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Abstract—We derive a pair of bounds (upper and lower) on the sym-
metric information rate of a two-dimensional finite-state intersymbol
interference (ISI) channel model. For channels with small impulse re-
sponse support, they can be estimated via a modified forward recursion of
the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm. The convergence of the
bounds is also analyzed. To relax the constraint on the size of the impulse
response, a new upper bound is proposed which allows the tradeoff of the
computational complexity and the tightness of the bound. These bounds
are further extended to -dimensional ( 2) ISI channels.

Index Terms—Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm, hidden
Markov field, information rate, Peano–Hilbert curve, two-dimensional
intersymbol interference (ISI) channel.

I. INTRODUCTION

One approach to achieving higher information storage density is the
use of page-oriented data recording technologies, such as holographic
memory [1]. Instead of recording the data in one-dimensional tracks,
these technologies store the data on two-dimensional surfaces. A
commonly used channel model for such a two-dimensional recording
channel is the two-dimensional finite-state intersymbol interference
(ISI) channel with additive white Gaussian noise (AWGN), as de-
scribed by

y[i; j] =

n �1

k=0

n �1

l=0

h[k; l]x[i � k; j � l] + n[i; j] (1)

where x[i; j] is the channel input with finite alphabet of cardinality
jX j; y[i; j] is the channel output, and n[i; j] is independent and
identically distributed (i.i.d.) zero-mean Gaussian noise with variance
�2 = N0=2.

As in the case of one-dimensional channels, the capacity of this
two-dimensional channel is defined as the maximum mutual informa-
tion rate I(X ;Y) over all input distributions, where X = fx[i; j]g
and Y = fy[i; j]g. When the input is i.i.d., equiprobable, the mutual
information rate is called the symmetric information rate (SIR). The
capacity and the SIR provide useful measures of the storage density
that can, in principle, be achieved with page-oriented technologies, and
also serve as performance benchmarks for channel coding and detec-
tion methods.

Various bounds on the capacity and the SIR have been developed
for certain one-dimensional ISI channels; see, e.g., [2]–[5]. Recently,
several authors independently proposed a new Monte Carlo approach
to calculating a convergent sequence of lower bounds on these infor-
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mation rates [6]–[8]. The method requires the calculation of the joint
probability of a long sample realization of the channel output. The for-
ward recursion of the sum-product Bahl–Cocke–Jelinek–Raviv (BCJR)
algorithm [10], applied to the combined source–channel trellis, can be
used to reduce the overall computational complexity of the calcula-
tions. This approach was further generalized and applied to multitrack
recording systems [9].
In this correspondence, we investigate the extension of this approach

to two-dimensional finite-state ISI channels. The main difficulty that
prevents us from extending the one-dimensional approach directly
is that there is no direct counterpart of the BCJR algorithm that can
simplify the calculations for a large sample output array in the two-di-
mensional setting. To overcome this problem, we derive upper and
lower bounds on the entropy rate of a large output array based upon
conditional entropies of smaller output arrays. The convergence of
these bounds is investigated. Bymodifying the one-dimensional Monte
Carlo technique to the calculation of these conditional entropies, we
are able to compute fairly tight upper and lower bounds on the SIR for
two-dimensional ISI channels with small impulse response support.
To further reduce the computational complexity for the channels
with larger impulse response support, we derive an alternative upper
bound which uses an auxiliary one-dimensional ISI channel so that
the one-dimensional Monte Carlo technique can be applied directly. It
allows us to make the tradeoff between the auxiliary one-dimensional
channel memory length (which determines the complexity) and the
tightness of the bound. Although these bounds are derived in the
context of two-dimensional ISI channels, they can be easily extended
to higher dimensional ISI channels which may be used to model the
inter-page interference in holographic memories [12].
The paper is organized as follows. In Section II, we derive the upper

and lower bounds on the SIR of two-dimensional finite-state ISI chan-
nels. We then present a lower bound on the convergence rate and de-
scribe the Monte Carlo approach to computing these bounds. Section
III introduces the alternative upper bound which makes use of an auxil-
iary one-dimensional ISI channel. These bounds are extended to d-di-
mensional (d > 2) ISI channels in Section IV. Section V provides
numerical results for some two-dimensional ISI channels, and Section
VI concludes the paper.

II. BOUNDS ON THE SIR OF TWO-DIMENSIONAL ISI CHANNELS

A. SIR Bounds Based on Conditional Entropies

In this two-dimensional ISI channel model, the input array X is a
two-dimensional discrete random process consisting of i.i.d. random
variables. The corresponding output array Y is a two-dimensional con-
tinuous random process. It is easy to see that both are stationary random
processes. LetLi+m�1;j+n�1

i;j be the set of positions forming anm�n
rectangular block whose upper left corner is (i; j) 1 and whose lower
right corner is (i+m � 1; j + n � 1). That is,

Li+m�1;j+n�1
i;j =f(s; t) 2 Z2 : i�s� i+m�1; j�t�j+n�1g:

The output array indexed on the set Li+m�1;j+n�1
i;j is

Y fLi+m�1;j+n�1
i;j g and is abbreviated as Y i+m�1;j+n�1

i;j . The
mutual information rate between X and Y is

I(X ;Y) = H(Y)�H(YjX ) = H(Y)�H(N ) (2)

1Throughout the correspondence, (i; j) denotes the position in the ith row
and the jth column.
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where

H(Y) = lim
m;n!1

1

mn
H(Y m;n

1;1 )

is the entropy rate of the output process andH(N ) = 1
2
log(�eN0) is

the noise entropy rate. Equation (2) comes from the fact that

H(YjX ) = lim
m;n!1

1

mn
H Y

m;n
1;1 X

m;n
1;1

= lim
m;n!1

1

mn
H Y

m;n
1;1 X

m;n
�n +2;�n +2

+ I X
0;n
�n +2;�n +2; X

m;0
1;�n +2;Y

m;n
1;1 X

m;n
1;1

= lim
m;n!1

1

mn
H Y

m;n
1;1 X

m;n
�n +2;�n +2

= lim
m;n!1

1

mn
H N

m;n
1;1

= H(N ) =
1

2
log(�eN0) (3)

since

0 � lim
m;n!1

1

mn
I X

0;n
�n +2;�n +2; X

m;0
1;�n +2; Y

m;n
1;1 X

m;n
1;1

� lim
m;n!1

(n1 � 1)(n2 + n� 1) + (n2 � 1)m

mn
log jX j = 0:

