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Abstract—We propose a shaping code based on polar codes.
For a costly channel, we show that total cost of the proposed polar
shaping code approaches optimal total cost as block length grows.
We also consider shaping for the costly noisy discrete memoryless
channels (DMCs). We first give an upper bound on rate that
can be achieved with certain symbol occurrence probability
distribution over DMCs. Then we formulate an optimization
problem whose solution gives a lower bound on the optimal
total cost for the costly noisy DMCs. We compute the lower
bound for the M -ary erasure costly channel. Finally, we propose
polar shaping codes for costly noisy channels that achieve the
lower bound by using the polar codes that are designed to
achieve capacity for asymmetric channels proposed by Honda
and Yamamoto.

I. INTRODUCTION

Shaping codes encode information for use on costly chan-
nels, i.e., channels with symbol costs subject to an average cost
constraint. Their conceptual origins can be traced to Shannon’s
classic 1948 paper [15]. Prominent applications include data
transmission with a power constraint [7] and, more recently,
data storage on flash memories [10] and efficient strand
synthesis for DNA-based storage [9]. Codes that minimize
average cost per symbol for a given rate and codes that
minimize average symbol cost per source symbol (or total cost)
have been investigated, as has their application to noiseless and
noisy costly channels. See [10] for further references.

Arıkan [1] constructed capacity-achieving polar codes for
binary input symmetric channels. Arıkan also introduced
source polarization, which served as the basis for source cod-
ing for non-uniform source alphabets [2]. A capacity-achieving
coding scheme based on source and channel polarization for
binary input asymmetric channels was proposed by Honda
and Yamamoto [8]. In this scheme, complex boolean functions
are shared between encoder and decoder for non-information
carrying bit-channels. The use of common randomness is pro-
posed to avoid these complex boolean functions [8]. En Gad
et al. [6] used randomized rounding for low-entropy and not-
completely polarized bit-channels. In addition, a side chan-
nel was used to reliably transmit bits corresponding to not
completely polarized bit-channels, whose fraction is vanishing
with respect to the block length. A proof that argmax can be
used to encode low-entropy bit-channels is given by Chou and
Bloch [5]. We proposed a staircase scheme [12] that avoids
both common randomness and complex boolean functions to
encode not-completely polarized bit-channels.

In this paper, we consider polar code design for costly
memoryless channels, both noiseless and noisy. Shaping can
also be viewed as a dual problem to source coding by convert-
ing information into symbols satisfying specified probabilistic
properties, and we also adopt this perspective.

We first propose a polar shaping code design for a (costly)
noiseless channel and a specified symbol probability distri-
bution. The construction is an adaptation of the Honda and
Yamamoto polar coding scheme for asymmetric channels [8].
The total cost of the proposed shaping code approaches the
minimum possible value when the code is designed with the
optimal rate and symbol distribution [10].

We then study shaping codes for costly noisy discrete mem-
oryless channels (DMCs). This model is relevant to the design
of efficient codes that combine shaping and error correction
for use in a noisy transmission or storage system. We first give
an upper bound on the rate that can be achieved on the DMC
with a specified symbol occurrence probability distribution
on codewords. Then we formulate an optimization problem
whose solution gives a lower bound on the optimal total cost
for the channel. (Note that the maximum rate achieved with
a constraint on the average cost per code symbol has been
investigated by Böcherer [3].) Finally, we show that polar
codes for asymmetric channels [8] can be used to design
shaping codes for costly noisy DMCs so that the total cost of
the proposed code approaches the lower bound as the block
length grows. The construction uses common randomness for
encoding frozen bit-channels and not-completely polarized bit-
channels in the code construction. Common randomness is
crucial to get the desired shaping distribution on the codeword
symbols.

We also show that the optimal total cost can be achieved by
using random code construction methods, randomly choosing
frozen bits and randomly choosing boolean functions for not-
completely polarized channels [12], [8], and thereby avoiding
the need for common randomness. For such a random code
construction, we show that, with high probability, there exist
codes in the random ensemble whose costs approach the
optimal total cost with diminishing probability of error.

We note that a scheme that combines polar-coded modu-
lation and probabilistic amplitude shaping [4] was introduced
by Prinz et al. [13], and a novel constellation shaping based
on polar-coded modulation was proposed by Matsumine [11].



