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Abstract - This  paper  provides  a  tutorial  introduction  to 
E E 6 i i i g  codes for  magnetic disk storage  devices  and a review 
of progress  in  code  construction  algorithms.  Topics  covered 
include:  a brief description of typical  magnetic  recording 
channels;  motivation  for use of recording  codes;  methods  of 
selecting  codes to  maximize  data  density  and  reliability;  and 
techniques  for code  design and  implementation. 

1. INTRODUCTIQN 

magnetic  disk  storage  to  increase  linear  density  and  improve 
Recording  codes have been uscd  with  great  success  in 

performance.  This  paper  attempts  to  provide, in a limited  space, 
a  tutorial  introduction  to  these  codes. 

and  detection in a typical  magnetic  storage  channel, as well as 
Section 2 briefly reviews the  basic  principles  of  recording 

the  motivation  for  the use of codes. 
Section 3 focuses on recording  codes  for  magnetic  disk 

storage.  The  recording codes in most  widespread  use  fall  into 
the  class of run-length-limited  (RLL)  or  (d,k)  constrained codes. 

(d,k! codes.  First,  one  must  choose  the  parameters  (d,k)  which 
Two  major  problems  arise in the  context of general  RLL 

maximize  data  density  and  reliability. In Section 4, we address 
this  issue of recording  code  performance  evaluation  and 
parameter  selection. 

The  second  major  problem  is  the  design  and 
implementation of (d,k) codes. Section 5 is  devoted to   a  review 

advances in the  development of general  algorithms  for  the 
of code  construction  techniques,  with an  emphasis  on  recent 

construction of sliding block RLL codes. 

2. THE  DIGITAL  MAGNETIC  RECORDING  CHANNEL 

Most  magnetic  disk  storage  devices in use today  employ 
saturation  recording  to  place  the  data on the  disk,  followed by 
peak  detection  during  the  readback  step  to  recover  the 
information.  Figure 1 illustrates  schematically  the  essential 
elements of the process. The  data  are  recorded on the  magnetic 
medium by orienting  magnets along a  concentric  track,  as  shown 
at  the  top  left of the  figure.  The  magnets  are  oriented  either in 
the  direction of motion of the head around  the t r y k ,   o r  in the 
opposite  direction  (at  least  in  conventional  horizontal" 
recording).  The  remaining  portions of the  figure  show  the 
relationship of the  pattern of magnetization to  the  recorded  bits, 
as dictated  by  the  modulation  scheme  (known  as  NRZI 
precoding)  which  converts  the  bit  stream  to a 2-level  write 
current signal for  the  recordiy head.  The symbols "I" in  the 
bit  stream  are  recorded as transitions" or changes in the 
polarity of the  magnets  along  the  track.  During  the  readback 
process,  the  inductive  read  head  transforms  the  sequence of 
transitions into a  stream of  pulses of alternating  polarity.  The 
clocking  circuit (VPO, or variable-frequency  oscillator)  uses 
these  pulses  to  maintain a synchronized  timing window for  the 
detector, which locates  the pulse peaks in time.  The  information 
can  then be reconstructed by placing a recovered bi t  "1" in any 
window in which a peak was  detected,  and  a  bit "0" otherwise. 
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Fig. 1. Digital  magnetic  recording  channel 
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Thermal noise  generated by the  electronic  circuits and  noise 
The recording  channel  has  imperfections, however. 

arising  from magnetic properties of the  disk  medium  can  corrupt 
the  readback signal,  leading to  spurious peaks as well as  shifted 
positions of the genuine peaks.  To  compensate  for  these  effects, 
at  least  in  part,  enhancements t o  peak  detection,  such as the 
addition of a  threshold  (clip  level)  and  the  tracking of peak 
polarities,  have been introduced.  Another  major  problem  is  the 
intersymbol  interference (ISI) of neighboring  pulses,  illustrated 
in the  figure.  Magnetic  transitions,  or  recorded  symbols  "1," 
which arc written too close to  one  another  have  an  interfering 
effect  during  readback  that can both  reduce  the  amplitude of the 
pulse as well as  shift  the peak position. On the  other  hand, if 
the  transitions are written  too  far  apart,  the  clock  recovery 
circuit will not be receiving adequate  information t o  maintain 
synchronization  with  the recorded bits. 

use of data coding techniques.  Two  distinct kinds of codes  are 
These detection  error  mechanisms  are combatted  by  the 

typically used. A  recording  code  is used to  guarantee  that  the 
recorded  bit  sequence  does  not  suffer  from $e problems 
described  above,  namely  runs of symbols 0" between 
consecutive  symbols "1" which  are  either too short  or too long. 
Recording codes are also referred  to as modulation codes. Even 
with an appropriate  recording  code,  detection errors may  still 
occur  as  a  result of channel  noise,  producing an  unacceptable 
error  rate  at  the  desired  data  density.  The second  kind of code, 
an error-correcting  (also called error-control) code (ECC), uses 
redundant  bits which have been added t o  the  original  user  data 
to  detect,  locate, and correct  all  remaining errors with  very  high 
probability of success. 

channel  is shown in Figure 2. In typical high end  applications, 
The configuration of these  codes in the  magnetic  recording 

the  recording  code  reduces  the  bit  error  rate  (BER)  to 
approximately 1 detection  error in 10 billion bits. In addition, 
practical  recording  codes  limit  error  propagation  in  the decoding 
process.  This is crucial, because the  ECC  typically used has  the 
capability of correcting only a small  number of multi-bit  bursts 
of errors  per  track. 

Fig. 2. Configuration of codes 

For the  remainder of this  paper, we focus on the  aspects of 
recording  code  selection  and design. 