In the rest of the correspondence, we will no longer distinguish be-
tween bounding the channel output entropy rate and bounding the SIR
since the two rates differ only by a constant. The problem is now re-
duced to the evaluation of the entropy rate of the two-dimensional
output process Y , if it exists. For a stationary one-dimensional random
process Z = fZ[i]g, the limit

H(Z) = lim
n!1

1

n
H(Z[1]; . . . ; Z[n])

exists due to the subadditivity of the entropyH(Z[1]; . . . ; Z[n]). Simi-
larly, since the subadditive property holds for the entropyH(Ym;n

1;1 ) in
each dimension, the limit limm;n!1

1
mn

H(Ym;n
1;1 ) also exists when

Y is stationary [11].
Although we could estimate H(Y) by calculating the sample en-

tropy rate of a very large array, similar to the approach used in [6]–[8],
the huge computational complexity makes it impractical. As pointed
out earlier, there is no counterpart of the BCJR algorithm for two-di-
mensional processes to help reduce the complexity. Instead, we will
use conditional entropies based upon a smaller array to derive upper
and lower bounds on H(Y); and subsequently, the SIR. Conditional
entropies have been used to bound the entropy rate of one-dimensional
hidden Markov processes (see, e.g., [13]). We will adapt the approach
to accommodate the nature of the two-dimensional processes.

Before the development of the bounds on the SIR, we first define the
ordering � of the elements in a two-dimensional array Y . Unlike the
one-dimensional case in which there is a natural ordering that coin-
cides with the progression of time, there are many equally viable ways
to order the elements in a two-dimensional array. In this correspon-
dence, we consider two simple orderings, row-by-row ordering �R

and column-by-column ordering�C . Given two positions (t1; t2) and
(t01; t

0

2), in the row-by-row ordering, we have (t1; t2) �R (t01; t
0

2) if
t1 < t01 or if t1 = t01 and t2 < t02. Similarly, in the column-by-column
ordering, we have (t1; t2) �C (t01; t

0

2) if t2 < t02 or if t2 = t02 and
t1 < t01. To simplify the notation, we will use R and C to denote
row-by-row ordering and column-by-column ordering, respectively.
Therefore, we have �2 fR;Cg.

Let l = [l1; . . . ; l4] be a nonnegative vector (i.e., li � 0;8i). We
denote by Past�;l(i; j) the subset of positions inside L

i+l ;j+l
i�l ;j�l that

Fig. 1. The region Past (i; j) and Past (i; j).

Fig. 2. The region Strip (i; j) and Strip (i; j).

precede position (i; j) according to the ordering �. Fig. 1 depicts
PastC;[3;2;6;0](i; j) and PastR;[6;0;4;2](i; j). The channel outputs
indexed by Past�;l(i; j) are denoted by Y fPast�;l(i; j)g. The
boundary of Past�;l(i; j) is denoted by Strip

�;l(i; j). That is,

Strip
�;l(i; j)=

L
i;j�l

i�l ;j�l [ L
i�l ;j+l
i�l ;j�l [ L

i�1;j+l
i�l ;j+l ; if �= R

L
i+l ;j�l

i�l ;j�l [ L
i�l ;j

i�l ;j�l [ L
i+l ;j�1
i+l ;j�l ; if �= C:

(4)
Fig. 2 illustrates StripC;[5;4;5;0](i; j) and StripR;[5;0;4;3](i;j) as ex-
amples. It is obvious that the value of l2 is irrelevant to PastR;l(i; j)
and StripR;l(i; j), as is l4 to PastC;l(i; j) and StripC;l(i; j).
In order to derive the bounds based on the conditional entropy, we

first introduce a lemma which links the entropy rate defined above
and the conditional entropy of the stationary two-dimensional random
process. This result was first derived by Katznelson and Weiss [14] for
the more general Zd lattice. Anastassiou and Sakrison [15] obtained a
similar result for stationary two-dimensional fields on Z2. For the time
being, we state this result in the context of the Z2 lattice.

Lemma 2.1: For a stationary two-dimensional random field Y on
Z2, the entropy rate H(Y) satisfies the following equality:

H(Y) = H(Y [i; j]jY fPast�;1(i; j)g)

where1 = [1;1;1;1], meaning that for any given � > 0, there
exist Mi > 0; i = 1; . . . ; 4; such that when li > Mi for every
1 � i � 4

jH(Y)�H(Y [i; j]jY fPast�;l(i; j)g)j < �:

This result holds for both orderings. The lemma also applies to
random fields on lattices that can be mapped to Z2, such as the
hexagonal lattice [16]. In Section V, we will give an example of a
two-dimensional ISI channel on a hexagonal lattice.
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Applying a bounding technique similar to that used in the setting of a
one-dimensional hidden Markov process [13], we obtain the following
bounds.

Theorem 2.1: For a stationary two-dimensional random field Y , an
upper bound on its entropy rate is

H(Y) � min
�2fR;Cg

H
U1

�;l

where

H
U1

�;l = H(Y [i; j]jY fPast�;l(i; j)g)

and the li’s are finite nonnegative integers.
For a stationary two-dimensional hidden Markov field Y , a lower

bound on its entropy rate is

H(Y) � max
�2fR;Cg

H
L1
�;l

where

H
L1
�;l = H(Y [i; j]jY fPast�;l(i; j)g; SfStrip�;l(i; j)g)

and SfStrip�;l(i; j)g is the state information for Y fStrip�;l(i; j)g,
meaning the subset of fX[i; j]g that is related to Y fStrip�;l(i; j)g via
the transfer function h[i; j].

