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Abstract—We consider a windowed decoding scheme for LDPC
convolutional codes that is based on the belief-propagation (BP)
algorithm. We discuss the advantages of this decoding scheme and
identify certain characteristics of LDPC convolutional code ensem-
bles that exhibit good performance with the windowed decoder.
We will consider the performance of these ensembles and codes
over erasure channels with and without memory. We show that
the structure of LDPC convolutional code ensembles is suitable to
obtain performance close to the theoretical limits over the mem-
oryless erasure channel, both for the BP decoder and windowed
decoding. However, the same structure imposes limitations on the
performance over erasure channels with memory.

Index Terms—Belief propagation, convolutional codes, decoding
thresholds, erasure channels, iterative decoding, low-density
parity-check codes, stopping sets, windowed decoding.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes, although
introduced in the early 1960’s [4], were established as

state-of-the-art codes only in the late 1990’s with the applica-
tion of statistical inference techniques [5] to graphical models
representing these codes [6], [7]. The promising results from
LDPC block codes encouraged the development of convolu-
tional codes defined by sparse parity-check matrices.
LDPC convolutional codes (LDPC-CC) were first introduced

in [8]. Ensembles of LDPC-CC have several attractive char-
acteristics, such as thresholds approaching capacity with be-
lief-propagation (BP) decoding [9], and BP thresholds close to

Manuscript received October 21, 2010; revised October 25, 2011; accepted
October 27, 2011. Date of publication November 23, 2011; date of current ver-
sion March 13, 2012. The work of A. R. Iyengar is supported by the National
Science Foundation under the Grant CCF-0829865. The material in this paper
was presented in part at the 2010 IEEE Information Theory Workshop, Cairo,
Egypt [1]; the 2010 IEEE International Communications Conference [2]; and
at the 2010 International Symposium on Turbo Codes and Iterative Information
Processing [3].
A. R. Iyengar and P. H. Siegel are with the Department of Electrical and Com-

puter Engineering and the Center for Magnetic Recording Research, University
of California, San Diego, La Jolla, CA 92093 USA (e-mail: aravind@ucsd.edu;
psiegel@ucsd.edu).
M. Papaleo is with Qualcomm Inc., San Diego, CA USA (e-mail: mpa-

paleo@qualcomm.com).
J. K. Wolf, deceased, was with the Department of Electrical and Computer

Engineering and the Center for Magnetic Recording Research, University of
California, San Diego, La Jolla, CA 92093 USA.
A. Vanelli-Coralli and G. E. Corazza are with the University of Bologna,

DEIS-ARCES, 2-40136 Bologna, Italy (e-mail: avanelli@arces.unibo.it; geco-
razza@arces.unibo.it).
Communicated by I. Sason, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2011.2177439

the maximum a posteriori (MAP) thresholds of random ensem-
bles with the same degree distribution [10]. Whereas irregular
LDPC block codes have also been shown to have BP thresh-
olds close to capacity [11], the advantage with convolutional
counterparts is that good performance is achieved by relatively
simple regular ensembles. Also, the construction of finite-length
codes from LDPC-CC ensembles can be readily optimized to
ensure desirable properties, e.g., large girths and fewer cycles,
using well-known techniques of LDPC code design. Most of
these attractive features of LDPC-CC are pronounced when the
blocklengths are large. However, BP decoding for these long
codes might be computationally impractical. By implementing
a windowed decoder, one can get around this problem.
In this paper, a windowed decoding scheme brought to

the attention of the authors by Liva [12] is considered. This
scheme exploits the convolutional structure of the parity-check
matrix of the LDPC-CC to decode nonterminated codes, while
maintaining many of the key advantages of iterative decoding
schemes like the BP decoder, especially the low complexity
and superior performance. Note that although similar decoding
schemes were proposed in [13] and [14], the aim in these
papers was not to reduce the decoding latency or complexity.
When used to decode terminated (block) LDPC-CC, the win-
dowed decoder provides a simple, yet efficient way to trade
off decoding performance for reduced latency. Moreover, the
proposed scheme provides the flexibility to set and change the
decoding latency on the fly. This proves to be an extremely
useful feature when the scheme is used to decode codes over
upper layers of the internet protocol.
Our contributions in this paper are to study the requirements

of LDPC-CC ensembles for good performance over erasure
channels with windowed decoding (WD). We are interested
in identifying characteristics of ensembles that present a good
performance-latency trade-off. Further we seek to find such
ensembles that are able to withstand not just random erasures
but also long bursts of erasures. We reiterate that we will be
interested in designing ensembles that have the aforementioned
properties, rather than designing codes themselves. Although
the channels considered here are erasure channels, we note that
the WD scheme can be used when the transmission happens
over any channel.
This paper is organized as follows. Section II introduces

LDPC-CC and the notation and terminology that will be used
throughout the paper. In Section III we describe the decoding
algorithms that will be considered. Along with a brief descrip-
tion of the belief-propagation algorithm, we will introduce
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the windowed decoding scheme that is based on BP. Possible
variants of the scheme will also be discussed. Section IV
deals with the performance of LDPC-CC on the binary erasure
channel. Starting with a short recapitulation of known results
for BP decoding, we will discuss the asymptotic analysis of
the WD scheme in detail. Finite-length analysis will include
performance evaluation using simulations that reinforce the
observations made in the analysis. For erasure channels with
memory, we analyse LDPC-CC ensembles both in the asymp-
totic setting and for finite lengths in Section V. We also include
simulations illustrating the good performance of codes derived
from the designed protographs over the Gilbert-Elliott channel.
Finally, we summarize our findings in Section VI.

II. LDPC CONVOLUTIONAL CODES

In the following, we will define LDPC-CC, give a construc-
tion starting from protographs, and discuss various ways of
specifying ensembles of these codes.

A. Definition

A rate binary, time-varying LDPC-CC is defined
as the set of semi-infinite binary row vectors , satisfying

, where is the parity-check matrix

...
. . .

...
. . .
. . .

. . .
. . .

...
. . .
. . .
. . .

(1)

and is the semi-infinite all-zero row vector. The elements
, in (1) are binary matrices of size

that satisfy [15]
• , for and , ;
• such that ;
• has full rank .

The parameter is called the memory of the code and
is referred to as the constraint length. The first two

conditions above guarantee that the code has memory and
the third condition ensures that the parity-check matrix is full-
rank. In order to get sparse graph codes, the Hamming weight
of each column of must be very low, i.e., .
Based on the matrices , LDPC-CC can be classified as
follows [8]. An LDPC-CC is said to be periodic if

and for some . When
, the LDPC-CC is said to be time-invariant, in which

case the time dependence can be dropped from the notation,
i.e., . If neither of these
conditions holds, it is said to be time-variant.

Terminated LDPC-CC have a finite parity-check matrix

...
. . .

...
. . .
. . .
. . .