3. RUN-LENGTH-LIMITED  (RLL)  CODES 
FOR  MAGNETIC  STORAGE 

Many  popular  recording  codes  for  peak  detection  channels  fall 

in their  general  form, were pioneered by P. Franaszek [l] in the 
into  the  class of run-length-limited  (RLL) codes. These  codes, 

late 1960's. Since then, a considerable body of engineering and 
mathematical  literature  has been written on the  subject.  RLL 
codes  are  characterized  by  two  parameters (d ,k) ,  which 
represent,  respectively,  the  minimum  and  Caximum  number of 

code  strings.  The  parameter d controls  high  frequency  content 
symbols "0" between consecutive  symbols 1" in the  allowable 

in the  associated  write  current signals, and so reduces  the  effects 
of intersymbol  interference.  The  parameter k controls  low 
frequency  content,  and  ensures  frequent  information  for  the 
clock  synchronization  loop. 

well as some high-end drives,  today  incorporate  a  code  known  as 
For example,  most  flexible  and  low-end rigid disk  files,  as 

Modified  Frequency  Modulation  (MFM).  It  also goes by other 
names,  such  as Delay Modulation or Miller code. MFM is  an 
RLL code with  (d,k)=(1,3). 

construction  of. a simple, efficient correspondence, or  code 
The  problem faced by the coding  theorist is   the 

mapping,  between  the  arbitrary  binary  strings  that  a user might 
want  to  store  on a magnetic  disk  and  the  (d,k)  constrained  code 
strings  which  the  peak  detector ca,p more  easily  recover 
correctly. We now give the  term  efficient"  quantitative 
meaning by introducing  the  third  important  code  parameter,  the 
code rate. 

strings  could  be  accomplished as follows. Pick  a  codeword 
'The conversion of arbitrary strings t o  constrained  (d,k) 
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length n. List  all  the  strings of length n which  satisfy  the  (d,k) 
constraint. If there  are  at  least 2m such  strings, assign a  unique 
codeword  to  each of the 2m possible  binary  input  words of 
length m. This kind of code  mapping  is  commonly  referred to  
as  a block code. The  ratio,  m/n, of input  word  length  m to 
codeword  length n is  called  the  code  rate. Since there  are  only 
2" unconstrained  binary  strings of length n, there will be less 
than  this  number of constrained,codewords.  Therefore,  the 
rate  must  satisfy  m/n<l.   In  fact ,   there  is   a  maximum 
achievable  rate, called the Shannon capacity C,  which we now 
discuss. 

In 1948, Shannon  proved  that,  as  the  codeword  length 
grows,  the  number of constrained  codewords  approaches 2Cn 
from  below,  for  some  constant  C  which  depends on the code 
constraints.  This  result  implies  that  the  rate  m/n of any code 
mapping  for  that  constraint  must  satisfy  m/n<C.  Roughly 
speaking,  a  code  is called efficient if the  rate  m/n  is  close  to C. 
Shannon's proof also  showed  that a' block code is  possible a t  
any  rate m/n<C, provided  long  enough  codewords  are  used. 
We  remark  that  practica1  applications  usually  require  code 
mappings  involving  shorter  codewords.  Section 5 discusses 
techniques  which  have  been  developed  to  construct  practical 
code  mappings,  including  codes  with  rate equal to  the  capacity 
C when C  is  a  rational  fraction. 

One  can  employ  a  finite-state  transition  diagram  (FSTD) 
in  order  to  conveniently  represent  the  infinitude of binary 
strings  satisfying  the'  (d,k)  constraint.  This  graph 
representation  for  constrained  channel  strings  dates  back  to 
Shannon's seminal  paper [2], and  it  was  exploited by Franaszek 
in  his  work on RLL codes. Figure 3 shows an FSTD  for  the 
(1,3) constraint. It consists of a  graph  with 4 nodes, called 
states,  and  directed  edges  between  them,  called  state 
transitions,  represented by arrows..  The edges are labeled with 
channel  bits.  Paths  through  the  graph  correspond precisely to  
the  binary  strings  satisfying  the (1,3) constraint. A similar 
FSTD  having k+l states  can  be  used  to  describe  any  (d,k) 
constraint,  as  the  reader  can  easily  verify. 

(d,k)  Capacity  Practical 
C Rate 

(1,3) 0.5515 
(0,1) 0.6942 1/2, 2/3 

(1,7)  0.679 
1 /2 

(2,7)  0.5172 
213 
1 /2 

Fig. 3 .  (1,3) FSTD  Fig. 4. Code  Capacities 

directly  related  to  the  structure of the  FSTD. We define  the 
The  capacity  C of the  RLL  (d,k)  constrained  channel  is 

state-transition  matrix  T = (t.-)  associated to   the (d,k)  FSTD 
with  states 1, ..., k + l  as followk!: 

t . .  = x, if there  are  x edges from 11 state i to  state j . (1) 
=0, otherwise . 

For  example,  for  the  (d,k)=(1,3) case: 
0 1 0 0  

T ' 1 0 0 1  
1 0 1 0  

1 0 0 0  
The  capacity  C, in units of user  bits per channel  bit,  was  shown 
by Shannon to  be: 

c = log, h 
where X is  the  largest  positive  eigenvalue of T ,  that is the  largest 
root of. f(t),  the  characteristic  polynomial of T. For  the  (d,k) 
constraint,  the  polynomial  f(t) is f(t)=tk+l-tk-d-...-t-l.  The 
roots can be easily  found by computer  calculation.  In  the  (1,3) 
case, we find A=1.465.., so C=O.5515 ... 

In  practice,  one  chooses  for  the  rate  a  rational  number 
m/n<C. To help  keep  the  codeword  length  small,  the  integers  m 
and n are  often  selected  to  be  small.  Thus,  for  the (1,3) 
constraint,  it would be natural  to look for  a  code mapping at  
rate 1/2, which  uses  codewords of length 2 bits.  Figure 4 gives 
a  list of some  (d,k)  constraints of historical  and  current  interest, 
along  with  Shannon  capacity  C,  and  choices of practical  code 
rates.  We  note  here  that  the  rate 1/2 for  (d,k)=(O,l)  is 
included for  historical  reasons  which will be clarified in section 
5. For  now,  it  serves  to  emphasize  that  the  rates  of possibIe 
code  mappings must  only  satisfy  m/n<C. 