Proof: The proof is very similar to its one-dimensional counter-
part (see, e.g., [13]). Note thatPast�;l(i; j) � Past�;1(i; j) for every
�. Applying Lemma 2.1 and the fact that conditioning reduces entropy,
we have

H(Y) � H(Y [i; j]jY fPast�;l(i; j)g) = H
U1

�;l:

Since this inequality holds for both orders, we can conclude that

H(Y) � min
�

H
U1

�;l:

The lower bound is based on the observation that given
SfStrip�;l(i; j)g, the channel output Y [i; j] is independent of
the elements in

Y fPast�;1(i; j)g n Y fPast�;l(i; j)g

for every �. This Markov property combined with Lemma 2.1 allows
us to follow a similar procedure as in [13, pp. 69-70] to derive the lower
bound

H
L1
�;l = H(Y [i; j]jY fPast�;1(i; j)g; SfStrip�;l(i; j)g)

� H(Y [i; j]jY fPast�;1(i; j)g) = H(Y):

Although the conditional entropies used in the bounds above are on
a rectangular array, similar bounds can be derived using conditional
entropies on an array of a different geometrical shape. However, as will
be shown in Section II-C, a rectangular array simplifies the numerical
estimation of the bounds. We also note that the bounds derived here are
very similar to those we presented in [17]. The new bounds are in fact
tighter, and their derivation is simpler.

Given the bounds above and the obvious fact that I(X ;Y) �
log jX j, we obtain the following bounds for the mutual information
rate:

max
�2fR;Cg

H
L1
�;l �

1

2
log(�eN0) � I(X ;Y)

� min min
�2fR;Cg

H
U1

�;l �
1

2
log(�eN0); log jX j : (5)

B. Convergence of the Bounds

Given the bounds onH(Y) developed above, we would like to know
if they converge to the true entropy rate as the size of the array increases.
If they do, we would also be interested to know the rate of convergence.
The convergence rate will determine the size of the array needed to
achieve tight upper and lower bounds in our numerical estimation.
It is well known that the entropy rate of a stationary one-dimensional

hidden Markov process can be bounded by the conditional entropies of
a finite sequence. They converge to the true entropy rate [13]. Birch [18]
also showed that if the transition probabilities of the underlyingMarkov
process are all positive, these bounds converge exponentially fast as
the length of the sequence increases. In this section, we analyze the
convergence of the above bounds for two-dimensional hidden Markov
fields. We will show that they converge to the true entropy rate and a
lower bound on the convergence rate is provided.
We first prove a lemma on the monotonicity of the upper and lower

bounds.

Lemma 2.2: For a stationary two-dimensional hidden Markov field
Y , the upper bound HU1

�;l on its entropy rate is monotonically nonin-
creasing as the size of the array defined by the vector l increases; the
lower bound HL1

�;l is monotonically nondecreasing as the size of the
array increases.

Proof: It is easy to see that if l � l0 (that is, li � l0i; 8i);
Past�;l(i; j) � Past�;l (i; j). Therefore,

H(Y [i; j]jY fPast�;l(i; j)g) � H(Y [i; j]jY fPast�;l (i; j)g)

since conditioning reduces entropy. Thus, the upper bound is nonin-
creasing as l increases.
To prove the monotonic property of the lower bound, we first ex-

amine

H
L1
R;l = H(Y [i; j]jY fPastR;l(i; j)g; SfStripR;l(i; j)g):

Let l
1
= [l1 +�1; l2; l3; l4], where �1 is a positive integer. Then we

have

H Y [i; j]jY fPastR;l(i; j)g; SfStripR;l(i; j)g

= H Y [i; j]jY fPastR;l (i; j)g;

SfStripR;l(i; j)g; SfStripR;l (i; j)g

� H Y [i; j]jY fPastR;l (i; j)g; SfStR;l (i; j)g : (6)

The equality comes from the Markov property, namely, that Y [i; j] is
independent of

SfStripR;l (i; j)g n SfStripR;l(i; j)g

and

Y fPastR;l (i; j)g n Y fPastR;l(i; j)g

given SfStripR;l(i; j)g, and the inequality comes from the fact that
conditioning reduces entropy. Following the same line of reasoning,
we can show that

H Y [i; j]jY fPastR;l(i; j)g; SfStripR;l(i; j)g

� H Y [i; j]jY fPastR;l(i; j)g; S StripR;l (i; j) ;

form = 3; 4 (7)
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where l3 = [l1; l2; l3 +�3; l4]; l4 = [l1; l2; l3; l4 +�4], and �3;�4

are positive integers. The same conclusion can be reached for the lower
bound when the column-by-column ordering is used.

Next we use Lemma 2.2 to derive a lower bound on the convergence
rate of the bounds.

Theorem 2.2: For a stationary two-dimensional hidden Markov
field Y , a lower bound on the convergence rate of HU1

�;l and HL1
�;l

is O(1=lmin), where lmin = minfl1; l3; l4g for �= R and lmin =
minfl1; l2; l3g for �= C .

Proof: We use the bounds obtained with the ordering �= R as
the example. We order the elements in the set Y f(i; j)[PastR;l(i; j)g
row by row beginning from the upper left corner (i � l1; j � l3). We
then convert this two-dimensional set to a one-dimensional sequence
YS of (l3 + l4 + 1)l1 + l3 + 1 elements, with YS corresponding to
Y [i� l1; j� l3] and YS corresponding to Y [i; j]. Now
the chain rule can be applied to the joint entropy

H(Y [i; j]; Y fPastR;l(i; j)g)

=

(l +l +1)l +l +1

m=1

H YS Y
S

S : (8)

Following the same line of reasoning as in Section II-A, we can derive
an alternative upper and lower bound on the entropy rate H(Y)

(l +l +1)l +l +1
m=1 H YS Y

S

S ; SfStripR;l(i; j)g

(l3 + l4 + 1)l1 + l3 + 1

� H(Y)

�

(l +l +1)l +l +1
m=1 H YS Y

S

S

(l3 + l4 + 1)l1 + l3 + 1
:

We further note that

(l +l +1)l +l +1
m=1 H YS Y

S

S

(l3 + l4 + 1)l1 + l3 + 1

�

(l +l +1)l +l +1
m=1 H YS Y

S

S ; SfStripR;l(i; j)g

(l3 + l4 + 1)l1 + l3 + 1

=
1

(l3 + l4 + 1)l1 + l3 + 1

� I(SfStripR;l(i; j)g;Y [i; j]; Y fPastR;l(i; j)g)

�
[n1(n2 + l3 + l4) + n2(2l1 � 1)] log jX j

(l3 + l4 + 1)l1 + l3 + 1
� O

1

ln
; (9)

where ln = minfl1; l3 + l4g. The inequality comes from the fact
that the mutual information is upper-bounded by the source entropy.
As l ! 1, the difference between the bounds goes to zero. Utilizing
Lemma 2.2, we can show that

H(Y [i; j]jY fPastR;l (i; j)g) � H YS Y
S

S

and

H(Y [i; j]jY fPastR;l (i; j)g; SfStripR;l (i; j)g)

� H YS Y
S

S ; S StripR;l(i; j)

for every m satisfying 1 � m � (l3 + l4 + 1)l1 + l3 + 1, where
l0 = [l1; l2; l

0

3; l
0

4] with l
0

3 > l3 + l4 and l04 > l3 + l4. Therefore, the
convergence rate ofHU1

�;l andHL1
�;l is no slower than O( 1

l
).

For certain channel models, we conjecture that these bounds actually
converge exponentially fast. In Section V, we will see that for the 2 � 2

channel transfer function used in the simulation, we can obtain fairly
tight upper and lower bounds with a small rectangular array.

C. Computing the SIR Bounds

1) Monte Carlo Approach: The bounds derived in Section II-A
convert the problem of estimating the entropy of a large two-dimen-
sional array to the problem of estimating conditional entropies over a
smaller array. As suggested in [6], the conditional entropy

h(AjB) = �E[logP (ajb)]

can be estimated by � 1
N

N

k=1 logP (a(k)jb(k)); where a(k); b(k) are
the kth realizations of A andB, respectively. By the law of large num-
bers, the estimate converges to h(AjB) with probability 1 as N !
1. Therefore, we simulate the channel N times, each time with i.i.d.
channel inputs fx[i; j]g; generating the corresponding channel outputs
fy[i; j]g on a small rectangular array. For each of these two-dimen-
sional realizations, we calculate the conditional probabilities needed to
estimate the conditional entropies above. The calculation of the condi-
tional probability P (AjB) is, in turn, converted to the calculation of
the joint probability P (A;B) and the probability P (B).
Without loss of generality, we will consider the estimation of

H(Y [i; j]jY fPastC;l(i; j)g) and

H Y [i; j]jY fPastC;l(i; j)g; SfStripC;l(i; j)g

only in the remainder of this section. If the ordering is �= R, one can
consider column vectors instead and follow the same procedure. We
also assume that the inputs are i.i.d., equiprobable binary symbols.
In order to compute the joint probability of the two-dimensional ar-

rays, we adapt the technique proposed in [6]–[8] for one-dimensional
sequences, treating each row vector Y �i as a variable and calculating
the joint probabilityP (Y �i�l ; Y

�

i�l +1; . . . ; Y
�

i+l ) row by row, using
the forward recursion of the BCJR algorithm.
Since each row vector is considered as a single variable, the number

of states for each variable increases exponentially as the number of
columns in the array increases. Therefore, this numerical scheme can
only be used to calculate the probability of two-dimensional arrays with
relatively few columns. This limitation, in turn, requires that the two-
dimensional channel impulse response have a small region of support.

2) Computing the Upper Bound: For the upper bound on H(Y),
we compute the conditional probability of P (y[i; j]jyfPastC;l(i; j)g)
by calculating P (y[i; j]; yfPastC;l(i; j)g) and P (yfPastC;l(i; j)g),
and then taking the quotient of the two.
For r < i, the state information that corresponds to the rth row

Y �r is

Sr = Xr;j

r�n +2;j�l �n +1:

Applying the forward recursion of the BCJR algorithm, we have

P y�(i�l )!r; Sr = q

=
q )q

P y�(i�l )!(r�1); Sr�1 = q0 P y�
r
jSr = q; Sr�1 = q0

� P (Sr = qjSr�1 = q0) (10)

where y�(i�l )!r
= fy�

i�l
; . . . ; y�

r
g, and q0 ) q denotes the event

that state Sr�1 = q0 can transition to Sr = q with nonzero probability.
When q0 ) q, the conditional probability

P (Sr = qjSr�1 = q0) =
1

2l +n
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since the inputs are i.i.d., equiprobable binary symbols. The probability
P (y�

r
jSr = q; Sr�1 = q0) admits a joint Gaussian distribution

P (y�
r
jSr = q; Sr�1 = q

0) =
1

(2��2)(l +1)=2

� exp �
1

2�2

j

m=j�l

y[r;m]

�

n �1

p=0

n �1

s=0

h[p; s]x[r � p;m� s]

2

:

The initial condition of the recursion is

P y
�

(i�l )!(i�l ); Si�l = q

=
q )q

P y
�

i�l
jSi�l = q; Si�l �1 = q

0

� P (Si�l = qjSi�l �1 = q
0)P (Si�l �1 = q

0)

=
1

2(l +n )(n �1)

1

(2��2)

� exp �
1

2�2

j

m=j�l

y[i� l1;m]

�

n �1

p=0

n �1

s=0

h[p; s]x[i� l1 � p;m� s]

2

where

P (Si�l �1 = q
0) =

1

2(l +n )(n �1)
:

The difference between the calculation of P (y[i; j]; yfPastC;l(i; j)g)
and that of P (yfPastC;l(i; j)g) arises from the difference between
the sets of the outputs in the ith row. For P (y[i; j]; yfPastC;l(i; j)g),
the ith row consists of the elements Y i;j

i;j�l while Y [i; j] is excluded
from that row in the calculation of P (yfPastC;l(i; j)g). We only need
to make a minor modification of the recursive formula (10) to accom-
modate this difference. When r > i, each row only has l3 elements
Y
r;j�1
r;j�l . Equation (10) can be modified in the same way.
Finally, we obtain the joint probability P (y[i; j]; yfPastC;l(i; j)g)

and the probability P (yfPastC;l(i; j)g), namely

P (y[i; j]; yfPastC;l(i; j)g)

=
q

P (y[i; j]; yfPastC;l(i; j)g; Si+l = q)

and

P (yfPastC;l(i; j)g) =
q

P (yfPastC;l(i; j)g; Si+l = q):

To increase numerical accuracy, a normalization scheme proposed in
[6] may be applied.