II. PRELIMINARIES

We denote the alphabet of the costly channel by X . We
denote the output alphabet of the costly noisy DMC by Y .
We express any set of random variables Xi, Xi+1, . . . , Xj

(i < j) by a row vector (Xi, Xi+1, . . . , Xj) which is denoted
by Xi:j . We denote the set {1, 2, 3, . . . , N} by [N ]. Let U1:N

be a row vector and let A ⊂ [N ]. UA denotes the row vector
consisting of elements in U1:N corresponding to the subset
of positions A in the same order. Let P and Q be any two
distributions on a discrete arbitrary alphabet Z . We denote the
total variation distance between the two distributions P and Q
as ||P −Q||. Therefore ||P −Q|| =

∑
z∈Z

1
2 |P (z)−Q(z)| =∑

z:P (z)>Q(z) P (z) − Q(z). We denote the KL-divergence
between two distributions P and Q as D(P ||Q).

Let X be the random variable distributed as p(x) over alpha-
bet X . In this paper, we provide polar shaping codes for binary
alphabets. So we let X = {0, 1} to introduce polarization
results. Let (X1, Y1), (X2, Y2), . . . , (XN , YN ) be i.i.d. random
tuples distributed according to p(x)p(y|x) and N = 2n. Let
GN be the conventional polar transformation [1], represented
by a binary matrix of dimension N×N . If U1:N = X1:NGN ,
then we denote P(U1:N = u1:N ) by PU1:N (u1:N ) and simi-
larly we denote P(Ui = ui|U1:i−1Y 1:N = u1:i−1y1:N ) by
PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N ).

For two random variables (X,Y ) distributed as p(x)p(y|x),
the Bhattacharya parameter is defined as

Z(X|Y ) = 2
∑
y

PY (y)
√
PX|Y (1|y)PX|Y (0|y).

Let β < 0.5 and define the following subsets obtained by
polarization, with notation adapted from [6].

HX = {i ∈ [N ] : Z(Ui|U1:(i−1)) ≥ 1− 2−N
β

}.

LX = {i ∈ [N ] : Z(Ui|U1:(i−1)) ≤ 2−N
β

}.

HX|Y = {i ∈ [N ] : Z(Ui|U1:(i−1)Y 1:N ) ≥ 1− 2−N
β

}.

LX|Y = {i ∈ [N ] : Z(Ui|U1:(i−1)Y 1:N ) ≤ 2−N
β

}.

Note that LX ⊆ LX|Y . From Theorem 1 in [8] we have the
following results.

lim
N→∞

1

N
|HX | = H(X), lim

N→∞

1

N
|LX | = 1−H(X),

lim
N→∞

1

N
|HX|Y | = H(X|Y ),

lim
N→∞

1

N
|LX|Y | = 1−H(X|Y ).

We define several other subsets of bit-channels as follows:

I = HX ∩ LX|Y , F = HX ∩ LcX|Y , R = (HX ∪ LX)
c
.

We refer to these as good, bad, and not completely polarized
bit-channels respectively. We refer to bit-channels in HX and
bit-channels in LX as high-entropy bit-channels and low-
entropy bit-channels respectively. The size of set R is a

vanishing fraction with respect to the block length as N
increases due to polarization. From [8, Theorem 1],

lim
N→∞

|I|
N

= I(X;Y ). (1)

We define the cost function for costly channels as C : X →
R+, where C(x) is cost for the symbol x ∈ X . For a codeword
of length N , we define the symbol frequency function fj :
XN → [0, 1] for j ∈ X as follows:

fj(x
1:N ) =

1

N

N∑
i=1

1(xi = j).

III. POLAR SHAPING CODE

A. Code construction

In this section, we provide shaping code that trans-
forms uniformly distributed message M1:|HX | (|HX | bits)
into X1:N , whose distribution is close to the distri-
bution induced when X1:N is i.i.d. according to p(x)
in total variation distance. We assume that the alpha-
bet X is binary in our polar code construction below.

Encoding
Input: uniformly distributed message M1:|HX | (|HX | bits)
Output: codeword X1:N

for i = 1 : N , set Ui as follows.
1. For i ∈ HX , the value of Ui is given by setting

UHX = M1:|HX |.
2. For i ∈ LX , we set Ui using the argmax rule

Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1).