(d,k)  constraint  and  code  rate  determines  the  code  bit 
For  a given user  bit  frequency,  or  data  rate,  the  choice of 

frequency  and  the power spectrum of the  write  current  signals 

write  current signals that  would be obtained  from  a  (d,k)  code 
produced  by  the  code.  Figure 5 shows  the power spectra of 

that  is 100% efficient,  for  the  (d,k)  parameters in Figure 4. 
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Fig. 5 .  RLL  code  spectra 

4. CODE  PERFORMANCE  EVALUATION  AND  SELECTION 

We  are  now  in  a  position  to  evaluate,  to  some  extent,  the 
relative  abilities of RLL  (d,k)  codes  to  prevent  detection  errors 
in  peak detection  channels. 

specified data  rate  with  a  particular head and dizk combination 
One  can  get  a  clue as to  the  best  (d,k)  code  to  use  at  a 

head/disk  transfer  function  best.  This  comparison  can  be 
by  seeing  which  code  spectrum  in  Figure 5 matches"  the 

impact on the  peak  detection  process.  To  start, we do  a 
strengthened by taking  a  closer  look a t  code  patterns  and  their 

comparison  which will explain  the  prevalence of MFM  today. 
When  peak  detection  was  introduced  along  with  a 
variable-frequency  oscillator  (VFO)  clocking  circuit,  a  coding 
technique  was  needed  to  give  very  frequent  clock  recovery 
information to  the  VFO.  It  is  known  as  Frequency  Modulation 

and  Manchester code. The  code  was at   rate 1/2,  and the  code 
(FM), or  Double  Frequency,  and  is related to  Phase Encoding 

mapping rules were  simple. To  encode,  write 2 bits  for  each 
data  bit,  the  first  always being "1," the  second being the  data 
bit. Decoding involves  simply  grouping  the  detected  bits  into 
pairs,  and  dropping  the  first  bit of each  pair. Using RLL  code 
nomenclature,  FM is a  rate 1/2 (0,l) RLL code. This  is  the 
reason  that  rate 1/2 for (d,k)=CO,l) was  included in Figure 4. 

code,  meaning  that  the  associated  write  signals  have  zero 
It  should  be  mentioned  that  FM  is  also  a DC-balanced 

average  power at  DC.  In  fact,  at  any  point  in  time,  the  number 

differs  from  the  number in which  it  is  negative by a t  most 1. 
of preceding  clock intervals  in  which  the signal is positive 

This  DC-balanced  property is not  required,  however,  for  most 
With  this  additional  constraint,  the  FM  code  is 100% efficient. 

magnetic  disk  storage  applications. 

synchronization  possible.  Figure 6 shows  uncoded  data  and 
In  FM,  the  k=l  parameter  made  accurate  clock 

rate 1/2 (0,l) bit  patterns  which  correspond to   the same  linear 
user  bit  density.  The  minimum  allowable  magnetic  transition 
spacing is  indicated by the  solid  bar  at  left  above  each  pattern. 
The  detection  window in which  the  peak  must  be  sensed  is 
indicated by the  dotted  bar  at  right  above  each  pattern.  We 

half,  and  simultaneously reduces the  minimum transition 
see that  the  FM code cuts the  size of the detection window  in 

spacing by a  factor of two.  The  drastic  increase  in 
intersymbol  interference  certainly  negated t o  some  extent  the 
potential  benefits  obtained by the  introduction of peak sensing 
and  the  VFO. 

Data: . 1 . 1 . 0 . 1 .  
- +-----I 

H 
FM' 

+--i 
. 1 . 1 . 1 . 1 . 0 . 1 . 1 . 1 .  

H k---i 
MFM: . 1 . 0 . 1 . 0 . 0 . 0 . 1 . 0 .  - k---i 
1/2(2,7): . 1 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . ' - 
2/3(1,7): . 1 . 0 . 1 . 0 . 0 . 0 . 

p---, 

Fig. 6 .  RLL code  patterns 
Modified  Frequency  Modulation  (MFM)  was  developed, 

as  the  name  suggests,  to  improve  upon  the  FM  recording code. 
The  observation was made  that  not  all of the  redundant  bits 
need to  be "1". Inserting  a "1" in  the  first.position of each 
code  bit  pair  only when the  current  data  bit  and  previous  data 
bit  are "0," and  inserting "0" otherwise,  produced  a  rate 1/2 
(1,3) code. The k=3  parameter  turned  out  to  be  still  adequate 
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for  clock  recovery,  and  the d = l  represented  a  doubling of the 
minimum  transition  spacing  compared  to  FM.  Figure 6 shows 
the  comparison of "worst  case"  rate 1/2  (0,l) and  rate 1/2 
(1,3) bit  patterns.  At  a  specified  linear user bit  density,  one 
would  anticipate  considerable  improvement  in  detector 
performance  from  MFM.  MFM became an  industry  standard  in 
flexible  and  "Winchester"-technology  drives. 

More  recently,  other RLL (d,k)  constraints  have  been 
introduced.  For  example,  ISS  used  a  rate 1 / 2   ( 2 , l l )  code 
called 3PM [3] in its 8434 disk  drive  and  a  rate 2/3  (1,7) code 
in  its 8470 drive [4]. Also, IBM utilized  a  rate 1/2  (2,7) code 
[SI in its 3370-3380 family of high-end drives. 

codes  instead of MFM.  In  comparing 1/2  (2,7) to  MFM,  at 
Figure 6 gives heuristic  Justification of the  use of these 

fixed  linear  density, we see that  the ' worst case" intersymbol 
interference  for  the (2,7) code  gives  a  minimum  transition 
spacing which  is 50% larger  than  that of MFM.  The  detection 
window size remains unchanged. Provided  that  the VFO can 
handle  a k=7 parameter, we conclude  that  use of the (2,7) code 
leads t o  a  considerable  improvement  in  detector  performance. 
Similarly,  in  comparing  the 2/3  (1,7) code to  MFM, we find 

well  as  a 33% larger  detection  window.  Again,  we  can 
that  the (1,7) has 33% larger  minimum  transition  spacing,  as 

conclude  that  the  error  rate  can  be  reduced  by  use of (1,7) 
instead of MFM. 

