least, for odd d) by Han
and Siegel [6, Theorem 2], yielding

�( )
r
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where t = bd=2c. Hollmann and Tolhuizen [10]–[13] studied a more
difficult problem of constructing “generic erasure-correcting sets.”
However, some of their results can be interpreted as bounds on the
stopping redundancy hierarchy (cf. [8], [9]) of general linear codes,
and then specialized to bounds on �( ). In particular, Hollmann and
Tolhuizen prove in [12, Theorem 5.2] and [13, Theorem 4.1] that

�( )
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0
+

r � 1

1
+ � � �+

r � 1
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which improves upon (1) and (2). They also show in [10, Theorem 1]
that if all the codewords of have even weight, then

�( ) 2
r � 2

0
+

r � 2

1
+ � � �+

r � 2

d� 3
: (4)

The bounds in (1)–(4) are all based on the same general set of ideas, and
are constructive in a certain well-defined sense (cf. [12], [13]). In con-
trast, Hollmann and Tolhuizen employed a nonconstructive random-

TABLE I
UPPER BOUNDS ON THE STOPPING REDUNDANCY

OF THE (24; 12;8) AND THE (48;24;12) CODES

coding argument in [11, Theorem 4.2] and [13, Theorem 3.2] to show
that

�( )
log

2
((2r � 1)(2r � 2)(2r � 22) � � � (2r � 2d�2))

(d� 1)� log
2
(2d�1 � (d� 1))

: (5)

As pointed out by Ludo Tolhuizen, another probabilistic bound on stop-
ping redundancy, namely

�( )
(r � 1)(d� 2)� log

2
((d� 2)!)

(d� 2)� log
2
(2d�2 � 1)

+ 1 (6)

follows by combining Proposition 6.2, Lemma 6.5, and Theorem 6.14
of [12]. An entirely different probabilistic argument was used by Han
and Siegel in [6, Theorem 3] to establish the following bound:

�( ) min t 2 : En;d(t) < 1 + (r � d+ 1) (7)

where

En;d(t)
def
=

d�1

i=1

n

i
1�

i

2i

t

: (8)

Although the various bounds in (1)–(7) are difficult to compare an-
alytically, the following claims seem to be justified.

• For most code parameters, the probabilistic bounds (5)–(7) are
much better than the constructive bounds (1)–(4).

• Among the probabilistic bounds, the Han–Siegel bound of [6,
Theorem 3] and (7) is by far the strongest.

Using the tables of [5], we have verified that these claims hold for
all possible code parameters n; k, and d with d> 4 and n 256.
A representative picture is shown in Table I, where we computed the
bounds (1)–(7) for the (24; 12; 8) Golay code and for the (48; 24; 12)
quadratic-residue code. Thus the Han–Siegel bound (7) appears to be
the best currently known bound on the stopping redundancy of general
linear codes.

In this correspondence, we present several improvements upon the
Han–Siegel bound (7) using a number of ideas, most of which are based
upon a more careful probabilistic analysis.

II. PROBABILISTIC BOUNDS ON STOPPING REDUNDANCY

Given a linear code , Han and Siegel [6, Theorem 3] construct
a parity-check matrix H for by drawing codewords independently
and uniformly at random from the dual code ?. Our first observation
is this: such random choice is efficient at first, but becomes less and less
efficient as successive rows of H are drawn from ?. At some point,
deterministic selection becomes superior. This leads to the following
result.
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Theorem 1: Let be an (n; k; d) binary linear code. Let �( )
denote the deficiency of , that is �( ) = n� k+1� d. Let En;d(t)
be the expectation function defined in (8). Then

�( ) min
t2

t+ bEn;d(t)c +�( ): (9)

Proof: We first need some notation. Let ( [n]
i
) denote the set of all

subsets of f1; 2; . . . ; ng of size i, and let

def
=

d�1

i=1

[n]

i
: (10)

Following [6], [19] we will refer to elements of ( [n]
i
) as i-sets. Given

an m � n binary matrix H and an i-set S , we say that H covers S if
them� i column submatrix ofH , consisting of those columns that are
indexed by the elements of S , contains a row of weight one. Clearly, the
stopping sets with respect to H are precisely those sets S that H does
not cover; hence s(H) d if and only if H covers S for all S 2 .