3. For i ∈ R, we set Ui by randomized rounding with the
conditional distribution, PUi|U1:i−1(x|U1:i−1).

end
4. X1:N = U1:NGN becomes the codeword.

The decoding algorithm is as follows.

Decoding
Input: codeword X1:N

Output: message estimate M1:|HX |

1. We reconstruct U1:N by applying GN to X1:N .
2. Therefore M1:|HX | = UHX .

Let Q be the measure on X1:N induced by the polar shaping
code. Note that P is the measure on X1:N induced when
X1:N is i.i.d. distributed according to p(x). From the results
in [8] [6] [5], it is obvious that ||PX1:N−QX1:N || = O(2−N

β

).
Note that expected symbol frequency is as follows:

E[fj(X
1:N )] =

1

N

N∑
i=1

P (Xi = j).

We refer to the distribution given by expected symbol fre-
quency function as symbol occurrence probability distribution
for that block code. Let us call it qN (x). By using the fact



that total variation distance ||PX1:N −QX1:N || = O(2−N
β

), it
can be easily shown that qN (x) approaches p(x) as follows:

qN (x) =
1

N

N∑
i=1

P (Xi = x)

≤ 1

N

N∑
i=1

(p(x) + ||PX1:N −QX1:N ||)

= p(x) +O(2−N
β

).

Similarly,

qN (x) =
1

N

N∑
i=1

P (Xi = x)

≥ 1

N

N∑
i=1

(p(x)− ||PX1:N −QX1:N ||)

= p(x)−O(2−N
β

).

Hence qN (x) approaches p(x) as N grows. Note that the
polar shaping code we proposed is error free. As fraction of
high-entropy bit-channels, where we provide message bits, ap-
proaches H(X), we say that sequence of polar codes achieve
any rate R < H(X) with symbol occurrence distribution p(x).
The extension to the non-binary case can be done using ideas
from [14].

B. Application to costly channel

Note the cost of a codeword x1:N ∈ XN per information
bit C̄N (x1:N ) = 1

R

∑
j∈X fj(x

1:N )C(j).
Therefore, the average cost per information bit of the shaping
code will be as follows:

E[C̄N (X1:N )] =
1

R

∑
j∈X

E[fj(X
1:N )]C(j)

=
1

R

∑
x∈X

C(x)qN (x).

Note that average cost per information bit, which we refer
to as total cost, 1

R

∑
x∈X C(x)qN (x), for the sequence of

polar codes, approaches the optimal value [10, Theorem 3],
by choosing R close to H(X), by choosing p(x) as the symbol
occurrence distribution characterized in [10, Theorem 3],
which depends on the cost function. Hence, we say that the
sequence of polar codes achieve optimal total cost.

IV. SHAPING FOR DMCS

In this section, we consider shaping codes for DMCs
characterized by transition probabilities p(y|x).

A (2NR, N) code for a DMC consists of:
• message set: {1, 2, . . . , 2NR},
• source of common randomness ZN known to encoder and

decoder independent of message,
• an encoder X1:N : {1, 2, . . . , 2NR} × ZN → XN and
• a decoder at receiver h : YN × ZN → {1, 2, . . . , 2NR}.

R is the rate of the message. Let M be chosen uniformly from
the set {1, 2, . . . , 2NR}. Let Y 1:N be the received sequence.

Note that we also employ common randomness in the defini-
tion of the code. Now we upper bound the rate that can be
achieved on DMC with certain symbol occurrence probability
distribution in following subsection.

A. Upper bound on rate under a constraint on symbol occur-
rence distribution

The upper bound we provide in this sub-section also applies
to the case when X is non-binary alphabet. We refer to qN (x)
and E[C̄N (X1:N )] for symbol occurrence distribution and total
cost as defined in Section-III.
Definition: We say that R rate is achieved with symbol
occurrence probability p(x) iff there exists a sequence of
(2NR, N) codes for discrete memoryless channels such that
PNe = P(h(Y 1:N , ZN ) 6= M) vanishes and qN (x) approaches
p(x) as N goes to ∞.

Lemma 1. If rate R is achieved with symbol occurrence
probability p(x), then I(X;Y ), mutual information evaluated
at p(x) for the DMC, will be an upper bound on R.