The  code  comparison  method  breaks down  when we t ry   to  
choose  between  the 1/2  (2,7) and  the 2/3  (1,7) codes. The 
2/3(1,7) code  has a 33% larger  detection  window  than  the 
1/2(2,7), but the minimum  transition  spacing is llo/o.less.  The 
optimal  choice  depends on the  specific  signal  and  noise 
characteristics of the  head-disk  combination  and  other  channel 
components,  as  well  as  additional  signal  processing  options 
such  as  readback  equalization  and  write  precompensation. 
More  sophisticated  performance  evaluation  tools  are  required, 
and  several  studies  have been devoted to  the  development of 
such  tools  and  their  application  to  code  selection.  See,  for 
example,  Huber [6]. Using the  peak  detection  channel  model 
reported  in [7], error-rate  curves  were  computed  for  FM, 
MFM,  and (2,7) codes to  illustrate  the  progress  achieved  via 

thin-film  head,  particulate  medium  with no significant  disk 
improved  coding.  These  calculations  assumed  conventional 

defects,  low-pass  filtering,  and no write  precompensation.  The 
results  are  shown in Figure 7. In  addition,  Figure 7 shows  a 
projected  range of improved  performance  that  can be achieved 
by  use of (2,7) or (1,7) codes in  conjunction  with  write 

are  consistent  with  simulated  and  experimental  results given in 
precompensation  and  readback  equalization.  These  projections 

reported  that  a  data  rate  increase of 10% was  achieved in an 
several  published  studies.  For  example,  Jacoby  and  Kost [4] 

equalized  channel by use of a  rate 2/3  (1,7) code in place of a 
rate 1/2  (2,7) code. 
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Fig. 7. RLL code  performance  calculation 

since 1966 has  increased  linear  density  by  a  factor of 
These  calculations  indicate  that  recording  code  progress 

approximately 2.5. This  represents  a  significant  contribution 
to  the  overall  factor of increase  due  to  improvements  in 

drives  in [SI. 
storage  technology,  for  example,  as  reported  for  IBM  disk 

5. RECORDING CODE CONSTRUCTION 
AND  IMPLEMENTATION 

Once  the  optimal  code  parameters'are  selected,  based on 
modeling  or  experimentation, it is necessary t o  devise  encoding 

implemented in simple logic circuits  or  look-up  tables.  This 
and  decoding  rules  for  an  efficient  code  which  can  be 

section  addresses  the  problem of code  construction  and 
implementation. 

To  illustrate  some of the  techniques  and  algorithms  that 
have  evolved  in  the  construction of practical,  efficient 
recording codes, we develop  a  sequence of examples. We first 
will  describe  practical  code  properties  in  the  context of MFM 

code.  Then, we will examine  some of the  methods developed to 
design  (d,k)  codes,  emphasizing (2,7) and (1,7) codes.  The 
sequence  state  coding  methods of Franaszek [l] and  the 
look-ahead  techniques of Patel [9], Jacoby [3], Franaszek [lo], 
Cohn  and  Jacoby [ll],  Jacoby  and  Kost [4], and  Lempel  and 
Cohn [12] will be discussed. 

Finally,  ,we  focus on the  recent  sliding  block  code 
construction  algorithm of Adler,  Coppersmith,  Hassner [13], 
based on work of Marcus [14]. This  technique,  derived  from 

represents  a  theoretical  breakthrough  in  code  construction, 
the  branch of mathematics  known  as  symbolic  dynamics, 

algorithm  provides  an  explicit  recipe,  justified by mathematical 
with  significant  practical  implications.  For  the  first  time,  the 

proofs,  for  construction of simple,  efficient  RLL  codes  with 
limited  error  propagation.  The  method  incorporates  many of 
the  key  ideas  which  appear  in  the  work of Franaszek,  Patel, 
Jacoby,  Cohn  and  Lempel,  generalizing  them  and  making 
precise  the  construction  steps  and  the  scope of their 
applicability. 

Properties of Practical  Code Mappings 
We now discuss  some  properties  that  practical  code mappings 
possess,  using  MFM  to  illustrate  them.  The  essential 
properties  are: 

- ------ - _-- _- 

1) high  efficiency, 
2) simple  encoder  and  decoder  implementations,  and 
3) limited  error  propagation. 

The  MFM code, as defined earlier, is a  rate 1/2  (1,3) 
code. It  has high  efficiency, 0.5/0.5515, or  approximately 91%. 
The  encoder  is  characterized by two encoding rules.  The  first 
rule,  which we call rul: A, is  used to  encode  a  data  bit if the 
previous  data  bit ,yy 0". The second rule B, is used  if the 
previous  bit  was 1 , Both  rules  take  the  form of a block 
code,  mapping 1 bit  to 2 bits.  The  MFM  encoder  can  be 
represented  in  table  form,  as  shown in Figure 8. 

State  A  B 
Data 

0 
1 

10/A OO/A 
01/B  01/B 

Code  Data 

NO 0 
N1  1 

Fig. 8. Encoder  and  decoder  tables  for  MFM 
The  columns labeled A and B describe  the block  codes for  the 
two  rules.  Each  entry in these  columns  also  indicates  the  next 
encoder  state,  that  is,  the  rule  which i s  t o  be used t o  encode 
the  next  bit. 