Now let Ht be a t�n matrix whose rows are drawn from ? in-
dependently and uniformly at random. If S 2 is a fixed i-set and hhh
is a fixed row of Ht, then the probability that hhh covers S is i=2i. This
is so because ? is an orthogonal array of strength d � 1 (cf. [15, p.
139]), which means precisely that for all S 2 , a codeword drawn
at random from ? is equally likely to contain each of the 2i possible
vectors on the i positions indexed by S . Let Xt denote the number of
sets S 2 that are not covered by Ht. Then Xt is a random variable,
and the expected value of Xt is given by

[Xt] =
S2

PrfS not covered by Htg

=

d�1

i=1

n

i
1�

i

2i

t

:

The right-hand side of the above expression is En;d(t), by definition.
It follows that there exists a realization H of Ht that covers all but at
most bEn;d(t)c sets in . For each uncovered set S , there is a codeword
of ? that covers S (again, since ? is an orthogonal array). Thus we
can adjoin bEn;d(t)c rows to H to create a matrix H 0 with s(H 0) = d.
It is possible that rank(H 0) < n�k. However, rank(H 0) is clearly at
least d� 1. Hence, by adjoining at most �( ) = (n� k)� (d� 1)
rows to H 0, we finally obtain a parity-check matrix H 00 for with at
most t+ bEn;d(t)c+�( ) rows and s(H 00) = d.

Since the minimization in (9) contains the Han-Siegel bound of (7)
as a special case, Theorem 1 is at least as strong as (7). In fact, it is
often substantially stronger (cf. Table II).

The bound of Theorem 1 involves solving a minimization problem;
a closed-form expression would be desirable. This is addressed in the
following corollary, which is similar in spirit to [6, Corollary 4] and
improves upon it. The corollary provides an approximate closed-form
solution for the minimization problem of (9), which becomes exact
asymptotically.

Corollary 2: Let be an (n; k; d) binary linear code. Let �( ) be
the deficiency of , as before, and define

C
def
=

d�1

i=1

n

i
' 2nH ( )

D
def
= � ln 1�

d� 1

2d�1
'

d� 1

2d�1

TABLE II
IMPROVED BOUNDS ON THE STOPPING REDUNDANCY

OF THE (24; 12;8) AND THE (48;24;12) CODES

whereH2(x)
def
= �x log2 x�(1�x) log2(1�x) is the binary entropy

function. Then

�( )
lnC + lnD + 1

D
+�( ): (11)

Proof: In order to solve the minimization problem in (9), albeit
approximately, we upper-bound En;d(t) as follows:

En;d(t)

d�1

i=1

n

i
1�

d� 1

2d�1

t

= Ce�Dt

where the inequality follows from the fact that i=2i is nonincreasing
in i. Let f(t) = t+Ce�Dt. Then f(t), regarded as a function from to

, is convex and attains its global minimum at t0 = (lnC+lnD)=D.
Clearly, t0 is always positive and f(t0) = (lnC + lnD+ 1)=D. The
corollary now follows from Theorem 1.

Next, we observe that the random choice method used by Han and
Siegel in [6, Theorem 3] and in Theorem 1 is not optimal. It would be
better to select the rows of Ht from ? nf0g, rather than ?, without
replacement, rather than with replacement. This leads to the following
bound.

Theorem 3: Let be an (n; k; d) binary linear code, let �( ) be
the deficiency of , and let r = n � k. Then

�( ) min
t2

t+ bFn;d;k(t)c +�( ) (12)

where

Fn;d;k(t)
def
=

d�1

i=1

n

i

t

j=1

1�
i2r�i

2r � j
: (13)

Proof: We construct a parity-check matrix for in the same way
as in Theorem 1, except that the initial matrix Ht is selected differ-
ently. Specifically, the rows hhh1; hhh2; . . . ; hhht of Ht are selected as fol-
lows. Suppose that we have already chosen the first j� 1 rows hhh1;
hhh2; . . . ; hhhj�1, then the jth rowhhhj is selected uniformly at random from

? n f0; hhh1; hhh2; . . . ; hhhj�1g: (14)

Now let S 2 be a fixed i-set that is not covered by any of hhh1;
hhh2; . . . ; hhhj�1. What is the probability that the jth row covers S? The
total number of possible (equally likely) choices for hhhj is 2r � j. Of
these, precisely i2r�i cover S . This is so because there are exactly
i2r�i codewords in ? that cover S (again, since ? is an orthogonal
array), and none of these is among hhh1; hhh2; . . . ; hhhj�1 by assumption.
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Hence, the probability that hhhj covers S is i2r�i=(2r � j). Thus, for
any fixed i-set S 2 , the probability that Ht does not cover S is

PrfS is not covered by Htg =

t

j=1

1�
i2r�i

2r � j
:

Thus, Fn;d;k(t) in (13) is the expected number of sets S 2 that are
not covered by Ht, and the theorem follows.

