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WITT SPACES: A GEOMETRIC CYCLE THEQRY FOR
KO-HOMOLOGY AT ODD PRIMES

by P. H. S1EGEL

Introduction. This paper studies a class of stratified piecewise-
[inear psendomanifolds, which we call Witt spaces, characterized by natu-
ral local intersection homology conditions [11). We compute the cobord-
ism groups by introducing an invariant taking values in the Witt group of
symmetric bilinear forms over the rationals, W(Q). These pseudomani-
folds solve a problem posed by Db, Sullivan [25]: to construct a class of P.L.
cycles with signature which represent the connected version of KO homol-
ogy at odd primes, ko, ® Z[1/2].

The result was one of the first applications of the intersection homol-
ogy theory of Goresky and MacPherson [11]. Specifically, the rational in-
tersection homology groups of Witt spaces satisfy a Poincaré duality theo-
rem. To each Witt space X, we associate a P.L. invariant w{X) with values
in W(Q). This invariant generalizes the signature of manifolds and satis-
fies cobordism invariance, additivity, and a product formula. Adapting
classical surgery (spherical modification) to this setting, we prove that
w(X) determines the cobordism class of X and obtain an explicit descrip-
tion of the Witt cobordism groups. The only nontrivial groups occur in
dimensions 4k, and for k > 0 they are W(Q).

Sullivan (25,27} has shown that a class of P.L. pseudomanifolds
equipped with such an invariant possesses canonical orientations in ko,
Z[1/2]. The orientations induce a natural transformation p of homology
theories, from Witt space bordism to ko, ®Z[1/2]. The structitre of W(Q})
is known [14], and we conclude that u is an equivalence at odd primes. In
this paper, we study the cobordism theory of a class of stratified P.L.
pseudomanifolds by means of the recent intersection homology theory of
Goresky and MacPherson [11]. Goresky and MacPherson were interested
in finding a class of spaces with cobordism invariant signature for the pur-
pose of extending the Hirzebruch L-class to the setting of “manifolds with
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1068 P. H. SIEGEL

singularity.” Their investigation of cycle intersection phenomena in strati-
fied spaces resulted in their beautiful intersection homology theory [11).
They proved that for a stratified P.L. pseudomanifold X of dimension 4k
with only even codimension strata, the rational intersection homology
group TH%, (X; Q) is self-dual, and they proceeded to define a cobordism
invariant signature and L-class for the collection of spaces with only even
codimension strata.

The cobordism groups of stratified spaces with even codimension
strata have not yet been computed. We prove, though, that a cobordism
invariant signature exists and cobordism calculations can be carried out
for the class of spaces obtajned by imposing an intersection homological
link condition on odd codimension strata.

Definition. X is a Witt-space if whenever L¥ is the link of an odd
codimension intrinsic stratum of X, JH(L; Q) = 0.
Three observations confirm that this definition is reasonable.

Observation 1.  Atiyah in [4] studied examples of smooth fibrations
M* = X — N**, He showed that if H/(M; Q) = 0, then sign(X) = 0. The
fibration is P.L. [21], and Atiyah's result says that if the mapping cylinder
is a Witt cobordism of X to 0 then sign(X) = 0.

Observation 2. If X** is a Witt space without boundary, then
IHZ.(X; Q) is self-dual (1.3.4). The signature sign(X) is the signature of
this rational inner product space. It is a Witt cobordism invariant and ex-
tends the signature defined in [11].

Observation 3. The signature is additive for Witt spaces, and the
proof, unlike the standard proof in the smooth case [S, p. 588], is entirely
geometric: The “pinch cobordism,” which roughly is the mapping cylinder
of the map collapsing Z in X U, —Y to a point, is a Witt cobordism of
XUz —=YtoX Uzcone(Z) — Y Uz cone(Z).

We then adapt classical surgery to Witt spaces and compute the Witt
cobordism groups.

TurorReM. Let Q¥ gonote the bordism theory based on Witt
spaces. Then:

Q(I]«Vitc(pt) = Z
Q;Vitr(pt) =0, q F 0 (mod 4).
Q;Wﬁ(pi) = W(Q), g>0 and ¢ = 0(mod4)
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Here W(Q) is the Witr ving of Q, and the isomorphism associates a Wit
space X** to the Witt class of IHE(X; Q).