The  MFM  encoder  is  an  example of a finite-state  machine 
(FSM),  with fixed length  inputs  and  outputs.  A FSM is simply 
a  set of encoding  rules  which  indicate  how t o  map  input  words 
to  output  words,  and  also  define  which encoding rule  to  use 
after  each encoding operation.  A FSM also  has  a  graphical 

discussion of  code construction techniques.  The nodes (states) 
representation which  will  play an  important  role in the  later 

in the  graph  correspond  to  columns in the  encoder  table,  and 
the  graph edges have  labels  "x/y"  where  x is an  input  word, 
and  y 1s the  corresponding  codeword.  The  labeled  edges 
emanating  from  a  state  define  the encoding rule,  and  the  state 
in  which  an  edge  terminates  indicates  the  state,  or  encoding 
rule,  to  use  next.  The  FSM  graph  for  MFM  is  shown  in 
Figure 9. 

because  it  is  quite  easily  implemented  as  a  sequential  logic 
The  FSM  encoder  structure is particularly  convenient 

network or ROM-based  look-up  table.  Each  encoder  cycle 
encodes a single data  bit  into 2 code  bits, which are  a  function 
of the  data  bit  and  the  contents of a  1-bit  state  indicator 
register,  and  then  updates  the  state  indicator. 

2-bit  blocks  and dropping  the  redundant  first  bit  in  each block. 
Decoding is accomplished by grouping  the  code  string  into 

The  decoding :able is shown  in Figure 8 also.  The  symbol "N" 
represents  a  not  care"  bit  position  in  which  the  a5tual  bit 
Zalue does  not  affect decoding. For  example,  both 10" and 
00" decode to  "0". This  block  decoder  ensures  that  error 

propagation is  no more  than 1 user  bit. 

which  decodes  a  codeword  by  looking  at  a  window 
The  MFM  decoder  is an example of a sliding blo;k decode:[ 

containing  the  codeword  and  a  finite  number of preceeding and 
following  codewords  in  the  string.  In  the  MFM  case,  the 
window only  contains  the  codeword being  decoded. One  can 

d o n g  the  codestring  one  codeword a t  a time,  producing at  each 
think of such a decoder in terms of a sliding  window that  shifts 

shift  a  decoded  data  word,  depending  only on the  window 
contents.  This  structure  ensures finite error  propagation, since  an 
erroneous  codeword  can  only  affect  the  decoding  decisions 

decoder  is  also  conveniently  implemented in a  logic  network, 
while it is contained  in  the  sliding window. A  sliding block 

with  the  sliding  block  embodied  in  a  shift  register.  Each  MFM 
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decoding  cycle  shifts 2 code  bits  into  the  register  and  generates 
a  decoded  data  bit. 

01 00 

Fig. 9. MFM  encoder Fig. 10. G2 for  (1,3) Fig. 11. Subgraph H 

-- Secpence ----- State C o d a  
Franaszek [l] introduced  sequence  state  methods  into  the 

investigation of efficient  constrained  code  construction.  The 
essential  idea  is t o  build a FSM  encoder  in which the  states 
(encoding  rules)  correspond  to  the  states  in  a  FSTD 
representation of the  constraints.  The  codewords  produced by 
a  particular  encoding  rule in the  FSM  must be generated by 
following  paths  through  the  FSTD  which  start  at  the 
corresponding  state. 

We  illustrate  the  sequence  state  methods  by  rederiving 
the  FSM  encoder  for  the  MFM code. We begin with  the  FSTD 
for the (1,3) constraint,  shown  in  Figure 3. Denote  this  graph 
by G. We  want  the  FSM  encoding  rules t o  map 1 bit to 2 bits, 

which is 2 bits long. Therefore,  an edge in  the FSM graph 
so an edge in  the  FSM graph  should have a codeword label 

must  correspond  to  a  sequence of 2 edges  in the  FSTD,  each of 
which  had  a 1 bit  codeword label. With  this in  mind, we now 
de  ine  the  graph  called  the  square of the  FSTD  G,  and  denoted 
G J , as  a  candidate  for  the  underlying  graph of the  FSM 
encoder.  This  is  the  FSTD  which  has  the  same  states  as G, but 
in  which,  each edge corresponds t o  a  consecutive  pair of  edges 
in G, and  the edge label  is  the  corresponding  sequence of 2 edge 
labels  from G. The  FSTD G2 for  thi  case is shown  in  Figure 
10. Note  that  if each  state  in G 1 had  at  least 2 edges 
emanating  from  it,  we  could  construct  an  FSM  encoder  by 
simply assigning the  input  words "0" and "1" to  two  distinct 
edges  from  each  state,  discarding  any excess  edges. 

Here,  though, G2 does  not  have  this  property.  This  can 
be seen f om  Figure 10. It can  also  be seen by noting  that  the 
matrix  TI,  the  matrix  square of the  state-transition  matrix  T 
for  FSTD G, is  the  state-transition  matrix  for  the  FSTD G2. 
This  matrix is: 

1 0 1 0  
2 1 1 0 1  

0 1 0 0  
1 1 0 0  T =  

The  entry in (row  i,  column j) can be seen to  count  the  total 
number of edges  from  state  i  to  state  j in G2. The row sum for 
each  row  must be a t  least 2 if each  state  has  at  least 2 outgoing 
edges. Clearly  the  row  sum  for  row  4  is  only 1. 

G2 which  does  have  the  desired  number of outgoing  edges  from 
However, we can  observe  that  there  is  a  subgraph H of 

each  state.  Namely, we eliminate  state  4  and  all edges which 
enter  or  leave it Alternatively,  we  note  that  the  submatrix 
obtained  from Ti by eliminating  the  last  row  and  column  has 
row  sums  exactly 2. Input  labels  can  now be assigned to  the 
edges  in  the  subgraph H to yield  a  FSM  encoder  structure, 
shown  in  Figure 11. States 2 and 3 have  the  property  that 
their  outgoing  edges  are  identical  in  terms of output  labels  and 
next  states.  In  other  words,  they  describe  the  same  encoding 
rule.  Tpey  may be merged,  therefore,  into  a  single  aggregate 
state, 2 . The  outgoing edges from 2' are  those  common t o  
states 2 and 3, while  the  incoming  edges  are  simply  redirected 
to 2' from  states 2 and 3. If we relabel  state 1 as  state B and 
s ta te  2' as  state  A,  the  result ing  FSM  is  exactly  the  FSM 
shown  in  Figure 9. 