Proof: Let us consider a sequence of (2NR, N) codes
for which qN (x) approaches p(x) and probability of error
diminishes. By Fano’s inequality, we get

H(M |Y 1:N , ZN ) = NεN ,

where εN vanishes as N grows. Let X̃N be the random
variable distributed as qN (x).

NR = H(M)

= H(M)−H(M |Y 1:NZN ) +H(M |Y NZN )

≤ H(M)−H(M |Y 1:NZN ) +NεN
(a)
= H(M |ZN )−H(M |Y NZN ) +NεN

= I(M ;Y 1:N |ZN ) +NεN

=

N∑
i=1

I(M ;Yi|ZNY 1:i−1) +NεN

=

N∑
i=1

(H(Yi|Y 1:i−1ZN )−H(Yi|M,Y 1:i−1, ZN )) +NεN

(b)

≤
N∑
i=1

(H(Yi)−H(Yi|M,Y 1:i−1, Xi, ZN )) +NεN

(c)
=

N∑
i=1

(H(Yi)−H(Yi|Xi)) +NεN

=

N∑
i=1

I(Xi;Yi) +NεN

(d)
= NI(X̃N ;Y ) +NεN

where I(X̃N ;Y ) mutual information evaluated at distribution
qN (x) for the DMC p(y|x). Identity (a) follows as source
of common randomness is independent of the message. Iden-
tity (b) follows as conditioning reduces entropy. Identity (c)
follows as Yi independent of Y 1:i−1, ZN given Xi. Identity



(d) follows as qN (x) = 1
N

∑N
i=1 P (Xi = j) and mutual

information is concave in input distribution for fixed p(y|x).
As N approaches infinity, I(X̃N , Y ) approaches I(X;Y )

since qN (x) approaches p(x) and mutual information is con-
tinuous function with input distribution for fixed p(y|x). Hence
R ≤ I(X,Y ).
We use this result in the following subsection to define an
optimization problem for the costly noisy DMC that provides
a lower bound on the optimal total cost.

B. Lower bound on optimal total cost for costly noisy channel

Definition: We say that rate R is achieved with total cost
C̃ iff there exists a sequence of (2NR, N) codes for discrete
memoryless channels such that PNe = P(h(Y 1:N , ZN ) 6= M)
vanishes and E[C̄N (X1:N )] approaches C̃ as N goes to ∞.
Definition: Optimal total cost Copt is defined as follows:

Copt = inf(R,C̃)C̃,

where infimum is taken over (R, C̃) pairs such that R is
achieved with total cost C̃.

Lemma 2. The optimal total cost Copt = inf(R,p(x))C̃, where
C̃ = 1

R

∑
x∈X C(x)p(x) and infimum is taken over (R, p(x))

pairs such that R is achieved with symbol occurrence distri-
bution p(x).

Proof: We first provide the proof when X is binary alphabet.
Without loss of generality assume that C(0) 6= C(1) otherwise
total cost is always equal to C(0)

R . Notice that there will be
one to one correspondence between qN (x) and E[C̄N (X1:N )],
which are affinely related. Hence qN (x) converges if and
only if E[C̄N (X1:N )] converges as N goes to ∞. The limits
are also affinely related by the same function as both the
sequences are. Hence, R is achieved with total cost C̃ iff R
is achieved with symbol occurrence distribution p(x), where
C̃ = 1

R

∑
x∈X C(x)p(x).

Therefore, Copt = inf(R,p(x))C̃, where C̃ =
1
R

∑
x∈X C(x)p(x) and infimum is taken over (R, p(x)) pairs

such that R is achieved with symbol occurrence distribution
p(x).

When X is non-binary alphabet, total cost at rate can be
same for two different distributions. So, this argument does
not apply to non-binary case. We need to use the fact that
every bounded sequence has convergent sub-sequence to prove
that if rate R is achieved with total cost C̃ then there exist
p(x) such that rate R is achieved with symbol occurrence
distribution p(x) where C̃ = 1

R

∑
x∈X C(x)p(x).