Remark. For discussion and application of a special case of the Witt
class invariant accurring in the theorem, see [3], [10].

We show that these pseudomanifolds provide a geometric description
of connected KO homology at add primes, ko, & Z[1/2], thereby solving a
problem posed by D. Sullivan [25]. To put the result in perspective, we give
some of the historical background te the preblem.

Dennis Sullivan [25] discovered the Conner-Floyd-type theorem [9]
relating smooth oriented bordism, the signature, and connected KO the-
ory at odd primes:

TueoreM (Sullivan). For compact P.L. pairs, there is a canonical
isomorphism (equivalence) of homology theories:

ﬂiO(Xr A) ®ﬁiﬂ(-"” Z[—;—} “i"‘ kO*(X, A} R Z[%]!

where the theories are regarded as Z/4Z-graded, ]

He found (at least) two interesting applications: (1) A geometric de-
scription of connected KO homology at odd primes, ko, ® Z[1/2], as a
bardism theory with join-like singularities obtained by geometrically “kill-
ing” generators of smooth bordism. See [6], [8], [26]. (2) A construction of
a canonical KO* X 7Z[1/2] orientation for a P.L. block bundle over a finite
complex, and, in particular, a canonical KO, & Z[1/2] orientation for
P.L. manifolds via Alexander duality [25]. If the collection of cycles of a
geometric homology theory is closed under the aoperations of taking carte-
sian product and transversal intersections with P.L. manifolds, and if it
possesses a ‘‘nice’’ signature invariant extending the classical signature,
the construction shows that the cycles have canonical KO &R Z[1/2] orien-
tations [27]. See Chapter IV and the Appendix.

With Witt spaces, we achieve a natural synthesis of the themes of
these two applications by solving the following.

ProBLEM. Construct a geometric cycle theory for ko R Z[1/2] built
Jrom a class of P.L. cycles F with “nice” signature invariant, such that the
equivalence (at odd primes)

piQi- ka,,,@Z[ﬂ

is induced by the orientations described in (2} abave.
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Using results of D. Sullivan, we construct a natural transformation of
homology theories:

) . 1
lett: Q}\:’lt‘t — ko* ® ZI:_Z_:|

which reduces to the signature homomorphism on coefficient groups when
g = 0 (mod 4). Tensoring with Z[1/2], we conclude:

THEOREM. The natural transformation

1

erifasrerdt] ol

2
is an equivalence of homology theories.

We note here that I. Morgan (unpublished) has constructed a geomet-
ric cycle theory for the homology associated to ¢/PL using different tech-
niques. )

The author gratefully acknowledges the help and encouragement of
Prof. R. Mark Goresky. Thanks also go to Prof. Edward Y. Miller for
assistance with several technical points. This paper was prepared, in part,
while the author was a Chaim Weizmann Postdoctoral Fellow at New York
University.

Chapter I. Witt Spaces and Generalized Poincare Duality

1. Introduction. We prove (3.4) that if X7 is a Wit space without
boundary, the homomorphism IH% (X; Q) = IHf(X ; Q) induced by inelu-
sion of chain complexes is an isomorphism. (The perversities m and # are
as in [11].} It follows that the augmented intersection pairing on
Fi ’:(X : Q) is nondegenerate. We then define (4.1) the Witt class of X,
w(X), a P.L. invariant taking values in W(Q).

2. Witt Spaces. Let X9 be a g-dimensional P.L. pseudomanifold
with (possibly empty} collared boundary 4X. Let x € X — dX. The link of
x, Ik(x, X), is unique up to P.L. homeomorphism [22]. Let d(x) be the
intrinsic dimension of X at x. Then there is a P.L. homeomorphism:
the(x, X) = §9 71 % I(x), the join of S~ and I(x). The space L(x)isa
pseudomanifold of dimension {(x) = g — d(x} — 1, unique up to P.L.
homeomorphism [1, pp. 420 and 424].
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Definition 2.1. Let X7 be a ¢g-dimensional P.L. pseudomanifold as
above. We say X is a Witt space if

IHP ) » (L(x); Q) = 0,

for all x € X — 34X such that i{(x) = 0 (mod 2).

For applications, we must transfate the Witt condition in 2.1 into a
statement about arbitrary stratifications of X. To this end, we prove a few
lemmas which culminate in Proposition 2.5.