...

where we say that the convolutional code has been terminated
after instants. Such a code is said to be regular if
has exactly ’s in every column and ’s in every row ex-
cluding the first and the last rows, i.e., ignoring the
terminated portion of the code. It follows that for a given , the
parity-check matrix can be made sparse by increasing or or
both, leading to different code constructions [16]. In this paper,
we will consider LDPC-CC characterized by large and small
. As in [9], we will focus on regular LDPC-CC which can be

constructed from a protograph.

B. Protograph-Based LDPC-CC

A protograph [17] is a relatively small bipartite graph from
which a larger graph can be obtained by a copy-and-permute
procedure—the protograph is copied times, and then the
edges of the individual replicas are permuted among the
replicas to obtain a single, large bipartite graph referred to as
the derived graph. We will refer to as the expansion factor.
is also referred to as the lifting factor in the literature [11].

Suppose the protograph possesses variable nodes (VNs) and
check nodes (CNs), with degrees , and

, respectively. Then the derived graph will
consist of VNs and CNs. The nodes
of the protograph are labeled so that if the VN is connected
to the CN in the protograph, then in a replica can only
connect to one of the replicated ’s.
Protographs can be represented by means of an

biadjacency matrix , called the base matrix of the protograph
where the entry represents the number of edges between
CN and VN (a nonnegative integer, since parallel edges
are permitted). The degrees of the VNs (CNs respectively) of
the protograph are then equal to the sum of the corresponding
column (row, respectively) of . A regular protograph-
based code is then one with a base matrix where all VNs have
degree and all CNs, excluding those in the terminated portion
of the code, have degree .
In terms of the base matrix, the copy-and-permute opera-

tion is equivalent to replacing each entry in the base ma-
trix with the sum of distinct size- permutation matrices.
This replacement is done ensuring that the degrees are main-
tained, e.g., a 2 in the matrix is replaced by a matrix

where and are two permutation ma-
trices of size chosen to ensure that each row and column of
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has two ones. The resulting matrix after the above trans-
formation for each element of , which is the biadjacency ma-
trix of the derived graph, corresponds to the parity-check matrix
of the code. The derived graph therefore is nothing but the

Tanner graph corresponding to the parity-check matrix of the
code.
For different values of the expansion factor , different

blocklengths of the derived Tanner graph can be achieved,
keeping the original graph structure imposed by the protograph.
We can hence think of protographs as defining code ensembles
that are themselves subsets of random LDPC code ensembles.
We will henceforth refer to a protograph and the ensemble
it represents interchangeably. This means that the density

evolution analysis for the ensemble of codes represented by
the protograph can be performed within the protograph. Fur-
thermore, the structure imposed by a protograph on the derived
graph can be exploited to design fast decoders and efficient
encoders. Protographs give the code designer a refined control
on the derived graph edge connections, facilitating good code
design.
Analogous to LDPC block codes, LDPC-CC can also be de-

rived by a protograph expansion. As for block codes, the parity-
check matrices of these convolutional codes are composed of
blocks of size- square matrices. We now give two construc-
tions of regular LDPC-CC ensembles.
1) Classical Construction: We briefly describe the con-

struction introduced in [18]. For convenience, we will refer to
this construction as the classical construction of regular
LDPC-CC ensembles. Let be the greatest common divisor
(gcd) of and . Then there exist positive integers and
such that , , and . Assuming
we terminate the convolutional code after instants, we obtain
a block code, described by the base matrix

...
. . .

...
. . .
. . .
. . .

...

where is the memory of the LDPC-CC and
are submatrices that are all identical and have

all entries equal to 1. Note that an LDPC-CC constructed from
the protograph with base matrix could be time-varying
or not depending on the expansion of the protograph into the
parity-check matrix.
The protograph of the terminated code has VNs

and CNs. The rate of the LDPC-CC is
therefore

(2)

where is the rate of the nonterminated code. Note
that and the LDPC-CC has a regular degree distri-
bution [9] when . We will assume that the parameters
satisfy and so that the rates and
of the nonterminated and terminated codes, respectively, are in
the proper range.
The classical construction was proposed in [18] and it pro-

duces protographs for some regular LDPC-CC ensem-
bles. However, not all regular LDPC-CC can be con-
structed, e.g., becomes zero if and are relatively prime
and consequently the resulting code has no memory. In [9], the
authors addressed this problem by proposing a construction rule
based on edge spreading. We denote an ensemble of reg-
ular LDPC-CC constructed as described here as with
the subscript for “classical” construction.
2) Modified Construction: We propose a modified construc-

tion that is similar to the classical construction except that we do
not require that , i.e., the memory of the LDPC-CC
is independent of its degree distribution. We further disregard
the requirement that the matrices are identical and have only
ones, i.e., parallel edges in the protograph are allowed. How-
ever, the sizes of the submatrices will still
be .Wewill denote a regular LDPC-CC ensemble
constructed in this manner as , with subscript for
“modified” construction. Note that the rate of the en-
semble is still given by (2). Further, the independence of the
code memory and the degree distribution allows us to construct
LDPC-CC even when and are co-primes. This is illustrated
in the following example.

Example 1: Let and . Clearly, a classical con-
struction of this ensemble is not possible. However, with the
modified construction, we can set and define the en-
semble given by

with design rate for a termination length .
Note that these submatrices are by no means the only possible
ones. Another set of submatrices satisfying the constraints is

The above example brings out the similarity between the
proposed modified construction and the technique of edge
spreading employed in [9], wherein the edges of the protograph
defined by the matrix

are “spread” between the matrices and (or between
and ) to obtain a regular LDPC-CC ensemble with
memory . The advantage of the modified construction
is thus clear—it gives us more degrees of freedom to design
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the protographs in comparison with the classical construction.
In particular, the ensemble specified by the classical construc-
tion is contained in the set of ensembles allowed by the mod-
ified construction, meaning that the best performing
ensemble (with memory the same as that of the en-
semble) is at least as good as the ensemble. Note that in
[9], there was no indication as to how edges are to be spread be-
tween matrices. With windowed decoding, we will shortly show
that different protographs (edge spreadings) have different per-
formances. We will also identify certain design criteria for effi-
cient modified constructions that suit windowed decoding.

C. Polynomial Representation of LDPC-CC Ensembles

We have thus far specified LDPC-CC ensembles by giving
the parameter and thematrices . An alter-
native specification of terminated protograph-based LDPC-CC
ensembles using polynomials is useful in establishing certain
properties of regular ensembles and is described below.
Instead of specifying matrices of size ,

we can specify the columns of the matrix

...

using a polynomial of degree no more than
for each column. The polynomial of the column

(3)

is defined so that the coefficient of , , is the entry
of for all and . Therefore,
an equivalent way of specifying the LDPC-CC ensemble is by
giving and the set of polynomials .
With this notation, the column of is specified by the
polynomial where for unique

and . We can hence use “the column index”
and “the column polynomial” interchangeably. Further, to de-
fine regular ensembles, we will need the constraints

and

where is the polynomial of degree no larger than
obtained from by collecting the coefficients of terms with
degrees where for some , i.e.,

:

(4)

We will refer to these polynomials as the modulo polyno-
mials. Let us denote the set of polynomials defining an
LDPC-CC ensemble as , where

, and the modulo polynomials as
, . Later in the

paper, we will say “the summation of polynomials and
” to mean the collection of the and the columns of
. The following example illustrates the notation.

