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In magnetic recording, a standard code architecture consists of an outer Reed–Solomon code in concatenation with an inner parity
code. The inner parity code is used to detect and correct common error events. Generally, a parity code with short block length performs
better, as multiple error events within one block and, consequently, miscorrection are less likely. In this paper, we study an inner code
that offers the same system performance as a parity code with very short block length, even as short as the symbol length (in bits) of the
outer Reed–Solomon code, but with higher code rate. This code is a tensor-product code, with a Bose–Chauduri–Hocquenghem (BCH)
code and a short parity code as constituent codes. The decoder for this code is not much more complex than the optimal decoder of
the baseline parity-coded channel; in fact, the only additional steps are Viterbi detection matched to the channel and decoding of the
BCH code.

Index Terms—BCH code, magnetic recording, parity code, Reed–Solomon code, tensor-product code.

I. INTRODUCTION

AN error-control code is employed in magnetic recording
to ensure data reliability. Reed–Solomon (RS) codes are,

by far, the most commonly used for this purpose. To further
improve the reliability, the RS code is often concatenated with
an inner code that helps to correct random errors. Distance-en-
hancing codes and parity codes are well-known examples. In
this paper, we will focus on schemes employing parity codes.

Despite performance benefits of short parity codes, their rate
penalty is severe. Hence, high-rate parity codes with a block
length on the order of 30 to 100 bits are often used. It is more
likely that such a code will miscorrect, and hence propagate,
errors. It is also more likely that multiple error events will occur
within one block and therefore go undetected.

To overcome these deficiencies, we propose the use of a
“tensor-product parity code” whose parity-check matrix is the
tensor product [5] of the parity-check matrices of a short parity
code and a BCH code. As we will show, this code has the same
performance as a short parity code, but with higher rate.

II. SINGLE-PARITY CODES

The channel is assumed to have a Lorentzian step response
with channel bit density . The read signal is
corrupted by additive white Gaussian noise (AWGN) with
two-sided power spectral density . The signal-to-noise ratio
(SNR) is defined to be . The equalizer is a
finite-impulse-response (FIR) filter with target polynomial

.
Using a Viterbi detector matched to the target, we collected

error events at dB, corresponding to a bit error rate
of . Table I presents the number of error events of in-
creasing length found in our simulation. The most common error
events for this channel model are and , which have odd
Hamming weight. Thus, a single-parity-check code can detect
isolated occurrences of these error events. This observation has
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TABLE I
NUMBER OF ERROR EVENTS BASED ON LENGTH. A TOTAL OF 1000 SECTORS

ARE SIMULATED FOR EACH CODING SCHEME. THE NUMBERS OF BITS PER

SECTOR FOR UNCODED, RATE-30=31, AND RATE-10=11 PARITY CODES

ARE 4680, 4692, and 4686, RESPECTIVELY

inspired several coding schemes that involve parity codes [1],
[3].

An optimal sequence decoder for a parity-coded system is
a Viterbi detector that combines channel states and code states
[7]. Systems incorporating multiple-parity codes often use post-
processing techniques to reduce decoder complexity while re-
taining near-optimal performance [7]. The systems considered
in this paper, however, incorporate only single-parity codes, so
optimal decoders are used in simulations.

Table I shows the number of error events of increasing length
in parity-coded channels using single-parity codes of rate
and . We see that, in comparison to the uncoded case, the
rate- parity-coded channel has many more error events of
length 8 or higher, whereas, when the rate- code is used,
there are fewer error events than in the uncoded system at almost
all event lengths. This translates into a larger sector error rate for
the higher rate system.

III. TENSOR-PRODUCT PARITY CODE SYSTEM

The results in the previous section show that shorter parity
codes can improve performance at the cost of a reduced code
rate. In this section, we study a modified parity-coding scheme
that, with less redundancy, achieves the performance of a short
parity code.
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A. Code Construction

Let be an parity code and let be an
binary linear code such that divides . We consider the
code with the following properties.

• is an binary linear code such that
and .

• Suppose we divide a codeword of into disjoint blocks of
length , and compute the parity bits for each block using

. The parity bits of all blocks must form a valid codeword
of .

We construct a parity-check matrix for the code , as fol-
lows. We assume that the parity-check matrix of has the form

, where is an matrix and is
the identity matrix of size . Let denote the th row
of . Now, let be a parity-check matrix of , and
define to be the matrix whose th row is given by the vector
in (1), shown at the bottom of the page. It can be shown that the
code defined by the parity-check matrix has the properties
specified above.

When is a single-parity code, the code is a special case
of a tensor-product code [5] and an error-location code [6], [4].
In the general case, the code can be viewed as a generalized
tensor-product code [2]. We therefore refer to as a tensor-
product parity code. The message length of is called the
block size of .

The tensor-product parity code can be concatenated with an
RS outer code, but we will, instead, combine the codes by taking
their common subspace. More precisely, let be an
RS code over GF such that , the codeword length of
the tensor-product parity code. Let be a binary parity-check
matrix of . (Thus, is a matrix.) Then
the combined code is defined by the following parity-check
matrix:

(2)

In a slight abuse of terminology, we will call the inner code
and the outer code.