If rate R is achieved with C̃ then there exists a sequence
of (2NR, N) codes such that PNe = P(h(Y 1:N , ZN ) 6= M)
vanishes and E[C̄N ] approaches C̃ as N goes to ∞. The
symbol occurrence distribution qN (x) may not converge.
But there exists a sub-sequence of the sequence qN (x) that
converges, as qN (x) is a bounded sequence. Let us index
such a sub-sequence with k where block length corresponding
to the kth element in the sub-sequence is Nk. Let qNk(x)
converges to the distribution p(x). Clearly for sequence of

codes (2NkR, Nk), E[C̄Nk ] approaches C̃ as k goes to ∞.
As E[C̄Nk ] = 1

R

∑
x∈X C(x)qNk(x), we will have C̃ =

1
R

∑
x∈X C(x)p(x). Therefore we have sequence of codes

for which probability of error diminishes and symbol oc-
currence probability distribution converges to p(x) such that
C̃ = 1

R

∑
x∈X C(x)p(x), which means that if rate R is

achieved with total cost C̃ then there exists a distribution
p(x) such that R rate is achieved with symbol occurrence
distribution p(x) where C̃ = 1

R

∑
x∈X C(x)p(x). On the other

hand, if rate R is achieved with symbol occurrence probability
distribution p(x), then obviously rate R is achieved with total
cost C̃ = 1

R

∑
x∈X C(x)p(x).

Therefore, Copt = inf(R,p(x))C̃, where C̃ =
1
R

∑
x∈X C(x)p(x) and infimum is taken over (R, p(x)) pairs

such that R is achieved with symbol occurrence distribution
p(x). This concludes the proof of the lemma.

As stated in the previous subsection, if rate R is achieved
with symbol occurrence distribution p(x), then R < I(X;Y ).
Note that the solution for the following optimization problem
is lower bound to Copt.

Minimize(R,p(x))
1

R

∑
x∈X

C(x)p(x),

subject to R ≤ I(X;Y ).

(2)

In the next subsection, we show that polar coding technique
designed for asymmetric channels can be used to achieve any
rate R < I(X;Y ) with symbol occurrence probability p(x).
Therefore, the sequence of polar codes, which are designed
with minimizers of the optimization problem achieve the lower
bound provided by the solution of the optimization problem.
This means that the solution of the optimization problem
characterizes the optimal total cost of costly noisy DMCs.

We will now look at the solution of the optimization
problem for M -ary costly erasure channel. M -ary erasure
channel is a channel whose input alphabet size |X | is M where
each input symbol is erased with certain probability.

Theorem 1. The optimal symbol occurrence input distribution
of the shaping code that achieves optimal total cost for an
M -ary erasure costly channel with erasure probability ρ is
given by p∗(x) = 2−µC(x) such that

∑
x∈X 2−µC(x) = 1.

We assume that the cost function C(x) is non-trivial for
each x ∈ X . The optimal total cost is given by Copt =∑

x∈X p
∗(x)C(x)

(1−ρ)
∑
x∈X p

∗(x) log2(1/p
∗(x)) .

Proof: Mutual information I(X;Y ) evaluated at the in-
put distribution p(x) for the erasure channel is given by
(1 − ρ)

∑N
i=1 p(x) log2(1/p(x)). By substituting the mutual

information in (2), optimization problem for the erasure costly
channel for optimal total cost becomes as follows:

Minimize(R,p(x))
1

R

∑
x∈X

C(x)p(x),

subject to R ≤ (1− ρ)

N∑
i=1

p(x) log2(1/p(x)).



For fixed rate R, finding out the symbol occurrence probability
for minimum total cost will be a convex optimization problem.
Using Lagrange duality, we get optimal symbol occurrence
distribution at a fixed rate R as below:

p̃(x) =
1

N
2−µC(x),

where µ is a positive constant such that rate R = (1 −
ρ)
∑N
i=1 p̃(x) log2(1/p̃(x)) and N is normalization factor

N =
∑
x∈X

2−µC(x).