Example 2: For regular codes, we have and
, the component base matrices are

1 2 matrices. With the first column of the protograph , we

associate a polynomial
of degree at most . Similarly, with the second column we as-
sociate a polynomial ,
also of degree at most . Then, the column of
can be associated with the polynomial , and the

column with the polynomial . As noted earlier, we
will use the polynomial of a column and its index interchange-
ably, e.g., when we say “choosing the polynomial ,” we
mean that we choose the column of . Similarly,
by “summations of polynomials and ,” we mean
the collection of the corresponding columns of . In order
to define regular ensembles, we will further have the
constraint . In this case, since ,

is the same as the previous constraint,
because .

We define the minimum degree of a polynomial as the
least exponent of with a positive coefficient and denote it as

. Clearly, .
Let us define a partial ordering of polynomials with nonnega-
tive integer coefficients as follows. We write if

, and
the coefficients of are no larger than the corresponding
ones of . The ordering satisfies the following proper-
ties over polynomials with nonnegative integer coefficients: if

and , then

We define the boundary polynomial of a polynomial
to be where and

. Note that when , we define .
We have for any polynomial , .

III. DECODING ALGORITHMS

LDPC-CC are characterized by a very large constraint length
. Since the Viterbi decoder has a complexity

that scales exponentially in the constraint length, it is imprac-
tical for this kind of code. However, the sparsity of the parity-
check matrix can be exploited and an iterative message passing
algorithm can be adopted for decoding. We consider two spe-
cific iterative decoders here—a conventional belief-propagation
decoder [6], [19] and a variant called a windowed decoder.
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Fig. 1. Illustration of windowed decoding (WD) with window of size for a LDPC-CC with and at the fourth decoding instant.
This window configuration consists of rows of the parity-check matrix and all the columns involved in these
equations: this comprises the red (vertically hatched) and the blue (hatched) edges shown within the matrix. Note that the symbols shown in green (backhatched)
above the parity-check matrix have all been processed. The targeted symbols are shown in blue (hatched) above the parity-check matrix and the symbols that are
yet to be decoded are shown in gray above the parity-check matrix.

A. Belief-Propagation (BP)

For terminated LDPC-CC, decoding can be performed as in
the case of an LDPC block code, meaning that each frame car-
rying a codeword obtained through the termination can be de-
coded with the sum-product algorithm (SPA) [19].
Note that since the BP decoder can start decoding only after

the entire codeword is received, the total decoding latency
is given by , where is the time taken to
receive the entire codeword and is the time needed to de-
code the codeword. Inmany practical applications this latency is
large and undesirable. Moreover, for nonterminated LDPC-CC,
a BP decoder cannot be employed.

B. Windowed Decoding (WD)

The convolutional structure of the code imposes a constraint
on the VNs connected to the same parity-check equations—two
VNs of the protograph that are at least columns
apart cannot be involved in the same parity-check equation.
This characteristic can be exploited in order to perform con-
tinuous decoding of the received stream through a “window”
that slides along the bit sequence. Moreover, this structure al-
lows for the possiblity of parallelizing the iterations of the mes-
sage passing decoder through several processors working in dif-
ferent regions of the Tanner graph. A pipeline decoder based
on this idea was proposed in [8]. In this paper we consider a
windowed decoder to decode terminated codes with reduced la-
tency. Note that whereas a similar sliding window decoder was
used to bound the performance of BP decoding in [14], we are
interested in evaluating the performance of the windowed de-
coder from a perspective of reducing the decoding complexity
and latency. Consider a terminated regular parity-check
matrix built from a base matrix . The windowed decoder
works on subprotographs of the code and the window size
is defined as the number of sets of CNs of the protograph
considered within each window. In the parity-check matrix ,
the window thus consists of rows
of and all columns that are involved in the check equations

corresponding to these rows.We will henceforth refer to the size
of the window only in terms of the protograph with the corre-
sponding size in the parity-check matrix implied. The window
size ranges between and because each
VN in the protograph is involved in at most check
equations; and, although there are a total of
CNs in , the decoder can perform BP when all the VN sym-
bols are received, i.e., when . Apart from the
window size, the decoder also has a (typically small) target era-
sure probability as a parameter.1 The aim of the WD is to
reduce the erasure probability of every symbol in the codeword
to a value no larger than .
At the first decoding instant, the decoder performs belief-

propagation over the edges within the window with the aim of
decoding all of the first symbols in the window, called the
targeted symbols. The window slides down rows and right
columns in after at least a fraction of the targeted

symbols are recovered (or, in general, after a maximum number
of belief-propagation iterations have been performed), and con-
tinues decoding at the new position at the next decoding time
instant. We refer to the set of edges included in the window at
any particular decoding time instant as the window configura-
tion. In the terminated portion of the code, the window config-
uration will have fewer edges than other configurations within
the code. Since the WD aims to recover only the targeted sym-
bols within each window configuration, the entire codeword is
recovered in decoding time instants. Fig. 1 shows a schematic
representation of the WD for .
The decoding latency of the targeted symbols with WD is

therefore given by , where is the
time taken to receive all the symbols required to decode the
targeted symbols, and is the time taken to decode the
targeted symbols. The parameters and are related as

1We will see shortly that setting is not necessarily the most efficient
use of the WD scheme.
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since at most symbols are to be received to process
the targeted symbols. The relation between and
is given by

since the complexity of BP decoding scales linearly in block-
length and the WD uses BP decoding over symbols in
each window configuration. We assume that the number of iter-
ations of message passing performed is fixed to be the same for
the BP decoder and the WD. Thus, in latency-limited scenarios,
we can use the WD to obtain a latency reduction of

The smallest latency supported by the code-decoder system is
therefore at most a fraction that of the BP
decoder. As pointed out earlier, the only choice for nontermi-
nated codes is to use some sort of a windowed decoder. For
the sequence of ensembles indexed by , with the choice of
the proposed WD with a fixed finite window size , the de-
coding latency vanishes as . We will typically be inter-
ested in small values of where large gains in decoding la-
tencies are achievable. Since the decoding latency increases as
increases, the trade-off between decoding performance and

latency can be studied by analyzing the performance of the WD
for the entire range of window sizes.
Latency Flexibility: Although reduced latency is an impor-

tant characteristic of WD, what is perhaps more useful practi-
cally is the flexibility to alter the latencywith suitable changes in
the code performance. The latency can be controlled by varying
the parameter as required. If a large latency can be handled,
can be kept large ensuring good code performance and if a

small latency is required, can be made small while paying a
price with the code performance. (We will see shortly that the
performance of WD is monotonic in the window size.)
One possible variant of WD is a decoding scheme which

starts with the smallest possible window size and the size is in-
creased whenever targeted symbols cannot be decoded, i.e., the
target erasure probability cannot be met within the fixed max-
imum number of iterations. Other schemes where the window
size is either increased or decreased based on the performance
of the last few window configurations are also possible.