For   the  RLL (2,7) constraint,  the  Shannon  capacity is 
given by C=0.5172 ... If we try  to  construct  a  FSM  encoder 
which  encodes 1 bit  into 2 bits, as  we did  with  MFM  above, we 
find  that  there  is  no  subgraph of the  square of the  standard 
(2,7) FSTD  with  at  least 2 outgoing  edges  from  each  state. We 
know  from  Shannon's  result  that  a  code  is possible at   rate 1  2, 
SO one  strategy  is to  take higher  powers of the  graph, say G4m, 
and  try  to  derive  from  it  a  FSM  encoder  in  which  one  encodes 
m  input  bits  at  a  time  into 2m code  bits. A computer 
calculation of powers of the  matrix  T  shows  that  the  smallest 
value of m  for which this  is  possible  is m=17 In  the  resulting 

The  table  form of t e encoder  would  require  a  table of 
FSM  encoder,  each state  would  require 2 l 7  outgoing  edges. 

encoding  rules,  each 2 19 x34  bits  in size! 

D a t i  Code 

001 0 
001 1 A 000100 

100100 
001000 
00100100 
00001 000 

Fig. 12. 'Variable-length (2.7) code 

efficient (d,k)  codes, with h i t e  error propagation.  The 
In general,  this techni ue  can  be used to  construct 

drawback,  as seen  in the (2,7) example,  is  that  the  encoder  and 
decoder  implementations  can  still  be  very  complex,  involving 
long  codewords  and  otentially  large  error  propagation. 

Franaszek [5] round  a  considerably  simpler  code  mapping 
by  utilizing  FSM  structures  with  variable-length  input  words 
and  codewords.  Space  limitations  preclude a detailed 
discussion of the  technique,  but  we will describe  the 1/2  (2,7) 
code  he  constructed,  as well as properties of the  variable-length 
FSM  codes  generated by the  method. 

The  variable-length  FSM  encoder  for  the 1/2  (2.7) code 
reduces t o  a single state, yielding a  variable-length  block  code 
as  shown  in  Fi  ure 12. The  codewords  form  a prefix-free list, 
that  is, no wor8 is a  prefix of another.  This  ensures  that  any 
concatenation of codewords  has  a  unique  decomposition  into  a 
string of codewords.  In  additign,  Franaszek  selected  the 
codewords so that   the   pat terns  1000" and "0100" delimit 
codeword  boundaries.  These  two  properties  ensure 
decodability  with  finite  error  propagation.  The  corresponding 
data  word  list  is  also  prefix-free,  and  additionally  has  the 
property  of  being fuU. This  means  that  every  semi-infinite 
binary  data  string  has  a  unique  decomposition  into  input 

note  that  the  actual  implementation of a (2,7) encoder based 
words,  guaranteeing  encodability of data. It is  interesting to 

code  description  into  an  equivalent  fixed-length  FSM  encoder 
on this  variable-length  code  involved  the  translation of this 

mapping 1 data   bi t   to  2 code  bits  during  each  encoding 
operation.  The  number of states used required  a  4-bit  state 
indicator  memory.  The  decoder  implementation  took  the  form 
of a sliding block  decoder,  decoding 2 code  bits  into 1 data  bit 
during  each  decoding  operation.  The  sliding  window  was  a 
shift  register of 8 code  bits.  The  error  propagation  was 
therefore  no  more  than  4  data  bits. [15]. 

method produces efficient  (d,k)  codes with  rate m/n<C  and 
In general,' the  variable-length sequence state  coding 

finite  error  propagation.  The  variable-length  FSM  encoder  can 
be  .translated  into  a  fixed-length  FSM  structure  with  an 
associated sliding block  decoder,  just  as  was  done  for  the (2,7) 
code, by introducing  additional  states.  The  codeword  length  in 
such  a  fixed-length  FSM  description  can  still  grow  very  large, 
although  this  did not occur  in  the (2,7) case.  The  codeword 
length  will  typically  be  smaller  than  would  be  obtained  by 
using fixed-length  sequence  state  methods,  however. 

block  code.  Other  applications of variable  length  coding 
Franaszek  also  constructed  a 2/3 (1.8) variable  length 

techniques to  RLL codes  may be found  in [16], where  a  rate 
2/3, (1,7) variable-length  code  having 2 states  is  presented. 
Look-Ahead __- Coding Technicpus ---_ 

Another  class of techniques  found  in  the  work of several 
authors,  including Pate1 [9], Jacoby [3], Franaszek [lo], Cohn 
and  Jacoby [ll], Lempel  and  Cohn [12], and  Jacoby  and  Kost 

has been used t o  produce  several  practical,  efficient  codes. 
[41, is called  future-dependent  or  look-ahead  (LA)  coding,  and 

overcome  the  codeword  length  restrictions  encountered  in  the 
One  objective of LA  codes,  as  described  in [12], i s   to  

sequence  state  coding  methods.  For  any  code  rate  m/n<C,  one 

bits,  and  a  decoder  with  finite  error  propagation.  The  tradeoffs 
would like  a  fixed-length  FSM  encoder  which  maps m bits  to n 

maximum  error  propagation  could  then be better  evaluated. 
between  codeword  length,  implementation  complexity,  and 

The  idea  is t o  design  an  encoder  (often  with  structure 
similar t o  a  FSM  derived  from  the  graph Gn, where G is  the 
FSTD for the  constraints)  in  which  the enc,oding rules  allow 
several  alternative  encodings  for given input  data  words.  The 
alternative  chosen to encode  the  input  word  depends on 
"look-ahead" a t  a  finite  number of upcoming  input words. 