Now minimizing total cost is equivalent to minimizing the
following function:

G(µ) =

∑
x∈X C(x)2−µC(x)

(1− ρ)(
∑
x∈X µC(x)2−µC(x) +N log2N)

when µ > 0. Notice that this function is same as function T
defined in the proof of [10, Theorem 3] except for a factor
1 − ρ. The derivative G′(µ) will have negative of the sign
of log2N as shown in the proof of [10, Theorem 3]. As
we assume that C(x) > 0 for each x ∈ X and µ increases
from 0 to ∞, N is decreasing from |X | to 0. So G will be
initially decreasing as µ increases until N becomes 1 and then
will be increasing. So the minimum value of G occurs when
N = 1. Hence the optimal symbol occurrence distribution
that achieves minimum total cost is p∗(x) = 2−µC(x) for each
x ∈ X where

∑
x∈X 2−µC(x) = 1. Therefore optimal total

cost will be Copt =
∑
x∈X p

∗(x)C(x)

(1−ρ)
∑
x∈X p

∗(x) log2(1/p
∗(x)) .

Now we provide the shaping polar code to achieve any rate
R < I(X;Y ) with symbol occurrence probability distribution
p(x) over DMCs.

C. Polar shaping codes for DMCs

We assume alphabet X is binary in the proposed polar code
construction. The polar code that we provide here transforms
uniformly distributed message M1:|I| (|I| bits) into code-
word X1:N , whose distribution is close to the distribution
induced when X1:N is i.i.d. according to p(x) in total variation
distance. The code construction we propose here is actually
derived from the capacity achieving polar codes for asymmet-
ric channels [8] by Honda and Yamamoto. We use common
randomness in the code construction to get the desired shaping
property. Now we provide the encoding algorithm.

Encoding
Input: randomly chosen message M1:|I|

Output: codeword X1:N

for i = 1 : N , encode Ui as follows.
1. For i ∈ I , the value of Ui is given by setting U I = M1:|I|.
2. For i ∈ F , we set Ui as uniform independent

random variable through common randomness.
3. For i ∈ LX , we encode Ui using the argmax rule

Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1).

4. For i ∈ R, we set Ui with conditional distribution
PUi|U1:i−1(x|U1:i−1) using common randomness.

end
Transmit X1:N = U1:NGN .

The decoding algorithm is as follows.

Decoding
Input: received vector Y 1:N

Output: message estimate M̂1:|I|

for i = 1 : N
1. If i ∈ F , we reconstruct Ûi using common randomness,

which is uniform independent random variable.
2. If i ∈ LX ∪ I , set

Ûi = argmaxx∈{0,1}PUi|U1:i−1,Y 1:N (x|Û1:i−1, Y 1:N ).

3. If i ∈ R, we reconstruct Ûi using common randomness
with conditional distribution PUi|U1:i−1(x|Û1:i−1).

end
Decode M̂ = Û I .

Let Q be the measure on X1:N induced by the polar shaping
code. Note that P is the measure on X1:N induced when
it is i.i.d. distributed according to p(x). From the results
in [8] [6] [5], it is obvious that ||PX1:N−QX1:N || = O(2−N

β′

)
for β′ < β < 0.5. As mentioned in Section III, qN (x) ap-
proaches p(x) as N grows large. The probability of decoding
error is O(2−N

β′

) [8].
As fraction of information bit-channels, where we provide

message bits, approaches I(X;Y ), the sequence of polar
codes achieve rate R < I(X;Y ) with symbol occurrence
distribution p(x). Common randomness we employed in the
code construction is crucial to get the desired distribution on
the symbols of the codewords. If R and p(x) in the polar code
design are minimizers of the optimization problem proposed in
the previous subsection, then sequence of polar codes clearly
achieve the optimal total cost.

As proposed in [8] [12], instead of common-randomness,
if we randomly produce frozen bits for bit-channels in F and
boolean functions for encoding bit-channels in R, which are
shared between encoder and decoder, then we will not be
able to guarantee desired shaping distribution. The ensemble
average symbol occurrence distribution has desired shaping
distribution, but we should get code in the random ensemble
with desired shaping distribution, which we cannot guarantee
existence of. Nevertheless, for this random code construction
that avoids common randomness, we still prove that there
exists sequence of codes whose total cost approaches optimal
total cost with diminishing probability of error if we design the
polar code with minimizers of the optimization problem. Code
constructions avoiding common randomness are advantageous
as the practical implementation of common randomness uses
pseudo-random generators which often have many limitations.
They can suffer from shorter than the expected period for weak
seed states.



Let p∗(x) be optimal symbol occurrence distribution and
R∗ be the optimal rate for costly noisy DMC. Clearly, R∗ is
the mutual information evaluated at p∗(x) for the DMC.