Lemma 2.2, Let L be a closed P.L. pseudomanifold of dimension 21,
Suppose L = 8% * K for some P.L. pseudomanifold K of dimension 21 — 1.
Then IHF(L; Z) = 0.

Proof. The O-sphere §° is the discrete set {a, b}. Let T'be a triangu-
lation of K, and ¥ the associated stratification: & = (Ty;—; D L7 = T3
D+« D Ty). Let § be the triangulation of L induced by suspension, and
et § be the stratification on L similarly induced.

Consider a cycle z € IC* (L}, where perversity is defined with respect
to §. Then, |z| N 8% = 4. Choose a triangulation §; of L subordinate to §
such that z is a sum of I-simplices with coefficients. Each vertex v of | z| lies
in the interior of a unique simplex o of L. If Int(¢) C K, define f{q) = &,
the barycenter of 4. If v € Int(z * 7} or v € Int(h # 1), where Int(s) C X,
then define f(a) = %, Extend the map f linearly to simplices of |z, By [22,
p. 17], f determines a P.L. geometric chain which we denote £(z) in Cy(L),
supported in | K [. One easily checks that f(z) is a cycle and, in fact, | f(z)!
is (;m, D-allowable. We claim that f(z} represents the same homeology class
as z in IH7*(L). The triangulation of z can be used to construct a triangula-
tion of |z| X [0, 1] having as its vertices the set { (v, 0), (v, 1}[v € |z|} and
subordinate to the produet cell structute on |z| X [0, 1]. See, for instance,
[11]. Define H: |z| X [0, 1] = L by H(v, 0} = v and H(v, 1} = £(v}, and
extend linearly over stmplices of [z| X [0, 1]. Appealing again to [22,
p. 17], we abtain a P.L. chain H{(z X [0, 1)) in C, (L), with dH(z X [0, 1])
= f(z} — z. Moreover, it is easy to see that |H(z X [0, 1])] is (7, { + 1}-
allowable. This proves the claim.

Let W be the obvious P.L. chain in C, (L) with |W| = a # | f(z)|
and dW = f(z). Then W € ICT. (L), implying that the homology class of
F(z) in IHT (L} is trivial. Therefore z represents 0 in TH[?(L). Since z was
arbitrary, we conclude IHF(L) = 0. O
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CoroLLaRY 2.3, Let L be a closed P.L. pseudomanifold of dimen-
sion 21, Suppose L = 87 * K for some P.L. pseudomanifold K, where 0 < |
=< 2L Then, IHF(L) = 0.

Proof. Rewtite L as §%# ($V7! # K}, and apply 2.2. O
CoROLLARY 2.4. Let L be as in 2.3. Then IH?(L; Q) = 0.

Proof. The result follows from 2.3 and the isomorphism of groups:
IHML; Q) = IHML) ® Q, induced by the definition: ICR(I; Q) =
ICRI)®Q. Ol

ProrostrioN 2.5, Let X7 be a stratified P.L. pseudomanifold, with
(possibly empty} boundary 0X and stratification X = (X, D X, | = X g2
D DXy Let Ly x) bethe link of x; = X; — X;_{at x, where x €
(X — 3X) N x;, and x; # ¢. Then, X is a Witt space if and only if

IHT (L(x:; x); Q) = 0
fori =g — (2l + 1), whenever I = 1. ]
Pragf. Suppose X is Witt, There are P.L. homeomotphisms:
(x, X) = §9) % [(x)
fe(x, X} = 8" # L(x;; x).
Let j = d(x) — i. Thenj = 0, and
Lix;;x) = $7 # Lix) by [I, p. 423].

Case 1. Ifj — 1 = —1, then L{x;; x) = L(x), so the result follows
from the fact that X is a Witt space.