IV. MEMORYLESS ERASURE CHANNELS

In this section, we confine our attention to the performance of
the LDPC-CC when the transmission occurs over a memoryless
erasure channel, i.e., a binary erasure channel (BEC) parameter-
ized by the channel erasure rate .

A. Asymptotic Analysis

We consider the performance of the LDPC-CC in terms of
the average performance of the codes belonging to ensembles
defined by protographs in the limit of infinite blocklengths and
in the limit of infinite iterations of the decoder. As in the case of
LDPC block codes, the ensemble average performance is a good
estimate of the performance of a code in the ensemble with high

probability. We will therefore concentrate on the erasure rate
thresholds [11] of the code ensembles as a performance metric
in our search for good LDPC-CC ensembles.
1) BP: The asymptotic analysis of LDPC block codes with

the BP decoder over the BEC has been well studied [20]–[23].
For LDPC-CC based on protographs, the BP decoding thresh-
olds can be numerically estimated using the Protograph-EXIT
(P-EXIT) analysis [24]. This method is similar to the standard
EXIT analysis in that it tracks the mutual information between
the message on an edge and the bit value corresponding to the
VN on which the edge is incident, while maintaining the graph
structure dictated by the protograph.2

The processing at a CN of degree results in an updating
of the mutual information on the edge as

(5)

and the corresponding update at a VN of degree gives

(6)
where is the mutual information obtained from
the channel. Note that the edge multiplicities are included in the
above check and variable node computations. The a posteriori
mutual information at a VN is found using

where the second equality follows from (6). The decoder is said
to be successful when the a posteriori mutual information at
all the VNs of the protograph converges to 1 as the number of
iterations of message passing goes to infinity. The BP threshold

of the ensemble described by the protograph with base
matrix is defined as the supremum of all erasure rates for
which the decoder is successful.

Example 3: The protograph has a BP
threshold of . Note that all the CNs in the proto-
graph are of degree 6 while all the VNs are of degree 3. This
BP threshold is expected because corresponds to the
regular LDPC block code ensemble. The following protograph

has a BP threshold for . Note that,
as before, all VNs are of degree 3 and all the CNs except the
ones in the terminated portion of the code are of degree 6.

...
...

...
...
...
...
...
...
. . .

2We will use the phrase “mutual information on an edge” to mean the mutual
information between the message on the edge and the bit corresponding to the
adjacent VN.
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This is the ensemble constructed in [18]. In terms of the
notation introduced, this is given as ;
or equivalently as .

The above example illustrates the strength of pro-
tographs—they allow us to choose structures within an
ensemble defined by a pair of degree distributions that may
perform better than the ensemble average. In fact, the BP
performance of regular LDPC-CC ensembles has been related
to the maximum a posteriori (MAP) decoder performance of
the corresponding unstructured ensemble [10].
2) WD: We now analyze the performance of the WD de-

scribed in Section III-B in the limit of infinite blocklengths and
the limit of infinite iterations of belief-propagation within each
window.

Remark: In the limit of infinite blocklength, each term in the
base protograph is replaced by a permutation matrix of in-
finite size to obtain the parity-check matrix, and therefore the
latency of any window size is infinite, apparently defeating the
purpose of WD. Our interest in the asymptotic performance,
however, is justified as it allows us to establish lower bounds on
the probability of failure of the windowed decoder to recover
the symbols of the finite-length code. In practice, it is to be ex-
pected that the gap between the performance of a finite-length
code with WD and the asymptotic ensemble performance of the
ensemble to which the code belongs increases as the window
size reduces due to the reduction in the blocklength of the sub-
code defined by the window.
The asymptotic analysis for WD is very similar to that of the

BP decoder owing to the fact that the part of the code within a
window is itself a protograph-based code. However, the main
distinction in this case is the definition of decoding success.
In the case of BP decoding, the decoding is considered a suc-
cess only when, for any symbol in the codeword, the proba-
bility of failing to recover the symbol goes to 0 (or equiva-
lently, the a posteriori mutual information goes to 1) as the
number of rounds of message-passing goes to infinity. On the
other hand, the decoding within a window is successful as long
as the probability of failing to recover the targeted symbols be-
comes smaller than a predecided small value . The decoder
performance therefore depends on two parameters: the window
size and the target erasure probability .
We define the threshold of the window con-

figuration to be the supremum of the channel erasure rates for
which the WD succeeds in retrieving the targeted symbols of
the window with a probability at least , given that
each of the targeted symbols corresponding to the first
window configurations is known with probability . Fig. 2
illustrates the threshold of the window config-
uration. The windowed threshold is then defined as
the supremum of channel erasure rates for which the windowed
decoder can decode each symbol in the codeword with proba-
bility at least .
We assume that between decoding time instants, no infor-

mation apart from the targeted symbols is carried forward, i.e.,
when a particular window configuration has been decoded, all
the present processing information apart from the decoded tar-
geted symbols themselves is discarded. With this assumption,

Fig. 2. Illustration of the threshold of the window configuration
. The targeted symbols of the previous window configurations

are known with probability . The targeted symbols within the window are
highlighted with a solid blue bar on top of the window. The symbols within the
blue (hatched) region in the window are initially known with probability .
The task of the decoder is to perform BP within this window until the erasure
probability of the targeted symbols is smaller than . The window is then slid
to the next configuration.

it is clear that the windowed threshold of a protograph-based
LDPC-CC ensemble is given by the minimum of the thresh-
olds of its window configurations. For the classical and mod-
ified constructions of LDPC-CC described in Section II-B, all
window configurations are similar except the ones at the termi-
nated portion of the code. Since the window configurations at
the terminated portions can only perform better, the windowed
threshold is determined by the threshold of a window configu-
ration not in the terminated portion of the code. Note that the
performance of WD when the information from processing the
previous window configurations is made use of in successive
window configurations, e.g., when symbols other than the tar-
geted symbols that were decoded previously are also retained,
can only be better than what we obtain here.
We now state a monotonicity property of the WD the proof

of which is relegated to Appendix I.

Proposition 1 (Monotonicity of WD Performance in ): For
any ensemble ,

It follows immediately from the definition of the windowed
threshold that

Furthermore, from the continuity of the density evolution equa-
tions (6) and (5), we have that when we set , we decode
not only the targeted symbols within the window but all the re-
maining symbols also. Since the symbols in the right end of the
window are the “worst protected” ones within the window (in
the sense that these are the symbols for which the least number
of constraints are used to decode), we expect the windowed
thresholds to be dictated mostly by the be-
havior of the submatrix under BP. In the following, when the
base matrix of the protograph corresponding to an ensemble
is unambiguous, we will write and

interchangeably.
We next turn to giving some properties of LDPC-CC ensem-

bles with good performance under WD. We start with an ex-
ample that illustrates the stark change in performance a small
difference in the structure of the protograph can produce.
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Example 4: Consider WD with the ensemble in Ex-
ample 3 with a window of size . The corresponding pro-
tograph defining the first window configuration is

and we have . This is seen
readily by observing that there are VNs of degree 1 that are
connected to the same CNs. In fact, from this reasoning, we see
that .
As an alternative, we consider the modified construction of

Section II-B2 to obtain the ensemble given by
. This ensemble has a BP threshold

for which is quite close to that
of the ensemble , . WD with a
window of size 3 for this ensemble has the first window config-
uration

which has a threshold , i.e., we
can theoretically get close to 68.3% of the BP threshold with

of the latency of the BP decoder. Note that this im-
provement in threshold has been obtained while also increasing
the rate of the ensemble, since for the ensemble in
comparison with for .