3) Computing the Lower Bound: The calculation of the lower
bound

H Y [i; j]jY fPastC;l(i; j)g; SfStripC;l(i; j)g

is similar to that of the upper bound. The state information
SfStripC;l(i; j)g is

SfStripC;l(i; j)g

= X L
i�l ;j
i�l �n +1;j�l �n +1 [ L

i+l �n ;j�l
i�l +1;j�l �n +1

[Li+l ;j�1
i+l �n +1;j�l �n +1 :

We again calculate the joint probability row by row with the following
initial condition:

P (Si�l �1 = q) =
1; if q = X

i�l �1;j
i�l �n +1;j�l �n +1

0; else.
(11)

The recursion is similar to (10) except that we need to take care of
the additional state information contained in SfStripC;l(i; j)g. That
is, each row vector in the calculation of the forward recursion includes
both the channel output in that row and the additional state informa-
tion. For every row r in the array, there is additional state information
from X

r;i�l
r;i�l �n +1. For rows i � l1 to i � l1 + n1 � 1 and rows

i + l2 � n1 + 1 to i + l2, the effects of X
i�l ;j
i�l �n +1;j�l �n +1 and

X
i+l ;j�1
i+l �n +1;j�l �n +1 also need to be considered, respectively. Be-

sides, we still need to pay special attention to the difference of the two
sets

fy[i; j]; yfPastC;l(i; j)g; sfStripC;l(i; j)gg

and

fyfPastC;l(i; j)g; sfStripC;l(i; j)gg

beginning from the ith row when calculating

P (y[i; j]; yfPastC;l(i; j)g; sfStripC;l(i; j)g)

and

P (yfPastC;l(i; j)g; sfStripC;l(i; j)g):

Although there are some subtle details in the lower bound estimation,
the modification of the BCJR recursion formula is rather straightfor-
ward.
Since the bounds in Section II-A are given for both orders, we can

calculate two upper bounds and two lower bounds to make the overall
bounds tighter, if the computation in each order is feasible. In some
cases, we can only calculate the bound for a specific ordering due to
complexity constraints. For example, we can only calculate the bounds
for the column-by-column ordering if n1 is small, but n2 is large.
We also note that if the impulse response is symmetric, i.e., h[i; j] =
h[j; i], it is sufficient to calculate only one of the two conditional en-
tropies in (5) for the upper and the lower bounds.

III. AN ALTERNATIVE UPPER BOUND

As shown in the preceding section, the modified BCJR algorithm al-
lows us to calculate the probability of an output array whose size can be
extended in one dimension, but not both, since the modified algorithm
is still one-dimensional in nature. Thus, it only allows us to compute the
symmetric information rate for a channel with a small support region.
This constraint motivates us to search for other approaches to further
reduce the computational complexity, albeit at the cost of weakening
the bound.
In this section, we present an alternative upper bound which relies

upon an auxiliary ISI channel in the evaluation of the upper bound
on the channel output entropy rate. We have freedom in selecting the
memory length and the dimensionality of this auxiliary channel, pa-
rameters that determine the complexity of this approach. This upper
bound is an extension of the upper bound proposed in [19] for the
evaluation of the mutual information rate of one-dimensional ISI chan-
nels. The main differences between the upper bound here and that in
[19] are the following. First, the upper bound here is for the output en-
tropy rate of a two-dimensional ISI channel, while [19] focuses on the
upper-bounding of the mutual information rate of a one-dimensional
channel. We therefore have more freedom in choosing the auxiliary
channel model, which can be either one-dimensional or two-dimen-
sional. Second, we use the conditional probability of a finite sequence
(in the case of a one-dimensional auxiliary channel model) or finite
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array (in the case of a two-dimensional auxiliary channel model) in-
stead of the joint probability of a very long sequence or large array.

Theorem 3.1: For a stationary two-dimensional random field Y , an
upper bound on its entropy rate is

H(Y) � H
U2
�;l

where

H
U2
�;l =

1

�1

� � �
1

�1

�p(y[i; j]; yfPast�;l(i; j)g)

� log q(y[i; j]jyfPast�;l(i; j)g)dy

and q(y[i; j]jyfPast�;l(i; j)g) is an arbitrary conditional probability
distribution.

Proof: The proof combines the proof technique in [19] and The-
orem 2.1. It is clear that

H
U1
�;l �H

U2
�;l = �

1

�1

� � �
1

�1

p(y[i; j]; yfPast�;l(i; j)g)

� log
p(y[i; j]jyfPast�;l(i; j)g)

q(y[i; j]jyfPast�;l(i; j)g)
dy

= �D(p(Y [i; j]jY fPast�;l(i; j)g)k

q(Y [i; j]jY fPast�;l(i; j)g)) � 0: (12)

Combining (12) and Theorem 2.1, we can obtain the upper bound.

The proof shows that to get a tight upper bound, we need
to choose a large array size (i.e., the elements in l should
be large), and q(Y [i; j]jY fPast�;l(i; j)g) should approximate
p(Y [i; j]jY fPast�;l(i; j)g) as closely as possible.

Theorem 3.1 converts the problem of calculating the condi-
tional probability p(Y [i; j]jY fPast�;l(i; j)g) of a two-dimensional
channel output array to that of calculating the conditional probability
q(Y [i; j]jY fPast�;l(i; j)g) of an array generated by an arbitrary
source. It gives us the freedom to explore various approaches in
selecting the source. The most promising one proposed by Arnold et
al. [19] introduces the concept of an auxiliary channel. The source is
assumed to be the output of an auxiliary one-dimensional ISI channel.
If the divergence of the corresponding probability distribution and the
distribution of the original channel output is small, it will be a good
bound. If we apply the auxiliary channel approach, the computation
procedure is as follows.