Case 2. Ifj— 1 = Q, the result follows from 2.4.
The converse follows from the fact that any P.L. stratification of X is
subordinate to the intrinsic stratification. 0

3. The Intersection Homology Spectral Sequence and Generalized
Poincaré Duality. Assume X is a g-dimensional P.L. pseudomanifold
with triangulation T, and associated stratification 3. Let » be the largest
integer satisfying 2 + 1 < g (assume g = 2). Assume rational coefficients
unless otherwise specified.
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Definition 3.1. Let p; be the perversity defined by:

aile) = [c z]forc <k

Pele) =

e —1
2

t‘z(c)=[ }forc>k

wherel = k = gandl < ¢ = q.
Since mic) = aAlc) for ¢ even, we may assume k£ odd. Note that
Py+1 = mand p; = A. B
There is a filtration ¥ on the chain complex Wii(x) [see 11]:
(] for s <0
F Wiy = { War1y-2,(x) for 0=s=vr
Wilx) for s> r
The filtration is induced by the inclusions of cm"nplexes: 0C W=
Whatt ¢ Whr—1 C -+ C Wi C Wi = WL

Following [24, p. 469], there is a convergent E'-spectral sequence
with

E.sj:,z = Hs+z(Fs Wg(X)/FJ_I Wg(X}}

and E* isomorphic to the bigraded module GUIHZ(X)), the associated
graded to the filtration

FHRX)) = Im{THEp, 41)-2(X) = IHH(X)).
TreOREM 3.2. Assume X is a Wit space. Then
(1) E, = Im(IHT(X) — IH} (X))
2) ES=0 for s>0.
Proof.  Siegel [23] gives a proof based on a geometric cycle-lifting
argument, in the classical obstruction theoretic vein. Anather proof, using

the sheaf-theoretic formulation of intersection homology is given in [12],
Section 5.6.1.
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Remark 3.3, If the Witt condition on links is satisfied only for odd
codimension strata of codimension less than or equal to 2k + 1, then the
spectral sequence collapses partially:

E5 =0 for s> ( — k). C

Finally, we prove generalized Poincaré duality for Witt spaces.
THEOREM 3.4. Let X9 be a Witt space. There is a nondegenerate
rational pairing
IHM(X; Q) X IHMX; Q) ~ Q
fori+j=g;i, 5= 0.
The pairing is given by augmented intersection product.

Proof. For ¢ = 0 or 1, the result claimed is obvious. For ¢ = 2,
Theorem 3.2 implies:

@) In(IHEX; Q) IHEX; Q) = TH(X; Q)
Therefore:
4) dimoIH7 (X; Q) = dimgIHF(X; Q) for 0 =j =gq.

The intersection pairing theorem [11] implies:
&) dimQIH}?‘(X; Q)= dimQIHf_j(X; Q) for 0=<j=gqg.
Combined, (4} and (5) yield:
(6) dimoIH(X; Q) = dimgIH}(X; Q) for 0= j=gq.

It follows that inclusion of chain complexes induces an isomorphism:
(7) e IHG(X; Q) ~ IHE(X; Q).
Then, [11] provides a nondegenerate rational pairing

HI(X; Q) X IH}(X; Q) = Q,  for i+j=g;ij=0.
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Intersection product of cycles is compatible with the isomorphism in (7) by
[11]. The theorem follows. O

4, The Witt Class w(X). Let X be a Witt space of dimension 4k,
k > 0. Theorem 3.4 proves that IH%. (X; Q) is a symmetric inner product
space.

Definition 4.1. (1} Let X7 be a Witt space of dimension g, g = 0.

If g = 4k, k > 0, the Wikt class of X, denoted w(X), is the equiva-
Jence class of the inner product space IHZ, (X; Q) in W(Q), the Witt group
of the rationals.

If g = 0, w(X) = rank(Hy(X; Q))- {1} in W(Q), where {1} is the one-
dimensional inner product space with matrix 1.

It g # 4k, set w(X) = 0 in W(Q).

(2) If (X, 8X) is Witt, set w(X) = w(X), where X = X U cone(dX).

Let signg: W(Q) — Z be the signature homomorphism [14].

Definition 4.2. The signarure of X, sign(X), is the integer
sign o(w(X)). .

Chapier II. Properties of the Witt Class w(X).

1. Introduction. In this chapter, we study properties of the Witt
class, w(x).
(1) Cobordism invariance:
If X% = W%t then w(X) = 0.
(2} Additivity:
IfZ%71 = gx* and —Z% ! = 3Y*, then w(X Uz Y) = w(X)
+ w(Y).
(3) Multiplicativity with respect to signature of closed manifolds:
If X is a Witt space, and M is a closed P.L. manifold,

wM X X} = sign(M) - w(X).