There  are  several  important  examples of practical 
look-ahead codes. Jacoby [3] developed  a  rate 3/6   (2 , l l )  code 
called  3PM,  which  was  later  modified  into  a  rate 3/6  (2,7) 
code  by  Jacoby  and Cohn [ll]. Franaszek [17] ublished  a  rate 
2/3  RLL (1,7) code  and  Jacoby  and  Kost[49  also  recently 
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published  a  very  elegant  rate  2/3  RLL (1,7) code,  invented by 
Cohn,  Jacoby,  and  Bates [18]. 

describe  the  Cohn,  Jacoby,  and  Bates code in more  detail.  The 
To  illustrate  the  look-ahead  encoding  technique, we 

encoder  takes  the  form of two  tables, shown  in Figure  13.  The 
Basic  Encoding  table  provides  a  mapping  from  2-bit  input 
words to  3-bit  codewords which satisfy  the (1,7) constraint. If 
this  table was used for  encoding,  however,  certain  sequences of 
2-bit  input  patterns would produce  code  strings  which  violate 
the  (1,7)  constraint.  For  example, 00.00 would  encode t o  
101.101.  Exactly  four  such  violation  patterns  occur.  To 
handle  these,  a  Violation  Substitution  table  provides 
alternative  encodings  that  should be used  when  a  violation 
pattern  is  detected by look-ahead at   the upcoming 2-bit  input 
word.  The  decoder  has a maximum  error  propagation of 5 data 
bits. 

- Basic encoding table - Violation substitution table mi Data Code 

0 0.0 0 1 0 1.0 0 0 
1 0 0  1 0 0.0 0 0 0 0.0 1 

0 0 1  
0 1 0.0 0 0 1 0.0 1 0 1 0  
0 0 1.0 0 0 1 0.0 0 

Fig. 13. Look-ahead  (1,7)  code 

Just  as in the  case of the  variable-length codes described  above, 
sequential  implementations of these codes can be obtained by 
the  use of an equivalent  fixed-length  FSM encoder and  a sliding 
block  decoder.  For  example,  a  FSM  implementation of the 
encoder  for  the  Cohn,  Jacoby,  and  Bates (1,7) code is  shown  in 
Figure 14 [18]. 

~ ~ A l B ~ C ~ D ~ V ~  

10llV 100IA 0011V 010IA 000:A 

01 

000/D  010ID 001ID 100ID 101ID 11 

OOOlC 0 1 0 K  001lC 100lC 101lC 10 

OOOIB 010/B O l O / V  10OlB 1oo/v 

Fig. 14. (1,7) code  FSM 

coding.  First,  there  is  the  introduction of an approximate 
Several  key  ideas  appear  in  the  context of look-ahead 

eigenvector inequality to  guide the code construction [12]. If we 
are  interested  in  a  code  at  rate  m/n,  then  an  approximate 
eigenvector  v  is  a  non-negative  integer  vector  satisfying  the 
inequality: 

T"v 2 2 m ~  
where,  as  before,  T  is  the  state-transition  matrix  for  the  RLL 
constraint.  The  existence of such  an  eigenvector is guaranteed 
by the  Perron-Frobenius  theory of non-negative  matrices [19]. 

words  to edges in G". If the matrix T" does  not have  a This vector can be used to  guide the  assignment of input 

submatrix  with  row  sums  at  least  2m,  then  some  component of 
v  will be larger  than 1 and encoder look-ahead  is  required.  The 
amount of look-ahead  required t o  encode  the  input  label of an 
edge is related to   the eigenvector  component of the  state in 
which  the edoe terminates.  This  input  assignment  process is 
illustrated in 7121. The  literature on the  subJect  describes  the 
construction  technique  primarily  by  means of examples.  A 
systematic  procedure  for designing look-ahead  (d,k)  codes  with 
guaranteed  finite  error  propagation  has not yet been published. 

Patel [9] also  utilized  a  look-ahead  approach in  his  design 
of the  Zero-Modulation (ZM) code,  a  DC-free  code  with  RLL 
(1,3)  constraints  and  Shannon  capacity  C=1/2.  Patel 
introduced  another ve3y important idea  in his  construction.  He 
modified  the  FSTD G by splitting and merging  some of the  states 
to  obtain  a  representation of the  constraint by a new FSTD 
whose edges could  more easily be labeled to yield a  look-ahead 
encoder. We will discuss  state-splitting  and  state-merging in 
more  detail  in  the  next  section. 

Sliding ___ Block Code - Algorithm 
The sliding  block  code algorithm of Adler,  Coppersmith, 

and  Hassner [131, based on work of Marcus 1141, used 
techniques developed independently  from  recording  technology 
in  the  branch of abstract  mathematics  known  as  symbolic 
dynamics.  The  application of these ideas to  the  construction of 
recording  codes was inspired by Patel's  paper on ZM [9]. The 
ideas of "approximate  eigenvector"  and  "state-splitting  and 
state-merging,"  seen  in  look-ahead  coding  examples,  play  an 
important  role  in  the  algorithm.  Instead of using  the 
approximate  eigenvector  v  to  guide  the  assignment of m-bit 
input  words  to  the edges of the FSTD G" to  enable  look-ahead 
encoding at  rate  m/n,  the  algorithm  uses  the  vector  v  to guide 
the  construction of a new FSTD  that  underlies  a FSM encoder. 
The  eigenvector  component  for  each  state s in G" is called its 
weighl, vs. The  algorithm  produces  the new  FSTD,  which we 
call H, by iteratively  splitting  each  state s into vs states  and 
specifying  labeled state  transitions among the new collection of 
states.  The  state-splitting  procedure  ensures  that  the  resulting 
FSTD H generates  the  same  set of constrained code strings  as 
G", but, in addition,  each  state  has  at  least  2m  outgoing edges. 
The  assignment of distinct  m-bit  input  words  to  2m  outgoing 
edges at  each  state of H then  provides  a  FSM encoder  which 
maps  m-bit  input  words t o  n-bit codewords. Moreover,  the 
state-splitting  algorithm in [131 guarantees  that  the  decoder  for 
this  code  will  have  a  finite  sliding  block  structure,  ensuring 
limited  error  propagation. We will  give an  example  shortly, 
but  the  reader  is encouraged t o  see  [13] for  details. 