Since (13) is extremely close to (8), it is somewhat surprising that
Theorem 3 yields any improvements upon Theorem 1. But it does, at
least for small code parameters (cf. Table II).

We now improve the construction of a parity-check matrix for
described in Theorem 3 in yet another respect. Let H0 be a fixed
t�n matrix whose rows hhh1; hhh2; . . . ; hhht are nonzero codewords of
?, and let 0 denote the subset of the set in (10) consisting of

those sets that are not covered by H0. Let X0 = j 0j. Suppose we
adjoin another row hhht+1 to H0, selected uniformly at random from
? n f0; hhh1; hhh2; . . . ; hhhtg as in (14), and let H 0

1 denote the resulting
random matrix. Let X 0

1 be the number of sets S 2 not covered
by H 0

1. Then, arguing as in the proof of Theorem 3, we find that

[X 0
1] =

S2

PrfS is not covered by hhht+1g

X0 1�
(d� 1)2r�d+1

2r � (t+ 1)
:

It follows that there exists a (t+1)�n realizationH1 ofH 0
1 that covers

all but at most

X1 = X0 1�
(d� 1)2r�d+1

2r � (t+ 1)
(15)

sets in . The process can be now iterated. That is, given H1, we can
construct a (t+2)�n matrix H2 that covers all but at most

X2 = X1 1�
(d� 1)2r�d+1

2r � (t+ 2)
(16)

sets in . And so on. To formalize this process, let us define for all
j = 1; 2; . . ., the function Pj : ! as follows:

Pj(k)
def
= k 1�

(d� 1)2r�d+1

2r � (t+ j)
; for all k 2

where the parameters d; r, and t are regarded as constant. Then, after
i iterations of the foregoing procedure, we will construct a (t+ i)�n
matrix Hi that covers all but at most

Qi(X0)
def
= Pi Pi�1 � � �P2 P1(X0) (17)

sets in . If Qi(X0) = 0, we are done. This establishes the following
upper bound on stopping redundancy.

Theorem 4: Let be an (n; k; d) binary linear code, with deficiency
�( ). Then the stopping redundancy �( ) is at most

min
t2

t+minfi 2 : Qi(bFn;d;k(t)c) = 0g +�( ) (18)

where Fn;d;k(t) is the expectation function defined in (13) while
Qi( � ) is the function defined in (17).

Although the definition of Qi( � ) in (17) appears to be rather in-
volved, we observe that the minimization over i in (18) is, in fact, very
easy to compute: all it takes is a single-line while loop. The bound of
Theorem 4 clearly includes Theorem 3 as a special case, and improves
upon it (cf. Table II).

Finally, we would like to get rid of the small, but annoying, defi-
ciency term �( ) in Theorems 1–4. To this end, the following simple
observation often suffices. A code � n

2 is said to be maximal if it
is not possible to adjoin any vector in n

2 to without decreasing its
minimum distance.

Proposition 5: Let be an (n; k; d) binary linear code. Let H be
any matrix with s(H) = d whose rows are codewords of ?. If is
maximal, then rank(H) = n � k.

Proof: Assume to the contrary that rank(H) < n�k. Then H is
a parity-check matrix for a proper supercode 0 of . Since s(H) = d,
the minimum distance of 0 is also d, which contradicts the fact that
is maximal.

Proposition 5 implies that if is maximal, we can drop the defi-
ciency term �( ) in Theorems 1–4. We can also get rid of this term
using a more elaborate probabilistic argument. It is intuitively clear that
if we draw sufficiently many codewords uniformly at random from the
dual of an (n; k; d) code , the resulting matrix is likely to have rank
close to r = n � k. This observation is made formal in the following
lemma.