Now we design sequence of polar codes with optimal
symbol occurrence distribution p∗(x) and optimal rate R∗

by random code construction method2, as mentioned above
avoiding common randomness. Let WN denotes the random
vector of frozen bits and boolean functions for bit-channels in
F and R respectively. Note that the rate sequence RN = |I|

N
approaches R∗. Clearly, the total cost for a given code will
become as follows:
E[CN (X1:N )|WN ]

=
∑
x1:N∈X 1:N 2−|I|Πi∈F1{f(i) = ui}

Πi∈LX δi(ui|u1:i−1)
Πi∈R1{λi(u1:i−1) = ui}CN (x1:N ),

where x1:N = u1:NGN , 1{.} is indicator function,
δi(u|u1:i−1) denotes the conditional distribution induced by
argmax rule for bit-channels in LX as defined in [12], f(.) is
frozen bit function that is randomly chosen for bit-channels in
F as defined in [12] and λi(.) denotes the boolean functions
to encode bit-channels in R as defined in [12].

Applying expectation on both sides and by the independence
of frozen bits and boolean functions [8] [12], the ensemble
average total cost becomes as follows:
EWN

[E[CN (X1:N )|WN ]]
=
∑
x1:N∈X 1:N 2−|HX |Πi∈LX δi(ui|u1:i−1)

Πi∈RPUi|U1:i−1(ui|u1:i−1)CN (x1:N ).
=
∑
x1:N∈X 1:N Q(x1:N )CN (x1:N ).

This implies that
EWN

[E[CN (X1:N )|WN ]] = N
|I|
∑
x∈X C(x)qN (x).

Therefore, as qN (x) approaches p∗(x) and |I|N approaches
R∗, ensemble average total cost EWN

[E[CN (X1:N )|WN ]]
approaches 1

R∗

∑
x∈X C(x)p∗(x) which is optimal total cost

Copt. On the other hand, the ensemble average probability of
error EWN

[Pe(WN )] = O(2−N
β′

) [8] where β′ < β < 0.5
and Pe(WN ) is the probability of error of the given code. A
good shaping code has total cost close to the optimal value
and negligible probability of error. So we should show there
exists a sequence of codes whose total cost approaches optimal
total cost and probability of error diminishes. We show the
existence of such codes with high probability. We precisely
state our result in Theorem 2 followed by a rigorous proof.
For the sake of brevity, we denote E[CN (X1:N )|WN ] as TN .

Theorem 2. In the above random code construction, the
sequence P

(
Pe(WN ) < N2−N

β′

, b̃NEWN
[TN ] ≤ TN ≤

ãNEWN
[TN ]

)
approaches 1 for some ãN > 1 and b̃N < 1

that converge to 1. This means that, with high probability, there
exist codes in the random ensemble with total cost approaching
the optimal total cost and diminishing probability of error.

Proof: We first prove that P(bNEWN
[TN ] ≤ TN ≤

aNEWN
[TN ]) goes to 1 for any bN that converges to b < 1
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from below and aN that converges to a > 1 from above. This
is equivalent to proving P(TN > aNEWN

[TN ]) converges to
zero and P(TN < bNEWN

[TN ]) converges to zero. For the
sake of brevity, we denote EWN

[TN ] as Ẽ[TN ] in the proof.
Now we prove P(TN > aN Ẽ[TN ]) converges to zero by

contradiction. So we assume there is subsequence indexed
by r, P(TNr > aNr Ẽ[TNr ]), whose liminf is non-zero.
Let us denote the sequence P(TNr > aNr Ẽ[TNr ]) as pNr .
Note that limsup of sequence pNr is less than 1, as pNr
is upper-bounded by 1/aNr , by the Markov inequality. As
aNr > 1, we will be able to choose 0 ≤ lNr < 1 such
that Ẽ[TNr ] = pNraNr Ẽ[TNr ]+(1 − pNr )lNr Ẽ[TNr ] with
limsup of lNr less than 1. Set l′Nr =

1+lNr
2 . Therefore,

Ẽ[TNr ] < pNraNr Ẽ[TNr ]+(1 − pNr )l
′
Nr

Ẽ[TNr ] and limsup
of l′Nr is less than 1. Note that

Ẽ[TNr ]=pNraNr Ẽ[TNr ]+(1−pNr−qNr )l′Nr Ẽ[TNr ] (3)

where qNr = (1 − pNr )
1−lNr
1+lNr

, and liminf of qNr does not
vanish as the limsups of lNr and pNr are less than 1.