In Theorem 2.1, we give a proof of Witt cobordism invariance of the
Witt class.

In Theorem 3.1, we give a geometrical proof of additivity. By means of
the “pinch cobordism,” we deduce additivity easily from cobordism invari-
ance. Incidentally this result implies the Novikov additivity theorem for the
signature of manifolds [cf. 5, p. 588], [15].
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Section 4 contains a Kunneth formula for intersection homology of a
product M X X, where M is a closed manifold and X a closed Witt space
(4.1). From this, we deduce multiplicativity, generalizing a similar for-
mula stated in [10] for the case where X is the quotient space of a prime
order diffeomorphisim on a smooth manifold.

2. Cohordism Invariance.

TuEoREM 2.1. Let (Y, dY) be a (4k + 1)-dimensional Wit space
with boundary. Then w(dY) = 0.

Proof. ‘The argument resembles that in [11], which in furn follows
(13}

Let ¥ = ¥ U cone(dY) be the space obtained from ¥ by adjoining the
cone on the boundary. Since ¥ is a Witt space, there is a commutative
diagram of rational vector spaces (assume rational coefficients):

IS (9) ~> IH50Y) — TH5(P)

v V b

IHG (V) —> IHE(3Y) —> IH%; ()

Hertem + (c) = milc)for 2 = ¢ = 4k, m + (4k + 1} = n(dk + 1) = 2k,
anda — (e} = di(e)for2 = c < 4k, i — (4k + 1) = m(4k + 1) = 2k — 1.
Note (m+)} + (A—) = 1.

In the diagram, the row sequences are exact and, in fact, dual to each
other (over Q). The vertical map « is surjective (by 1.3.3) and 3 is the iso-
morphism induced by inclusion. A standard argument in linear algebra
[13] implies that i{(JH%" (¥)) is self-annihilating in IH%,(3Y), under the
paiting of .3.4, and dimg iTHE S (¥) = (1/2)dimq IH%(3Y). It follows
that w(d¥) = 0.

3. Additivity, The cobordism invariance of the Witt class w(X'} sug-
gests a simple geometric proof of the additivity of w(X ). “Additivity” refers
to the property described in the following proposition.

Prorostrion 3.1. Ler Y be an oriented 4k-dimensional Witr space,
and Z, X1, X, subspaces of Y such that:

(1) Y=X,UX,
(2) X, N X, =2Z,and Z is bicollared in ¥
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(3} (X, Z) and (X4, —Z) are oriented 4k-dimensional Wizt spaces
with boundary, and orientations compatible with that of Y.

Then, w(Y) = w(X,) + w(X,).

Proof. LetK,, K, be triangulations of X |, X3, respectively. Denote
by K7, KF the complexes with isomorphic simplicial collars added on the
outside [22). The induced triangulation of Z (on the outside edge of the
collars) will be denoted L. Then |K| = [K; Uy KS | is P.L. homeomor-
phicto Y, as in [21, p. 24]. The “pinched space” is the polyhedron under-
lying the complex J defined by:

J = [K; U cone(L;)] U [K; U cone(l,)]

where L, L, are the triangulations of Z in X, X, and v is the common
cone vertex.

Now, define a continuous map: p:| K| — |J| by collapsing |L| tovin
[Z]. Otient | J| so that the induced map p,, on homology carries the orienta-
tion of | K | to that of |J{. By constructing a triangulation explicitly, we see
that the mapping cylinder C, is triangulable (see Figure 1). Attach a collar
|[7| X Ito Cp, forming the space P. It is not difficult to see that P is a
pseudomanifold with collared boundary. It can be oriented so that P =
|K| — |F|. We call P the pinch cobordism. See Figure 2.

To check that P is a Witt space, it is enough to check that
IH% (k(v, P); Q) = 0. But k(v; P} is P.L. homeomorphicto Z X [—1, 1]
U cone(d(Z X [—1, 1])). This is homeomorphic to the suspension of Z
with suspension points identified. Therefore, S° * Z has the same normal-
ization as /k(v, P) [11], implying

IHZ (tk(v, P); Q) = IH%,(S°* Z; Q) = 0,

with the [atter isomorphism from 1.2.4.
By cobordism invariance of the Witt class, we have

w(Y) = w(|J]) = w(X)) + w(X,)
= w(X|) + w(X,) (by definition [.4.1) 0]

4. Multiplicativity with Respect to Signature of Manifolds. Sup-
pose M is a P.L. manifold, and X is 2 Witt space, both without boundary.