The above example illustrates the tremendous advantage ob-
tained by using ensembles for WD even under the
severe requirement of . The following is a good rule of
thumb for constructing LDPC-CC ensembles that have good
performance with WD.

Design Rule 1: For ensembles, set for
all where .
The above design rule says that for ensembles, it is

better to avoid degree-1 VNswithin a window. Note that none of
the ensembles satisfy this design rule. We now illus-
trate the performance of LDPC-CC ensembles with WD when
we allow .

Example 5: We compare three LDPC-CC ensembles. The
first is the classical LDPC-CC ensemble . The
second and the third are LDPC-CC ensembles constructed as
described in Section II-B2. The ensemble is defined by the
polynomials

and is defined by

We first observe that all three ensembles have the same asymp-
totic degree distribution, i.e., all are regular LDPC-CC
ensembles when . While and have a memory

, has a memory . Therefore, for a fixed ,
while and have the same rate, has a higher rate. Another

Fig. 3. Windowed threshold as a function of the window size for the ensembles
with . The rates of the ensembles and

are 0.49 whereas that of is 0.495. The corresponding Shannon limits are
therefore 0.51 for and , and 0.505 for . The thresholds for the two values
of almost coincide for the ensembles and .

consequence of a smaller is that can be decoded with a
window of size . Further note that whereas
and satisfy Design Rule 1, does not. For a window of size
3, the subprotographs for ensembles and are as shown in
Example 4, and that for ensemble is as shown below

In Fig. 3, we show the windowed thresholds plotted against
the window size for the three ensembles and by fixing

for .
A few observations are in order. The monotonicity of

in as proven in Proposition 1 is evident. The
windowed thresholds for and are fairly close
to the maximum windowed threshold even when .
The windowed thresholds for ensembles and are robust to
changes in , i.e., the thresholds are almost the same (the points
overlap in the figure) for and . Further,
the windowed thresholds are fairly close to the BP
thresholds for . We will see next
that this last observation is not always true.

Effect of Termination: The better BP performance of the
ensemble in comparison with that of the -reg-

ular block code ensemble (cf. Example 3) is because of the
termination of the parity-check matrix of codes. More
precisely, the low-degree CNs at the terminated portion of the
protograph are more robust to erasures and their erasure-cor-
recting power is cascaded through the rest of the protograph
to give a better threshold for the convolutional ensemble in
comparison with that for the corresponding unstructured en-
semble [16]. From the definition of the WD, we can see that the
subprotograph within a window does not have the lower-de-
gree checks if previous targeted symbols are not decoded.
Therefore, we would expect a deterioration in the performance.



IYENGAR et al.: WINDOWED DECODING OF PROTOGRAPH-BASED LDPC CONVOLUTIONAL CODES 2311

TABLE I
, , ,

TABLE II
, , ,

Furthermore, the Design Rule 1 increases the degrees of the
CNs in the terminated portion. Therefore, the effect of different
termination on the WD performance is of interest.

Example 6: Tables I and II illustrate the WD thresholds for
ensembles that satisfy Design Rule 1 except when
. These ensembles are defined by the polynomials

Note that . The ensembles are terminated so that
the rate is . The worst threshold with WD (corre-
sponding to the least window size ) is denoted

. The largest threshold with WD is denoted and
the BP threshold as . The increase in the gap between
and with increasing illustrates the loss due to edge mul-
tiplicities (“weaker” termination). This is because the termina-
tions at the beginning and at the end of the code are different,
i.e., the CN degrees in the terminated portion at the beginning of
the code are which increases with ; whereas those
at the end of the code are 2, a constant. Thus, much of the code
performance is determined by the “stronger” (smaller check-de-
gree) termination, the one at the end of the code for .
This is also seen by the fact that the gap between and

decreases as increases, meaning that the termination
at the beginning of the code is weak and increasing the window
size helps little. Note that the ensemble in Table II is
in fact the classical ensemble, and that is larger
than the corresponding BP threshold. This is possible since WD
only demands that the erasure probability of the targeted sym-
bols is reduced to . In contrast, BP demands that the erasure
probability of all the symbols is reduced to 0.
From the above discussion, we can infer the following as an-

other design rule.

Design Rule 2: For ensembles, keep the termina-
tion at the beginning of the code strong, preferably stronger

TABLE III
WINDOWED THRESHOLDS ,

than the one at the end of the code. That is, use polynomials
such that each of the sums

is kept as small as possible.
Targeted Symbols: We have thus far considered only the first
VNs in the subprotograph contained within the window to be

the targeted symbols. However, as an alternative way to trade off
performance for reduced latency, it is possible to consider other
VNs also as targeted symbols. In this case, the window would
be shifted beyond all the targeted symbols after processing each
window configuration. For a window of size , let us denote by

the windowed threshold when the targeted symbols
are the first VNs, . Hence,

. By definition, .

Example 7: Consider the ensemble denoted
with defined by ; and the

ensemble denoted with defined by
. Also consider ensembles and given by

and
respectively. Both and are ensembles, but with
memory and 2 respectively. Table III gives the win-
dowed thresholds with targeted symbols
for a window of size 4 for .
One might expect the windowed threshold

to be higher for an ensemble for which is
higher. This is not quite right:

whereas
. This can again be explained as the

effect of stronger termination in in comparison with . This
is also evident in the larger thresholds for the ensemble
with same memory as , but stronger termination. Also,

keeping the same termination and increasing the memory
improves the performance, as is exemplified by the larger
thresholds of in comparison with those of .

The windowed thresholds quantify the unequal
erasure protection of different VNs in the subprotograph within
the window. Furthermore, it is clear that for good performance,
it is advantageous to keep fewer targeted symbols within a
window.