Note also that
Ẽ[TNr ] ≥ pNraNr Ẽ[TNr ]

+P(l′Nr Ẽ[TNr ]≤TNr≤aNr Ẽ[TNr ])l
′
Nr

Ẽ[TNr ].
By plugging in for Ẽ[TNr ] using equation (3), we get

P(l′Nr Ẽ[TNr ]≤TNr≤aNr Ẽ[TNr ]) ≤ (1−pNr−qNr ).

This yields
P(TNr < l′Nr Ẽ[TNr ]) = 1− P(l′Nr Ẽ[TNr ]≤TNr≤aNr Ẽ[TNr ])

−P(TNr>aNr Ẽ[TNr ]) ≥ 1−(1− pNr−qNr )−pNr = qNr .
Hence qNr is a lower-bound to P(TNr<l

′
Nr

Ẽ[TNr ]).
Hence P(TNr<l

′
Nr

Ẽ[TNr ]) does not converge to zero. As

P(Pe < Nr2
−Nβ

′
r ) converges to 1, it follows that the sequence

P(Pe < Nr2
−Nβ

′
r , TNr < l′Nr Ẽ[TNr ]) does not converge to

zero. As limsup of l′Nr is less than 1, we can get a sequence
of codes whose total costs converge to less than optimal total
cost Copt with diminishing probability of error. This is a
contradiction. Hence P(TN > aN Ẽ[TN ]) converges to zero.

Now we prove that P(TN < bN Ẽ[TN ]) converges
to zero. We again prove this by contradiction. So
assume P(TN < bN Ẽ[TN ]) does not converge to zero.
As P(Pe < N2−N

β′

) converges to 1, the sequence
P(Pe < N2−N

β′

, TN < bN Ẽ[TN ]) does not converge to
zero. This is a contradiction as we can get a sequence
of codes whose total costs converge to less than optimal
total cost Copt with diminishing probability of error. Hence
P(TN < bN Ẽ[TN ]) converges to zero.

We conclude P(bN Ẽ[TN ] ≤ TN ≤ aN Ẽ[TN ]) goes
to 1. As P(Pe < N2−N

β′

) converges to 1, we will have
P(Pe < N2−N

β′

, bN Ẽ[TN ] ≤ TN ≤ aN Ẽ[TN ]) goes to 1.
Let âm > 1 be a sequence indexed by m that converges

to 1 from above. Let b̂m < 1 be a sequence indexed
by m that converges to 1 from below. For each m,
let us define a sequence âmN that converges to âm
from above and also define another sequence b̂mN that
converges to b̂m from below. So for each m, we have



P(Pe < N2−N
β′

, b̂mN Ẽ[TN ] ≤ TN ≤ âmN Ẽ[TN ]) goes to 1.
Notice that P(Pe < N2−N

β′

, b̂NN Ẽ[TN ] ≤ TN ≤ b̂NN Ẽ[TN ])
goes to 1 where both b̂NN < 1 and âNN > 1 converge to
1. By setting ãN = âNN and b̃N = b̂NN , we complete the
proof of the theorem.
The extension to non-binary case can be done using ideas
in [14].

V. CONCLUSION

We presented a polar shaping code. For a costly channel,
we have shown that total cost of the proposed polar shaping
code approaches optimal total cost as block length grows.
We looked at costly noisy discrete memoryless channels. We
first give an upper bound on the rate that can be achieved
with certain symbol occurrence probability distribution over a
discrete memoryless channel. We formulated an optimization
problem whose solution gives optimal total cost for the costly
noisy discrete memoryless channel. We showed that polar
codes for asymmetric channels by Honda and Yamamoto
with the aid of common randomness can be used to get the
desired shaping distribution on symbols of the codewords. To
achieve the optimal total cost, we show that we can also use
random construction method by randomly choosing frozen bits
and randomly choosing boolean functions for not completely
polarized channels [12] [8] avoiding common randomness.
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