Lemma 6: Let be an (n; k; d) binary linear code, and let Ht be a
t � n matrix whose rows are drawn uniformly at random (either with
or without replacement) from the dual code ?. Let r = n � k, and
define the random variable Yt = r � rank(Ht). Then for all t r,
we have

[Yt]
1

2t�r
1 +

2=3

2t�r+1 � 1
: (19)

Proof Sketch: First assume that the rows of Ht are drawn
from ? uniformly at random with replacement (as in Theorem 1). It
is known (see [14], for example) that

Prfrank(Ht) = jg =
1

2(r�j)(t�j)

j�1

i=0

(1� 2i�r)(1� 2i�t)

1� 2i�j

for all j = 1; 2; . . . ; r. Taking the expectation with respect to this dis-
tribution (along with some technical details that we omit) produces the
upper bound in (19). Finally, it can be shown that if the rows of Ht are
drawn uniformly at random from ? n f0g without replacement (as in
Theorem 3), this can only reduce the expected value of Yt.

In order to combine Lemma 6 with our earlier results, let us define
the function

Gn;d;k(t)
def
= Fn;d;k(t) +

1

2t�r
1 +

2=3

2t�r+1 � 1
(20)

where r = n � k and Fn;d;k(t) is as defined in (13). We can now
modify the proofs of Theorem 3 and Theorem 4 accordingly, thereby
establishing the following result.

Theorem 7: Let be an (n; k; d) binary linear code, and let r =
n � k. Then the stopping redundancy of is bounded by

�( ) min
t�r

t+ bGn;d;k(t)c : (21)

Moreover, if (r � 1)(d� 1) 2d�1 then

�( ) min
t�r

t+minfi 2 : Qi(bGn;d;k(t)c) = 0g (22)

where the functions Gn;d;k(t) and Qi( � ) are as defined in (20) and
(17), respectively.
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Proof: Use the same argument as in the proof of Theorem 3, but
with respect to the random variable Zt = Xt + Yt, which is the sum
of the number of sets S 2 not covered by Ht and its rank deficiency
r� rank(Ht). Further, note that the condition (r� 1)(d� 1) 2d�1

is sufficient for the argument in (15), (16), and (17) to be applicable in
this case as well.

It is not immediately apparent that (21) produces a better bound on
stopping redundancy than Theorem 3. However, we can show that this
is always so, except for a few trivial cases. In fact, comparing (13) and
(19), we see that the second term in (20) decreases with t exponentially
faster than the first term. Thus, unless the minimum in (21) and/or (22)
is achieved for t very close to r (in which case �( ) must be close to
r as well), the second term in (20) has essentially no effect on the min-
imization—this term is a tiny fraction, which disappears when taking
the floor of Gn;d;k(t). It follows that for virtually all code parameters,
the net effect of (21) and (22) consists of eliminating the deficiency
term �( ) in Theorems 3 and 4.

III. DISCUSSION AND CONCLUDING REMARKS

The Han-Siegel probabilistic bound [6, Theorem 3] is the best
currently known bound on the stopping redundancy of general linear
codes. We presented several improvements upon this bound based
upon a more elaborate probabilistic analysis. Although all our results
were stated and proved herein for binary linear codes, they extend
straightforwardly to linear codes over an arbitrary finite field. Exten-
sion to bounds on the stopping redundancy hierarchy [8], [9] is also
straightforward: simply replace all occurrences of d in Theorems 1–4
and 7 by the corresponding index of the hierarchy. Generalization to
bounds on the trapping redundancy [16] should be relatively easy as
well, although, perhaps, less straightforward.

While the improvements on the Han–Siegel bound established
herein are not dramatic, we believe it is useful to have the strongest
possible form of this bound available in the literature. We point
out that, in addition to the results presented in Section II, we have
investigated several other ideas. For example, one could construct
a parity-check matrix for a linear code by selecting each codeword
of the dual code ? independently with some probability p, and
then optimize the value of p. However, we have found that while this
method, as well as other probabilistic-choice variants, improve upon
the original Han–Siegel bound of [6, Theorem 3], they are generally
less efficient than the bounds presented in Section II. We note that
well-known techniques in “probabilistic method,” such as Lovász
local lemma [2, p. 64] and Rödl nibble [2, p. 53], do not seem to be
applicable in our context. Thus we believe that further improvements,
if any, would require drastically new ideas.
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