B. Finite-Length Performance Evaluation

The finite-length performance of LDPC codes under iterative
message-passing decoding over the BEC is dependent on the
number and the size of stopping sets present in the parity-check
matrix of the code [23], [25]. Thus, the performance of the
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Fig. 4. SER performance for BP and Windowed Decoding over BEC.

codes varies based on the parity-check matrix used to repre-
sent the code and, consequently, the performance of iterative
decoding can be made to approach that of ML decoding by
adding redundant rows to the parity-check matrix (see, e.g.,
[26]). However, since we are exploiting the structure of the
parity-check matrix of the convolutional code, we will not be
interested in changing the parity-check matrix by adding redun-
dant rows as this destroys the convolutional structure. The en-
semble stopping set size distribution for some protograph-based
LDPC codes was evaluated in [27] where it was shown that a
minimum stopping set size that grows linearly in blocklength is
important for the good performance of codes with short block-
lengths. This analysis is similar to the analysis of the minimum
distance growth rate of LDPC-CC ensembles—see [28] and ref-
erences therein. It is worthwhile to note that although the min-
imum stopping set size grows linearly for protograph codes ex-
panded using random permutation matrices, the same is not true
for codes expanded using circulant permutation matrices [29].
In the following we will evaluate the finite-length performance
of codes constructed from ensembles with BP and
WD throughMonte Carlo simulations.WDwas considered with
only the first symbols as the targeted symbols.
In Figs. 4 and 5, the symbol error rate (SER) and the code-

word error rate (CER) performance are depicted for codes
and , where the ensembles and were defined

in Example 5. The codes used were those constructed by Liva
[12] by expanding the protographs using circulant matrices (and
sums of circulant matrices) and techniques of progressive edge
growth (PEG) [30] and approximate cycle extrinsic message
degree (ACE) [31] to avoid small cycles in the Tanner graphs
of the codes. The girth of both the codes and was 12.
The parameters used for the construction were and

so that the blocklength and
. The BP thresholds for ensembles and with

were 0.4883 and 0.4882 respectively. As is clear from
Figs. 4 and 5, code outperforms code for small window
sizes ( ), confirming the effectiveness of the proposed
design rules for windowed decoding. For larger window sizes
( ), there is no marked difference in the performance

Fig. 5. CER performance for BP and Windowed Decoding over BEC. Also
shown is the (Singleton) lower bound as SB.

of the two codes. It was also observed that for small values
( ), the performance of codes constructed through circulant
permutation matrices was better than those constructed through
random permutation matrices. This difference in performance
diminished for larger values.
We include in Fig. 5, for comparison, a lower bound on the

CER . The Singleton bound, , represents the perfor-
mance achievable by an idealized binary MDS code. This
bound for the BEC can be expressed as

Note that by the idealized binary MDS code, we mean
a binary linear code that achieves the Singleton bound

with equality. This code does not exist for all values
of and .

V. ERASURE CHANNELS WITH MEMORY

We now consider the performance of LDPC-CC ensembles
and codes over erasure channels with memory. We consider the
familiar two-state Gilbert-Elliott channel (GEC) [32], [33] as a
model of an erasure channel with memory. In this model, the
channel is either in a “good” state , where we assume the
erasure probability is 0, or in an “erasure” state , in which
the erasure probability is 1. The state process of the channel
is a first-order Markov process with the transition probabilities

and . With these parameters,
we can easily deduce [34] that the average erasure rate and the
average burst length are given by

We will consider the GEC to be parameterized by the pair
. Note that there is a one-to-one correspondence between

the two pairs and .
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Discussion: The channel capacity of a correlated binary
erasure channel with an average erasure rate of is given as

, which is the same as that of the memoryless channel,
provided the channel is ergodic. Therefore, one can obtain
good performance on a correlated erasure channel through the
use of a capacity-achieving code for the memoryless channel
with an interleaver to randomize the erasures [27], [35]. This is
equivalent to permuting the columns of the parity-check matrix
of the original code. We are not interested in this approach
since such permutations destroy the convolutional structure of
the code and as a result, we are unable to use the WD for such
a scheme.
Construction of LDPC block codes for bursty erasure

channels has been well studied. The performance metric of a
code over a bursty erasure channel is related to the maximum
resolvable erasure burst length (MBL) denoted [35],
which, as the name suggests, is the maximal length of a single
solid erasure burst that can be decoded by a BP decoder.
Methods of optimizing codes for such channels therefore focus
on permuting columns of parity-check matrices to maximize

, e.g., [36]–[41]. Instead of permuting columns of the
parity-check matrix, in order to maintain the convolutional
structure of the code, we will consider designing
ensembles that maximize .

A. Asymptotic Analysis

1) BP: As noted earlier, the performance of LDPC-CC en-
sembles depends on stopping sets. The structure of protographs
imposes constraints on the code that limit the stopping set sizes
and locations, as will be shown shortly.
Let us define a protograph stopping set to be a subset of

the VNs of the protograph whose neighboring CNs are con-
nected at least twice to . These are also denoted as ,
in terms of the set of polynomials defining the protograph. We
define the size of the stopping set as the cardinality of , de-
noted . We call the least number of consecutive columns
of that contain the stopping set the span of the stop-
ping set, denoted . Let us denote the size of the smallest
protograph stopping set of the protograph by , and the
minimum number of consecutive columns of the protograph
that contain a protograph stopping set by . When the
protograph under consideration is clear from the context, we
will drop it from the notation and use and . The min-
imum span of a stopping set is of interest because we can give
simple bounds for based on . Note that the stop-
ping set of minimal size and the stopping set of minimal span
are not necessarily the same set of VNs. However, we always
have

The following example clarifies the notation.

Example 8: Let us denote the base matrix corresponding
to the protograph of the ensembles of Example 5 as

. For ensembles and , the first two
columns of form a protograph stopping set, i.e.,

is a stopping set. This is clear
from the highlighted columns below

...
...

...
...
...
...
. . .

...
...

...
...
...
...
. . .

Therefore, and . Since no single
column forms a protograph stopping set, and

, implying
.
For ensemble , the highlighted columns of in the fol-

lowing matrix form a protograph stopping set, i.e.,
is a stopping set.

...
...
...
...

...
...
. . .

Thus, and . As no single
column of is a protograph stopping set and no three con-
secutive columns of contain a protograph stopping set, it
is clear that and , so that

In these cases, it so happened that the stopping set with the min-
imal size and the stopping set with the minimal span were the
same.

Our aim in the following will be to obtain bounds for the
maximal over ensembles with memory ,
which we denote , and design protographs that
achieve minimal spans close to this optimal value.
The analysis of the minimal span of stopping sets for un-

structured LDPC ensembles was performed in [42]. However,
the structure of the protograph-based LDPC-CC allows us to
obtain much more easily for some
ensembles.
We start by observing that if one of the VNs in the protograph

is connected multiple times to all its neighboring CNs, then it
forms a protograph stopping set by itself. In order to obtain a
larger minimum span of stopping sets, it is desirable to avoid
this case, and we include this as one of our design criteria.

Design Rule 3: For a ensemble, choose the poly-
nomials such that for every , there exists

such that .
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Using the polynomial representation of LDPC-CC ensembles
is helpful in this case since we can easily track stopping sets as
those subsets that have polynomials whose coefficients are all
larger than 1. From this fact, we can prove the following.

Proposition 2 ( for Protographs): For
protographs of memory defined by polynomials

and , can be upper bounded as

where and .
We give the proof in Appendix II. We see from the above

that and a necessary condition for
achieving this span is the first of four possible cases listed above,
which we include as another design criterion.

Design Rule 4: For ensembles with memory ,
set

Corollary 3 (Optimal Protographs): For
protographs with memory and ,

.