The  key  advance  achieved by the  algorithm is that  it  is 
systematic  and  is  supported by a  rigorous  mathematical  proof. 
The  procedure successfully constructs  a code at  any  rate  m/n 
5 C,  where C is  the Shannon capacity of the  RLL  constraint. 
Note  especially  that  the  construction of codes  with  rate 
m/n=C  is equaIIy  well  handled by the  algorithm.  Computer 
programs  have  been  written  which  apply  the  algorithm  to 
automatically  generate  practical,  efficient  RLL  (d,k)  codes. 

(0,l) sliding block  code. The  FSTD, called G, and  its  third 
To  illustrate  the  ideas,  we  construct  a  rate  2/3,  RLL 

power G3 are shown  in Figures  15  and 16. 

1 

01  1 
110 

w -  
111 111 

Fig. 15. (0,l) FSTD G Fig. 16. G3~for  (0,l) 

An  eigenvector  inequality is given by: 

T3v = [i ;] [f] 2 22[?] = 2 2 v .  

This  approximate  eigenvector  v=(2 1) indicates  that  state 1 
will be split  into 2 states, while state  2 will not P, spli$ The 
two  states  into  which  state 1 is split  are called 1 and 1 . The 

are  assigned to the  two offspring"  states. In addition,  all 
outgoing  edges of state 1 ?;e partitioned  into two  groups which 

edges  which  entered  state 1 are  redirected  to  both  offspring 
states in the  split FSTD. The  splitting  rule  requires  that  the 
sum of the  weights of the  terminal  states of edges  in a  gro 
must be an  integer  multiple of the  approximate  eigenvalue,  2 %? , 
edges  into  groups  [011,110,010]  and  [101,111],  both of which 
with  the  possible  exception of one  group; we split  the 

have  total  weight  exactly 4. Note  that  there  can be more  than 
one  choice of edge  partitioning  which  satisfies  the  splitting 

generates  the  same  set of strings  as C$, but  has  at  least 4 
rule.  The  resulting  FSTD, called H, is s own in  Figure 17. It 

outgoing edges from each state. By discarding  the  loop  at  state 
2, we can  label  the edges a t  each  state  with  2-bit  input  words 
to  get  a  FSM  encoder,  for  example,  as  shown  in  Figure 18. 
States l2 and  2  represent  the  same encoding rule, so they can 

to  further  simplify the FSM encoder to  include only two  states. 
be merged, as  was done in the  case of the MFM construction, 

The  algorithm  guarantees  that,  regardless of the  input  word 
assignment  and  subsequent  state-mergings,  the  decoder  will 
require  a sliding  window of no more  than 7 code bits,  involving 
one  bit of look-behind to  resolve  the  state in G3 and  one  3-bit 
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codeword of look-ahead to resolve  the  edge  in H. Here, 
because of the  input  word  assignment,  the  decoder-actually 
only  requires  a  sliding  window of 6  bits,  corresponding  to 
look-ahead of 1 block of 3 code bits beyond the  current  block 
of 3-bits.  Therefore  error  propagation  is  limited t o  no more 
than  4  data  bits. 

Lh -@3 10/110 

iol@03 00/011 eo'-'. 01/0il @9 10/1oi 

l O l C @  111 

0 w0 00/101 

01/111 11/111 
111 

Fig. 17. Split  graph  Fig. 18. (0,l) code FSM 

The  state-splitting  algorithm of [13]  generalizes  the 
fixed-length  sequence  state  method  described  earlier,  which 
corresponds to  the special case of an  integer  eigenvector  with 
no  component  larger  than 1. A  recent  extension  of 
state-splitting  to  variable-length  graphs  [20]  similarly 
generalizes  the  variable-length  sequence  state  method.  The 
algorithms  apply t o  any code constraint  with  finite  memory.  A 
constraint  with  finite  memory  at  most M ' has  a  FSTD 
representation  in  which  all  paths  that  generate  any  given 
constrained  string of length  M  must  have  the  same  final  state. 
The  (1,3)  constraint,  for  example,  has  memory 3. 

algorithms t o  look-ahead  coding techniques is  not fully 
The exact  relationship of the  sliding block code 

understood.  However, one can  show  in many cases  that  the 
codes  produced by the  look-ahead  methods  can be derived  with 
the  sliding  block  code  algorithm by appropriate  choices of 
approximate  eigenvectors,  state-splittings,  input  word 
assignments,  and  state mergings. For  example,  a  rate  2/3  (1J) 
code  was  derived  using  the sliding block  code  algorithm [21]. 
Although  found  independently  using  different  methods,  it  is 
identical,  up t o  data  word  assignment, to  the  2/3 (1,7)  code 
described  by  Jacoby  and  Kost [4]. 

An  important  topic of current  research  is  the  clrlrification 
of this  relationship.  Also,  despite  the  fact  that  the  sliding 
block  code  algorithm  provides  a  solid  theoretical  framework 
for  recording  code  construction,  much  remains t o  be learned 
regarding  the  effect of the  choices of  ei€WVector, 
state-splittings,  state-mergings,  and  input  word assi, mments on 
the  properties of the  resulting  code,  including  maximum  error 
propagation  and  implementation  complexity.  Finally, Progress 
is  just beginning to  be made in the  theory of code  construction 
for  infinite  memory  constraints. 

CONCLUSIONS 
This  paper  presented  a  tutorial  introduction  to  recording codes 
for  magnetic  disk  storage  a  plications.  The  motivation  for  the 
use of run-length-limited PRLL) codes  in  magnetic  recording 
channels  was  sketched.  Methods  for  selecting code Parameters 
to maximize  density  and  data  reliability  were  also  reviewed. 
Finally,  a  survey of published  code  construction  techniques was 
gresented,  with  an  emphasis on recent  progress in algorithms 
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