1. Choose the auxiliary ISI channel impulse response.
2. Generate an output array fy[i; j]; yfPast�;l(i; j)gg from the

original two-dimensional ISI channel model with i.i.d channel
input. Calculate � log q(y[i; j]jyfPast�;l(i; j)g) assuming
that the array was generated from the auxiliary channel with the
same kind of i.i.d. input.

3. Repeat the same process N times and calculate the average of
the N realizations of � log q(y[i; j]jyfPast�;l(i; j)g).

We have two classes of auxiliary channels to choose from—one-di-
mensional auxiliary channels and two-dimensional auxiliary channels.
If we choose a two-dimensional auxiliary channel, the support of the
auxiliary channel impulse response and the size of the overall output
array must be small in order to limit the computational complexity.
Having specified these quantities, we can then choose the impulse re-
sponse coefficients and proceed according to the procedure specified
above. Since we use a different channel transfer function to approxi-
mate the output of the original channel, it is not clear how to choose
the auxiliary channel impulse response appropriately. One approach is
to use existing optimization techniques such as differential evolution
[20] to find the optimal auxiliary channel impulse response. Of course,
this incurs additional computational cost to find the upper bound. To

ensure a fair comparison, we normalize both the original and the aux-
iliary channel transfer functions to have unit energy; thus,

n �1

j=0

n �1

k=0

h
2[j; k] = 1:

Since the complexity of this approach still depends upon the output
array size, it is only applicable to channels with support regions that
are slightly larger than those that can be handled directly with the tech-
niques of Section II. With only a few columns in the output array, it
is very difficult to carry out the calculations for channels with large
support regions. In order to remove the constraint on the number of
columns in the output array, we instead consider the use of one-di-
mensional auxiliary channels. One immediate problem associated with
this approach is how to convert a two-dimensional array to a one-di-
mensional sequence in such a way that the critical statistical properties
of the array are captured by the sequence. To solve this problem, we
propose the use of the Peano–Hilbert plane-filling curve [21]. It has
the property that if a square is mapped to an interval, its subsquares
are mapped to the subintervals of that interval. Lempel and Ziv [22]
showed that a compression scheme for two-dimensional arrays which
uses the Peano–Hilbert curve combined with a compression scheme for
one-dimensional sequences [23] is asymptotically optimal. Their result
indicates that this dimensional transformation does preserve the statis-
tical properties that are essential for the purpose of entropy estimation.
The Peano–Hilbert curve exists only for squares with size 2k � 2k .

Unless we set l = [2k � 1; 0; 2k � 1; 0], this type of curve cannot
be directly applied in our calculation. However, for more gen-
eral rectangular arrays, one can construct related curves known as
pseudo-Peano–Hilbert curves (see, e.g., [24]). Although these curves
may lose some statistical information, we expect them to provide rea-
sonably accurate entropy estimates, as has been observed empirically.
Fig. 3 shows an example of using a pseudo-Peano–Hilbert curve to
convert a two-dimensional array fY [i; j]; Y fPastC;[7;8;7;l ](i; j)gg
into a one-dimensional sequence. One important requirement for
such a curve is that the output array element Y [i; j] should be at the
end of the curve. It is also desirable to have the curve differ from a
standard Peano–Hilbert curve only near the beginning, as it will then
lead to a conditional probability q(Y [i; j]jY fPast�;l(i; j)g) that
better approximates the actual conditional probability of the array.
In the figure, only the beginning portion of the curve differs from a
Peano–Hilbert curve, and the affected portion lies relatively far away
from the array element Y [i; j].
The auxiliary channel approach, as illustrated above with a pseudo-

Peano–Hilbert curve, makes it possible to explore additional trade-
offs between complexity and accuracy in estimating entropy rate upper
bounds for two-dimensional ISI channels, irrespective of the size of
the impulse response support region. Although this bound is likely to
be looser than that described in Section II for any given array size, the
pseudo-Peano–Hilbert curve enables us to compute the bound using a
much larger array. Since the alternative upper bound becomes tighter
when the array size is increased, it is possible that for certain two-di-
mensional ISI channels we can actually determine, for a specified com-
putational complexity, a tighter bound with this approach than with the
method of Section II by using a much larger array size. The alternative
approach is especially helpful when the ISI channel has a large impulse
response support region; in such a case, we simply cannot compute the
upper bound described in Section II due to the exponential growth in
complexity as a function of the support region size.
Finally, we mention two reasons for basing the upper bound on a

conditional probability, rather than on a joint probability over a very
large two-dimensional array, which would seem to be the natural di-
rect extension of the approach in [19]. First, it is not clear if the limit
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Fig. 3. Pseudo-Peano–Hilbert curve for the SIR upper bound calculation.

exists for such a two-dimensional joint probability. Arnold et al. listed
several sufficient conditions which guarantee the convergence of their
approach [25]. Unfortunately, our system does not satisfy these condi-
tions. Second, even if the limit does exist, the joint probability approach
may not provide much gain compared to the bound HU2

�;l. As will be
seen in Section V, the memory length of the one-dimensional auxiliary
channel will be a limiting factor on the tightness of the bound. The
accuracy of the joint probability bound would suffer a similar sort of
limitation.

One can also develop an alternative lower bound based on the aux-
iliary channel approach in [19]. However, it cannot be numerically es-
timated by the Monte Carlo approach, as we now discuss.