1078 P. H. SIEGEL

*r-—=_

V=U U @aUxI).
au

vV

Figure 1. Triangulating a pinch cobordisn.

Then M X X is a Witt space without boundary. We prove the product
formula

(1) wiM X X) = sign(M}-w(X)

where sign{M}-w(X) is sign(M) times the element w(X) in the abelian
group W(Q).
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Figure 2. Sketch of a pinch cobordism.

The proof proceeds as follows. For closed manifold M and arbitrary
pseudomanifold X, we construct an isomorphism

i :H (M, Q) ® IH{(X; Q) ~ IHE(M X X; Q),

for every perversity 5. This is done in Theorem 4.1.
Assume X is a Witt space, dim{M X X) = 4k, and specialize to the
case p = . We have an isomorphism

_ _E%Hi(M; Q®IH](X; Q) = IHEM X X; Q)

itj=

which can be regarded as an isomorphism of rational inner product spaces.
The inner product on the right-hand side is that given by Theorem 1.3.4,
while that on the feft side is uniquely determined by:

(e @b, cRd)
(—1)dmbdimecy oy th, dyy if dima + dime = dim M
= dimb + dimd = dim X
0 otherwise

whe:te {: ¥p and {, )y are the intersection pairings on H (M; Q) and
THE (X, Q). 1t follows at once that w(M X X) = 0if dim M = 1 {(mod 2} or



1080 P. H. SIEGEL

dim M = 2 (mod 4) and wiM X X) = sign(M) w(X)if dim M =0
{mod 4).

Now we formulate and prove Theorem 4.1. First, define a chain
homomorphism

P.CMYRICE(X) = ICE(M X X)

as foflows. Given ¢; @ d; € C(M) @ ICE(X), let &; (resp. a?j) be the ho-
mology class in H,({c,|, |d¢;|) (resp. H;({d,|, |8d;|)) corresponding
to ¢; (resp. d;). Denote by ¢; X d; the chain in Cy;(|¢;| X |d;]) C
Civ;(M X X} cortesponding to the ordinary exterior cross product
& X diinH(le;| X {d;|, |¢;| X |di] U |e;| X |ad;|). With respect to
the product stratification on M X X, ¢; X d; lies in ICP (M X X). Set
iFle; @d;) = ¢; X d;. Cleatly i? is a chain map. Let if be the homomor-
phism induced on rational homology:

IE:H (C{M; QY QICEX; Q) —~ IHE(M X X; Q).

THEOREM 4.1. if is an isomarphism.

Proof. We assume rational coefficients throughout, when not speci-
Sfied.

Lemma 4.2,  if is injective.
By the classical Kunneth theorem, there is a canonical isomorphism

H(CM; Q) QICX; Q) = HM; Q) QIHE(X; Q).

Let g be the perversity such that p + § = 7, and consider the homomaot-
phism:

i H M) QIHI(X) — IHI(M X X).
The dual homomorphism is:
GE*:UHIM X X)y* — (H M) QIHI(X)*
Thete are canonical isomorphisms

2) JHIM X X)* = IHEM X X)
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(3 (H M) QIHIX W = (H MW QUHIX N*

= H (M) Q IHZ(X)

by 1.3.4.
So, we regard (EE )* as a homomorphism

(D JHEM X X) = H(M)QIHE(X).

Injectivity of i£ follows from the following claim.

Ciaim. The composition (7)* o if is the identity homomorphism.
To verify the claim, observe that

<f§{z ai@ﬁj}: fz(}: ,}’k®af)>MXX — <E ai@ﬁj: E ?k®5;>®;

where { , ) is the pairing of H (M) & THE(X ) with H (M) ® IHZ(X),
and that, by 1.3.4, intersection numbers determine the isomorphisms (2)
and (3) above. . [l

Lemma 4.3. £ is surjective.

Proof. A geometric proof is given in Siegel [23]. The main idea is to
use Lemma 4.4 below to construct homologies by deformation of cycles.
We include this [emma for its independent interest. An axiomatic proof
based on the sheaf theoretic formulation of intersection homology may be
found in [12], Section 6.2,

The following technical femma provides the deformation retractions
used in the proof of 4.3. We thank Javier Bracho for his assistance on this
argument.