B. An Example

Let be the single-parity code. The
parity-check matrix for is . Let be the
(7,4) Hamming code. A parity-check matrix for is

The parity-check matrix of the tensor-product parity code is

TABLE II
POSSIBLE CHOICES OF BCH CODES AND RS CODES WITH TOTAL

REDUNDANCY OF APPROXIMATELY 580 BITS

Let be a binary form of the (7,5) RS code over GF(8). Then
is a (21,15) binary code. The parity-check matrix of the

combined code is computed by appending to a parity-check
matrix of as in (2). The combined code can be made system-
atic by applying suitable row operations to .

C. Encoding

For simplicity, we assume that is a single-parity code. The
following encoding method can be easily extended to the gen-
eral case. First, observe that if is in the systematic form as
in the above example, columns of
form the identity matrix. Thus, we can use directly to com-
pute the redundancy bits and insert them at the corresponding
positions. To be more efficient, take information bits and
divide them into blocks. Compute the parity of each block
and encode the parity using . Take the rest of the informa-
tion bits ( bits) and divide them into
blocks. Compute the parity of each block. The redundancy bits
of the tensor-product parity code are the modulo-2 sum of these
parity bits and the parity part of .

D. Decoding

Decoding of the tensor-product parity-coded system begins
with detection of the recorded bits using the Viterbi algorithm
matched to the channel only. Then, the parity bits are computed
using the encoder for , and the resulting word is decoded
using the decoder for . The corrected parity bits are provided
to a Viterbi detector reflecting channel states and parity code
states, and the detector output sequence is decoded by the outer
decoder.

IV. PERFORMANCE COMPARISON

Consider the (468, 410) RS code over GF(1024). This code
has 580-bit redundancy and can correct 29 symbol errors. To
construct a tensor-product parity code with a similar code rate,
we choose the codes as follows.

Fix to be the (11, 10) single-parity code; that is, the block
size is 10. Let be a RS code with error-correcting
capability . Choose to be a bi-
nary BCH code such that the total redundancy

is close to 580 bits. Denote the error-correcting capa-
bility of the BCH code by . Table II shows some possible
combinations of and that have comparable redundancy.

(1)
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Fig. 1. Failure rates at SNR = 20 dB of the outer RS code and the inner
BCH code as a function of their error-correcting capabilities (t and t ).
The block size is fixed to be 10.

Fig. 2. Analytic sector error rates at SNR = 20 dB of the tensor-product
parity code scheme and the concatenation of a parity code with an RS code.
The block size of the tensor-product parity code is varied from 10 to 40. For the
concatenation scheme, the rate of the parity code is varied from 10=11 to 70=71.

To choose the best combination, we fix the SNR at 20 dB
and estimate the sector error rate (SER) of each combination
by an analytical method based on a block multinomial model
[3]. The failure rates for inner code and outer code are plotted
in Fig. 1. The SER of the combined code is approximately the
maximum of these two failure rates. The figure indicates that the
17-error-correcting RS code and the 29-error-correcting BCH
code are the best combination at this SNR. The combined code
is a (4680, 4097) code.

Next, we vary the block size and estimate the SER. The
result is plotted in Fig. 2. Also shown is the SER of the con-
catenation of a parity code and an RS code, whose total redun-
dancy is approximately 580 bits. For the concatenation scheme,
a high-rate parity code is preferred since a low-rate parity code
only allows a weak RS code. In contrast, the tensor-product
parity code scheme gives lower SER when it has a smaller block
size. When the block size is large, the SER is comparable to the
concatenation scheme since the best inner code is the trivial
code with one codeword. (When has only the zero codeword,
the tensor-product parity code becomes a single-parity code.)

Finally, we select the best parameters for the concatenation
scheme and the tensor-product parity code scheme and compare
their performance to that of the (468, 410) RS code. Analytic re-
sults and computer simulation results are shown in Figs. 3 and 4,
respectively. We see that the tensor-product parity code scheme
has a gain of approximately 0.3 dB over the RS code and al-
most 0.2 dB over the concatenation scheme at .
In general, the slope of the failure rate of a code is steeper if
the code is stronger. Thus, the SER of the RS code falls more
rapidly than that of the concatenation scheme; they eventually
cross near dB. For dB, the SER of the
tensor-product parity code scheme is dominated by the failure
rate of the inner code. Hence, in this region, the SER slope is

Fig. 3. Analytic sector error rates of the (468, 410) RS code, the concatenation
of the rate-30=31parity code and the (454, 410) RS code, and the tensor-product
parity code scheme with block size 10, (468, 225) inner BCH code, and
(468, 434) outer RS code.

Fig. 4. Simulated sector error rates of the three codes described in Fig. 3. The
dashed lines are the analytic sector error rates shown in Fig. 3.

comparable to that of the RS-only scheme. For
dB, the failure rate of the outer code becomes dominant and
the slope changes substantially. (The reason that this change oc-
curs near dB is that we choose the inner and outer
codes based on the SER at dB.) Although not shown
here, the SER performance obtained using double-parity codes
showed no additional improvement.
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