The auxiliary channel approach in [19] is applicable only to lower
bounds on the channel mutual information rate. Therefore, we must
first convert our lower bound on the channel output entropy rate to a
lower bound on the mutual information rate. We note that

H(Y [i; j]jY fPast�;l(i; j)g; SfStrip�;l(i; j)g; Sf(i; j)g)

= H(Y [i; j]jSf(i; j)g) = H(N )

where Sf(i; j)g is the state information for Y [i; j]. The first equality
comes from the Markov property, which implies that, given Sf(i; j)g,
the output element Y [i; j] is independent of any other channel output

or state information. Thus, a lower bound on the mutual information
rate of the two-dimensional ISI channel is

I(X ;Y) � I
L1
�;l

where

I
L1
�;l = I(Sf(i; j)g;Y [i; j]jY fPast�;l(i; j)g; SfStrip�;l(i; j)g):

Applying the technique in [19], we can show that

I
L2
�;l � I

L1
�;l � I(X ;Y)

where

I
L2
�;l =

sf(i;j)g;sfStrip (i;j)g

1

�1

� � �
1

�1

p(y[i; j]; yfPast�;l(i; j)gsf(i; j)g; sfStrip�;l(i; j)g)

� log
q(y[i; j]jsf(i; j)g)

q(y[i; j]jyfPast�;l(i; j)g; sfStrip�;l(i; j)g)
dy

�D(p(Sf(i; j)gjY fPast�;l(i; j)g; SfStrip�;l(i; j)g)k

q(Sf(i; j)gjY fPast�;l(i; j)g; SfStrip�;l(i; j)g))

and the distribution q( � ) comes from the auxiliary channel. Other
than the additional conditioning, the main difference between this
bound and the one in [19] is the second term. This new term
arises from the conditioning introduced in the original lower
bound in Section II-A. Without this conditioning, the two dis-
tributions p(Sf(i; j)g) and q(Sf(i; j)g) are the same, and the
second term is equal to 0. With the conditioning, the conditional
state distributions also depend on the underlying channel models
and are generally different. Thus, the second term becomes posi-
tive and needs to be evaluated numerically. While the distribution
q(Sf(i; j)gjY fPast�;l(i; j)g; SfStrip�;l(i; j)g) can be evaluated
by choosing an appropriate auxiliary channel to reduce the complexity,
the evaluation of p(Sf(i; j)gjY fPast�;l(i; j)g; SfStrip�;l(i; j)g) is
much more complex and cannot be simplified by use of the auxiliary
channel. This problem once again illustrates the difficulties inherent
in analyzing two-dimensional channels.

IV. EXTENSION TO d-DIMENSIONAL ISI CHANNELS

The bounds we have developed so far apply to two-dimensional ISI
channels. These results are in fact more general and can be extended to
d-dimensional ISI channels where d � 2, as we now briefly describe.
Given a d-dimensional space Zd, we consider a generalized lexico-

graphical order �� which we refer to as the permuted lexicographical
order with permutation vector �. The length-d vector � = [k1; . . . ; kd]
represents a permutation of the elements f1; 2; . . . ; dg. The ordering
of two points (t1; . . . ; td) and (t01; . . . ; t

0
d) with respect to �� is in-

duced by the standard d-dimensional lexicographical ordering of the
points (tk ; . . . ; tk ) and (t0k ; . . . ; t0k ). Specifically, (t1; . . . ; td) ��

(t01; . . . ; t
0
d) if (tk ; . . . ; tk ) precedes (t0k ; . . . ; t0k ) in the standard

d-dimensional lexicographical order. In total, there are d! possible or-
ders. When d = 2, there are two possible permutation vectors �R =
[1; 2] and �C = [2; 1]. It is easy to verify that the permuted lexico-
graphical order with permutation vector �R = [1; 2] corresponds to the
row-by-row order, and the permuted lexicographical order with permu-
tation vector �C = [2; 1] corresponds to the column-by-column order.
Let l be a nonnegative vector of length 2d. We denote by

Past� ;l(i1; . . . ; id) the subset of positions inside the d-dimen-
sional subspace defined by the 2d vertices (t1; . . . ; td) that precede
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Fig. 4. Upper and lower bounds on the SIR of the two-dimensional ISI channel h .

(i1; . . . ; id) according to the order ��, where tk = ik � l2k�1 or
tk = ik + l2k.

With this modified notation, we can see that Lemma 2.1 is appli-
cable to Zd, as was shown in [14]. Therefore, Theorem 2.1 follows
immediately. The only modification necessary relates to the defini-
tion of Strip

� ;l — rather than consist of one-dimensional rows and
columns on the boundary of a two-dimensional array; it instead consists
of (d � 1)-dimensional layers on the boundary of the d-dimensional
array Past� ;l(i1; . . . ; id). The convergence results remain valid and
the lower bound of the convergence rate is still O(1=lmin) where lmin

is the minimum of the li’s.
When d > 2, the computational complexity of the bounds in The-

orem 2.1 becomes enormous as we need to treat a (d � 1)-dimen-
sional layer as a single state in the application of the BCJR algorithm.
In this case, the alternative upper bound derived in Section III be-
comes much more feasible to compute. The Peano–Hilbert curve and
pseudo-Peano–Hilbert curves can be extended to Zd [21], [24], so we
can still obtain an upper bound with a one-dimensional auxiliary ISI
channel.

V. NUMERICAL RESULTS

In this section, we present numerical results for the upper and lower
bounds on the SIR of a two-dimensional ISI channel. We begin with a
channel impulse response of size 2 � 2, namely

h1 =
0:5 0:5

0:5 0:5
:

The coefficients of the impulse response are chosen to cause a signifi-
cant amount of ISI. In a channel with little ISI, we expect our bounds

to be tight. In choosing this impulse response, our intention is to test
the tightness of the bounds in a “worst case” scenario. The channel in-
puts are i.i.d., equiprobable Bernoulli samples over the input alphabet
f1;�1g; thus, each channel input symbol has energy Eb = 1. The
noise variance isN0=2. For eachEb=N0 point, the corresponding con-
ditional entropies are computed from 100000 output array realizations.
In particular, for the SIR upper bound, we calculate

min HU1
C;[7;7;3;0] �

1

2
log(�eN0); 1

using the approach described in Section II-C2. The SIR lower
bound computation uses the method of Section II-C3 to determine
HL1
C;[7;7;3;0] �

1
2
log(�eN0). In these calculations, we use the condi-

tional entropy corresponding to the output in the middle of the last
column, because the state information is expected to have the least
impact on the result, resulting in a lower bound closer to the upper
bound.
Fig. 4 shows the numerical results. It can be seen that, despite the

use of a relatively small sample array, the upper and lower bounds are
still very close, particularly at low signal-to-noise ratios. Themaximum
difference is approximately 0.05 bits per channel use. The discrepancy
at higher values of Eb=N0 reflects the larger impact of the ISI on the
conditional entropies and, therefore, on the resulting tightness of the
bounds. The small difference between the bounds based upon such a
small array suggests that the actual convergence rate of the bounds for
this channel may be faster than O(1=lmin). We conjecture that they
may converge exponentially fast, as in the case described in [18].
In the same figure, we also show the numerical results forHU2

C;[7;8;7;0]

when applied to this channel model. The results are obtained with one-
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Fig. 5. Upper bound on the SIR of the two-dimensional ISI channel h .

dimensional auxiliary ISI channels of memory length 4 and 6 respec-
tively, whose transfer functions are found via differential evolution.
The array size and the corresponding pseudo-Peano-Hilbert curve are
shown in Fig. 3. Although we almost double the size of the array, the
alternative upper bound is still looser than the other upper bound. Fur-
thermore, increasing the memory length only brings minor improve-
ment at relatively high signal-to-noise ratios. This indicates that we
need a one-dimensional auxiliary channel with much longer memory
to closely approximate the output of the target two-dimensional ISI
channel, even though the size of the two-dimensional impulse response
is only 2� 2. In this case, the increased array size cannot compensate
for the looseness of HU2

C;[7;8;7;0], underscoring the limitations of using
one-dimensional ISI channels to analyze two-dimensional systems.We
conclude that it is preferable to estimate the upper bound in Section 2
directly for this channel, as long as the complexity is acceptable.

However, for a two-dimensional channel whose transfer function
size is too large to allow numerical estimation ofHU1

�;l, the boundH
U2
�;l

does provide a way to estimate an upper bound on the SIR, although
the resulting bound may be loose. To illustrate this point, we estimate
the upper boundHU2

C;[7;8;7;0] on the SIR of a two-dimensional channel
with a 3 � 3 transfer function given by

h2 =
1p
10

0 1 1

1 2 1

1 1 0

:

This channel model is equivalent to one that arises in the context of a
two-dimensional optical storage system that records data on a hexag-
onal lattice [26]. In that system, the readback signal corresponding to
a specified position may contain interference from the six immediate

neighbors of the position. As noted earlier, the hexagonal lattice can
be mapped to a square lattice, and the transfer function above is equiv-
alent under this mapping to that of the system based upon the hexag-
onal lattice. Fig. 5 presents the numerical upper bound obtained with a
one-dimensional auxiliary ISI channel of memory length 4. Similar to
the previous figure, we obtain a useful upper bound (i.e., a bound less
than 1 bit/channel use) up to Eb=N0 = 3 dB.

VI. CONCLUDING REMARKS

We develop upper and lower bounds on the SIR of two-dimensional
finite-state ISI channels. These bounds are expressed in terms of condi-
tional entropies of channel output arrays. Their convergence properties
are analyzed. We also describe a method that can be used to compute
these conditional entropies when the array size is not too large. To relax
this constraint, we propose an alternative upper bound which uses an
auxiliary channel to explore more fully the possible tradeoffs between
the tightness of bounds and their computational complexity.
We then present numerical results for a channel with 2 � 2 im-

pulse response support, demonstrating that we can obtain fairly tight
bounds on the SIR using conditional entropies on an array which is
only a few times larger than the support of the impulse response. With
the same channelmodel, we show that the alternative upper boundHU2

�;l

is not as tight asHU1
�;l when the memory length of the one-dimensional

auxiliary channel is small. However, we also show that the alternative
approach does provide a feasible way to numerically estimate bounds
on the symmetric information rate for channels with large impulse re-
sponse support regions. We conclude that, despite the usefulness of the
upper and lower bounds derived here, further research is required to
develop improved, computable bounds on the SIR for general two-di-
mensional ISI channels.
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Piecewise Linear Conditional Information Inequality

František Matúš

Abstract—A new information inequality of non-Shannon type is proved
for three discrete random variables under conditional independence
constraints, using the framework of entropy functions and polymatroids.
Tightness of the inequality is described via quasi-groups.

Index Terms—Conditional independence, entropy function, information
inequality, polymatroid, quasi-group, Shannon entropy.

I. INTRODUCTION

The entropy function of a random vector (�i)i2N indexed by a finite
set N assigns to each subset I of N the Shannon entropy of the sub-
vector (�i)i2I . The notion depends on the base of logarithms occurring
in the entropy; our preference is given to the natural ones.
By basic properties of the Shannon entropy, an entropy function g

satisfies g(;) = 0, is nondecreasing, thus g(I) � g(J) for I � J ,
and submodular, g(I) + g(J) � g(I [ J) + g(I \ J) for I; J � N .
A pair (N; g) where g is a real function on the power set P(N) of N
that satisfies these three requirements is called a polymatroid with the
ground set N and rank function g [3], [2], [8], making usually no dif-
ference between a polymatroid and its rank function. Thus, real-valued
entropy functions are polymatroids [1]. Let us call a polymatroid en-
tropic if it is equal to the entropy function of a random vector taking a
finite number of values.
Theorem 1 below solves the problem which of the polymatroids

ag1 + bg2; a; b � 0, is entropic for two very special polymatroids
g1; g2 with a common three-element ground set.
A real function � on P(N), the Euclidean space containing entropy

functions, generates an information inequality if �(g) � 0 holds for
the entropic polymatroids. If the nonnegativity takes place even for all
polymatroids then the inequality is of Shannon type. First non-Shannon
type information inequalities appeared in [12], see also [10], [7]. If
�(g) � 0 holds only for the entropic polymatroids satisfying additional
constraints, usually on conditional independences among subvectors,
then the inequality is conditional. For non-Shannon type conditional
information inequalities see [11], [5].
One implication of Theorem 1 interprets as a non-Shannon type, con-

ditional, piecewise linear information inequality, see Remarks 1 and 2.
Tightness is discussed in Remark 3.
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