Lemma 4.4,  Let § be a triangulation of M, with skeleta §; and coske-
leta S, for 0 = j < m. Let T be a triangulation of X, with skeleta T;, for
0 < i < x. Let p and § be perversities withp + g = t. Let QF and Q7 be
the associated basic sets [11]. Given integers i, jwithl <= i < xand 0 < §
= m, there Is an embedding:

MXX—>EYXIQIN T, ) * [(Spajmy X X) UM X QF 141)]

which is the identity on

S(j) X {Q? N Tx—Z]
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and
(S X X) U (M X QF_;11)

and which takes M X X to a union of join lines.

Proof. It suffices to define compatible embeddings on products of
simplices in $” and T'":

AP X AT — (A% X AS) * ((AF X A7) U (AP X a4
where AP € §7, A = AP N SY), AP = AP N S, ;_;, and
ATeT A=A N[QIN T, 1), A2 =A7NQF ;.

Let {v#}, {vE}, {vE}, {v{} be vertices of the simplices in these decomposi-
tions:

AP = A% % A®
A9 = A° # A4,

Any pointsx € AP and y € A? have unique expressions in terms of barycen-
tric coordinates:

x=Lav*+ Ebvi, withLa, +LTh,=1,a,b;20
and
y=Levi+Ldpd,withle; +Ed,=1,¢;,d; 2 0.
Let F = [0, 1]. Define
t:A? > ] by t(x})=Lb;
and
$:47 > 1 by s(y)=Ld,.

Both are P.L. maps.
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Consider the closed convex subspaces of A? X A7:

A = {(x, y}|tx) < s(p}}
B = {(x, y)|t(x) = s(»)}

C = {(x, p}e(x) = s(p}}.

See Figure 3. We define the embedding separately on these subspaces. Itis
easy to check compatibility on intersections:

Define ho:C — (A% X A%y % (A2 X AZ) C (A® X A%)# (AP X AT) U
(AP X A9)) by

2 S P pd
(Za(-vi v )(1 o+ (Eblvz Ld v )r’

zaf ! ch Eb[-’ ! 2({,_
(x,y) ifr=tx) #0,1
(x, v} it = t(x) = 0,1.

Define A 4:A — (A® X A°) # (AP X A9) C (A" X A%} * ((A® X A%} U
(AP X AY)) by

(x,JJ) -

Eﬂil’? EC{Vf — Eﬂ[h"f( __r_) Eb;l’f’/i) Edﬂ-’f)
(P22 o — e (P (- )+ =) =20

ift =t¢x) # lands = s(y) = 0

(x, y) if s(y) = 0 ort(x} = 1.

Define hg:B — (A® X A°) # (AY X A?) C (A% X A} * (A% X A9)Y U
(AP X AY))} similarly:
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Figme 3. Example of 2 production deformation.

(e, ) ~

2 Y oyl I .
(et Bty (B B, Barp

t '1-3 t PR
ift=r(x)¢0ands=s{y) #1

(x, y) ife(x) = O0ors(yy = 1.
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Continuity is checked using barycentric coordinates, and the defini-
tions agree on overlaps. The image is easily seen to be a union of join lines.
Since A# X Af7is compact Hausdorff and the map is injective, we have an
embedding as claimed. D

Chapter 1. Rational Surgery on Witt Spaces.

1. Description of Program. In this chapter, we develop a technique
for performing rational surgery on Witi spaces. We use it to prove that the
Witt class w(X) determines the caobordism class of X. In particular, if X is
a closed Witt space of dimension 4%, and w(X)} = 0, we find a “surgery
basis” {{a, B1), ..., (&, B8,)} for IHF.(X; Q) with respect to which the
inner product has matrix diag[}(? 1), ey (‘1} é)] By collapsing a regular
neighborhood of an irreducible representative for a, (see Section 2), we
obtain a Witt space X; with

1) wX() =0
and
) rank IH% (X, Q) = rank IH5.(X; Q) — 2.

Roughly speaking, the homology classes {{a;, )} are killed. Moreover,
tite mapping cylinder of the collapse (with a collar added) gives a Witt
cobordism between X and X, . We say that X, is obtained from X by an
elementary surgery, and call the cobordism the trace of the surgery.