The proof is given in Appendix III. Note that ensemble
in Example 5 achieves , as was observed in Ex-
ample 8. It also satisfies Design Rules 1, 3 and 4. We bring to
the reader’s attention here that constructions other than the one
given in the proof of the above corollary that achieve

are also possible. These constructions allow us to design
ensembles for a wide range of required . We

quickly see that a drawback of the convolutional structure is
that if is increased to obtain a larger , the code rate
decreases linearly for a fixed .
We give without proof the following upper bound for

for ensembles, as it follows from Proposition 2.

Proposition 4 ( for Protographs):
For protographs defined by polynomials

, we have

where is the upper bound given in (7) at the
bottom of the page for the minimal span of
stopping sets confined within subsets of the form

, where we have used

the notation , ,
, ,

and .

Discussion: By looking at the stopping sets confined within
columns corresponding to two polynomials only, we can use
Proposition 2 to upper bound the span of these stopping sets.
The minimal such span over all possible choices of the two
columns therefore gives an upper bound on the minimal span of
the protograph. Since from
(7); we have , which is similar to the
result in Proposition 2. This bound is, however, loose in general.
For terminated codes, we can give an upper bound for

that is tighter in some cases.

Corollary 5 ( for Protographs): For
protographs terminated after instants,

.
Proof: From the Singleton bound for the protograph, we

have . Since we need for a

positive code rate in (2), .
Note that for protographs, this is tighter than the

bound , which, in the worst
case, is a factor times larger. However, since we are
interested mainly in ensembles for which , this bound
might be looser than the one in Proposition 4 for
ensembles.

Example 9: Consider the ensemble with
memory defined by
the polynomials

. It can be shown by an argument similar
to the one used to prove Corollary 3 that for the protograph of
this ensemble, . This is exactly the bound in
Proposition 4 since

Thus, in this case

which is roughly only a fraction of the (loose) upper bound for
suggested in the discussion of Proposition 4.

The constructed protographs are thus optimal in the
sense of maximizing the minimal span of stopping sets, i.e.,

.

(7)
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They also satisfy Design Rules 1 and 3 for . Although
Proposition 4 gave a tight bound for in this case, it is loose
in general.

We can show that the protographs have minimal
spans at least as large as the corresponding spans of
protographs.

Proposition 6: where
.

Proof: The equality is trivial when . When
, one way of constructing the ensembles

with memory is to let each set of modulo polynomials
themselves define ensembles with memory . The
result then follows by noting that a stopping set for the polyno-
mials has to be a stopping set for every set of polynomials ,

.

The construction proposed above often allows us to strictly
increase the minimal span of the ensemble in com-
parison with the ensemble, as illustrated by the fol-
lowing example.

Example 10: Consider the construction of a en-
semble with memory 3. Let us call it . The different parame-
ters in this case are , , , , , and

. Since with , we have for
protographs, from Example 9 and

wewill define themodulo polynomials to be the optimal con-
struction that achieves this minimal span, i.e.,

. Then, by defining ,
we can show that and hence

Note that the protograph defined by has no degree-1 VNs as-
sociated with the component matrix . In fact, the constructed

ensemble has , fairly
close to the Shannon limit of , even with the smallest
possible window size. Table IV lists the windowed thresholds of
this ensemble with different numbers of targeted symbols within
the smallest window for .

2) WD: The asymptotic analysis for WD is essentially the
same as that for BP. We will consider WD with only the first
symbols within each window as the targeted symbols. We

are now interested in the subprotograph stopping sets, denoted
, that include one or more of the targeted symbols

within a window. Let us denote the minimal span of such stop-
ping sets as . Since stopping sets of the protograph
of the LDPC-CC are also stopping sets of the subprotograph
within a window, and since such stopping sets can be chosen
to include some targeted symbols within the window, we have

. In fact,
when

TABLE IV

since in this case the first columns are completely
contained in the window. Further, we have

This is true because a stopping set for window size involving
targeted symbols is not necessarily a stopping set for window
size , whereas a stopping set for window size is
definitely a stopping set for window size .

Remark: When the first symbols within a window are
the targeted symbols, we have for

where denotes the minimal span of stopping sets
of the subprotograph within the window of size involving
at least one of the targeted symbols, and

. Consequently, we have

The definition of can be extended to accommodate
, as in the case of windowed thresholds.

In particular, we have , where
the last inequality is from the Singleton bound.

Example 11: Consider the ensemble defined in Example 5.
With a window of size , we have
with the corresponding stopping set high-

lighted below

and with a window size , we have
, and the corresponding stopping sets

and are as follows

Note that for window size 3, whereas the minimal span of a
stopping set involving VN is 2, that of a stopping set in-
volving is 4. However, for window size 4, the stopping set
involving with minimal span, denoted , and that involving
, , each have a span of 4, although their cardinalities are 2
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and 3 respectively. We have in this case, . Notice that
.

B. Finite-Length Analysis

1) BP: We now show the relation between the parameters
and . We shall assume in the following that
, i.e., every column of the protograph has at least one

of the entries equal to 1. We will consider the expansion of the
protographs by a factor to obtain codes.

Proposition 7: For any regular LDPC-CC,
.

Proof: Clearly, the set of the columns of the parity-
check matrix corresponding to the consecutive columns of
that contain the protograph stopping set with minimal span

must contain a stopping set of the parity-check matrix. There-
fore, if all symbols corresponding to these columns are erased,
they cannot be retrieved.

Corollary 8: A terminated LDPC-CC with
can never achieve the MBL

of an MDS code.
Proof: From the Singleton bound, we have

, assuming that the parity-check matrix is
full-rank. From Proposition 7 we have,

where the second equality follows from the discussion in Ex-
ample 9. Since we require for a
nonnegative code rate in (2),

which shows that the MBL of an MDS code can never be
achieved.

Remark: Although the idealized binary MDS code
does not exist, there are codes that achieve MDS performance
when used over a channel that introduces a single burst of
erasures in a codeword. For example, the code with a
parity-check matrix has an MBL of .
Despite the discouraging result from Corollary 8, we can

guarantee an MBL that linearly increases with as follows.

Proposition 9: For any regular LDPC-CC,
.

Proof: From the definition of , it is clear that if one of
the two extreme columns is completely known, all other symbols
can be recovered, for otherwise the remaining columns within
the span of the stopping set will have to contain another proto-
graph stopping set, violating the minimality of the stopping set
span (The two extreme columns are pivots of the stopping
set [41].) The largest solid burst that is guaranteed to have at
least one of the extreme columns completely known is of length

. Therefore, .

Example 12: For the ensemble with memory
in Example 9, we have

from Propositions 7 and 9. Thus, we can construct codes with
MBL proportional to .
2) WD: The MBL for WD can be bounded as

in the case of BP based on . Assuming that the
window size is , the targeted symbols are the first
symbols within the window, and the polynomials defining

the ensemble are chosen to satisfy Design Rule 3, we have
. Propositions 7 and 9 in this case imply that

C. Numerical Results

The MBL for codes and (the same codes used in
Section IV-B) was computed using an exhaustive search al-
gorithm, by feeding the decoder with a solid burst of erasures
and testing all the possible locations of the burst. The MBL
for the codes we considered was 1023 and 1751 for codes

and , respectively. Note that for code , the MBL
, i.e., code achieves the upper

bound from Proposition 7. More importantly, the maximum
possible was achievable while maintaining good perfor-
mance over the BEC with the BP decoder. However, the MBL
for code , , is much smaller
than the corresponding bound from Proposition 7. In this case,
although other code constructions with up to 2045 were
possible, a trade-off between the BEC performance and MBL
was observed, i.e., the code that achieved was
found to be much worse over the BEC than both codes and
considered here. Such a trade-off has also been observed by

others, e.g., [40]. This could be because the codes that achieve
large are often those that have a very regular structure in
their parity-check matrices. Nevertheless, our code design does
give a large increase in MBL ( ) when compared with the
corresponding codes constructed from ensembles, without
any decrease in code rate (same ). The MBL achieved as a
fraction of the maximum possible MBL was
roughly 9.1% and 15.5% for codes and , respectively.
In Figs. 6–8, we show the CER performance obtained for

codes and over GEC channels with , 50 and 100
respectively, and . As can be seen from the fig-
ures, for , code always outperforms code , while
for there is no such gain when . However, for

and for BP decoding, code slightly outperforms .
Note that the code outperforms for small when the

average burst length for large window sizes and for
BP decoding. This can be explained because in this regime, the
probability of a burst is small but the average burst length is
large. Therefore, when a burst occurs, it is likely to resemble
a single burst in a codeword, and in this case we know that
the code is stronger than . Also note the significant gap
between the BP decoder performance and the Singleton bound,
suggesting that unlike some moderate length LDPC block codes
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Fig. 6. CER Performance on GEC with with Singleton bound (SB).

Fig. 7. CER Performance on GEC with with Singleton bound (SB).

Fig. 8. CER Performance on GEC with with Singleton bound (SB).

with ML decoding [38], LDPC-CC are far from achievingMDS
performance with BP or windowed decoding.

Fig. 9. Subprotographs of window sizes and . The edges connected
to targeted symbols from previous window configurations are shown in darker
shade of gray.

VI. CONCLUSIONS

We studied the performance of a windowed decoding
scheme for LDPC convolutional codes over erasure channels.
We showed that this scheme, when used to decode terminated
LDPC-CC, provides an efficient way to trade off decoding
performance for reduced latency. Through asymptotic perfor-
mance analysis, several design rules were suggested to avoid
bad structures within protographs and, in turn, to ensure good
thresholds. For erasure channels with memory, the asymptotic
performance analysis led to design rules for protographs that
ensure large stopping set spans. Examples of LDPC-CC en-
sembles that satisfy design rules for the BEC as well as erasure
channels with memory were provided. Finite-length codes
belonging to the constructed ensembles were simulated and the
validity of the design rules as markers of good performance
was verified. The windowed decoding scheme can be used to
decode LDPC-CC over other channels that introduce errors and
erasures, although in this case error propagation due to wrong
decoding within a window will have to be carefully dealt with.
For erasure channels, while close-to-optimal performance

(in the sense of approaching capacity) was achievable for the
BEC, we showed that the structure of LDPC-CC imposed
constraints that bounded the performance over erasure channels
with memory strictly away from the optimal performance (in
the sense of approaching MDS performance). Nevertheless, the
simple structure and good performance of these codes, as well
as the latency flexibility and low complexity of the decoding
algorithm, are attractive characteristics for practical systems.

APPENDIX I
PROOF OF PROPOSITION 1

Consider the window configuration for window sizes
and shown in Fig. 9. We are interested in a window con-
figuration that is not at the terminated portion of the code. Call
the Tanner graphs of these windows and

respectively, where and
are the sets of VNs and CNs respectively and are the
sets of edges. Clearly, , and .
Any VN in that is connected to some variable in has
to be connected via some CN in . The edges between
these CNs and VNs in are shown hatched in Fig. 9. Consider
the computation trees for the a posteriori message at a targeted
symbol in and that for the same symbol in . Call them
and respectively. Then we have .
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We now state two lemmas which will be made use of sub-
sequently. The proofs of these lemmas are straightforward and
have been omitted.

Lemma 10 (Monotonicity of ): The CN operation in (5) is
monotonic in its arguments, i.e.,

where the two-argument function .

Lemma 11 (Monotonicity of ): The VN operation in (6) is
monotonic in its arguments, i.e.,

where .
The operational significance of the above lemmas is the fol-

lowing: if we can upper (lower) bound the mutual information
on some incoming edge of a CN or a VN, and use the bound to
compute the outgoing mutual information from that node, we
get an upper (lower) bound on the actual outgoing mutual in-
formation. Thus, by bounding the mutual information on some
edges of a computation tree and repetitively applying Lemmas
10 and 11, one can obtain bounds for the a posteriori mutual
information at the root of the tree.
We start by augmenting , creating another computation

tree that has the same structure as . In particular, in-
cludes the additional edges corresponding to the hatched region.
In and , we denote the set of these edges by and

respectively. In , we assign zeromutual information
to each edge in .
Now, let , and be the a posteriori mutual infor-

mation at the roots of the trees , and respectively.
Then it is clear that , since the messages on edges in

are effectively erasures and zero out the contributions
from the checks in .
On the other hand, if we denote by the mutual infor-

mation associated with an edge , and by
the mutual information associated with the corresponding edge
in , we know that so that .
Hence, we have from Lemmas 10 and 11 that .
Since , it follows that , as desired.

APPENDIX II
PROOF OF PROPOSITION 2

From the definitions made in the statement of Proposition 2,
we have . We assume
in order to satisfy Design Rule 3. Since the code has memory
, we have and
. Consider the subset of columns of corresponding to the

polynomial where

and

.

We claim that this is a protograph stopping set. To see this,
consider the columns corresponding to the above subset with

and as the column polynomials defining .
We have

when . Similarly, it can be verified that
has all coefficients equal to 2 in all other cases also. Clearly,

and thus can only differ from in having
larger coefficients. Therefore, also has all coefficients
greater than 1. This shows that the chosen subset of columns
form a protograph stopping set. Based on the parameters

, we can count the number of columns included in
the span of this stopping set and therefore give upper bounds
on as claimed

.

APPENDIX III
PROOF OF COROLLARY 3

Consider the protograph of the ensemble given by
and . Let the polyno-

mial represent an arbitrary
subset (chosen from the nonempty subsets) of the
first columns of , for any choice of polynomials

and with coefficients in and maximal de-
grees and respectively, i.e.,

where and not all s are zeros. When
, let . Clearly, is a monic polynomial
of degree . When and , let

. Then, is a monic polynomial of degree
. Since in both these cases is a monic polynomial,

there is at least one coefficient equaling 1. Thus,
. Finally, notice that
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with all coefficients strictly larger than 1. Note that corre-
sponds to the first column of the protograph and to
the column. Thus, we have . Since we have

from Proposition 2, we conclude that
.
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