Iterating this procedure n times, we construct a Witt space X, with
IHE(X,; Q) = 0 and a2 Witt cobordism ¥ between X and X,,. Coning off
the copy of X, in ¥ produces a Witt cobordism of X to zero.

A similar procedure warks when the dimension of X is 4k + 2. In that
case, we find a sympleetic basis {{a, 8;), - ... (&,, 8,)} with respect to
which the skew-symmetric form on IHZ ., (X; Q) has matrix diag[(_¢ §),
ciey (_? é)] Then proceed as above. The contents of the chapter are as
follows. We define and prove existence of irreducible representative cycles
(2.1, 2.2). Then we study the intersection homology of the regular neigh-
borhood of an irreducible cycle (3.1} and show that the mapping cylinder
of a collapse as described above is a Witt cobordism (4.1, 4.2). Finally, we
construct a surgery exact diagram (4,3) very much in the elassical vein [18]
to compute the effect of surgery on intersection homology, verifying (1) and
(2) above.
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2. Irreducible P.L. Geometric Cycles.

Definition 2.1. Let X be a P.L. pseudomanifold. A representative
cycle z for o eIHf(X; G), G = Z or Q, is irreducible if

(1) Hllz|;2) =2
(2) the generator of H( |z|; Z) has coefficient +1 on every j-simplex
of |z|, in some triangulation of |z].

Let X* be a P.L. pseudomanifold of dimension 2k with irreducible
fundamental class [X]. By abuse of language, we say X is irreducible.

Lemma 2.2. Let X* be an irveducible P.L. pseudomanifold. Given
aclH f (X; Q), there exists a representative cycle z which is irreducible, if
¢t=j<2k— 1L

Proagf. The proof proceeds in 2 steps. Step 1 constructs, by a general
position argument, a representative cycle v such that | v| supports a simpli-
cial cycle with coefficient +1 on every j-simplex. Step 2 uses the technique
of piping [22, p. 671 to produce a cycle z which, additionally, satisfies the
condition H(|z|, Z) = Z. If J is a j-cycle, L; denotes the complement of
the intrinsic open j-stratum.

Step 1. Insome triangulation T of X, choose a representative simpli-
cial cycle for «. By reorienting j-simplices if necessary, we may assume all
non-zero coefficients of j-simplices are positive. Clear denominators so as
to obtain an integral cycle y = E..r_n(o)a such that all distinet non-zero
coefficients share no common factor.

If #(a) = 1 whenever n(s) # 0, then set v = y and Step 1 will be
completed.

If not, let E,, ..., E, be the connected components of the intrinsic
open j-stratum of ¥ = |y|. To each component we can associate a unique
coefficient n;, the coefficient of simplices in that component. Let W be the
disjoint union of »; copies of E;, i = 1, ..., n, and f: W — Y the obvious
P.L. map. Let W be the quotient space of W obtained by identifying x to x’
ifx,x'ef~"(Zy) and f(x) = f(x’). Then W supports a simplicial j-eycle w
having coefficient + 1 on all j-simplices, and such that £ (w) =y, whete f,
denotes the induced map on chains.

Note that /(W — Ly) € X — Ly. Perform a finite sequence of shifts
to the mapf, bringing f into general position with respect to Ly [1, p. 418],
[22, p. 61). We move £(%) only if Int(r) C W — Ey. Letg: W — X be the
resulting map. The linear trace of the shifts yields a P.L. homotopy H: W
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X [0, 1] = X with Hy — fand H,; = g. Then g (w) is a P.L. geometric
cycle which, when triangulated, has coefficient +1 on each j-simplex. Its
support is alsa (B, j)-allowable.

Give W X [0, 1] the arientation such that a(w X [0, [}l =w X 1 —w
X 0. Then H w X [0, 1]} = g {w} — folw) = g (w} — y. Since H(x, 1} =
H{x, ) = f(x)whenx e Ly, forallt, and H(x,t) e X — LEywhenx e W —
Ly, for all ¢, it follows that | H (w X [0, 11}] is (7, j + 1)-allowable. We
canclude that g {w) represents the same homology class as y in IH f X; Q.
Let v be the multiple of g (w) such that [v] = a € IHf (X; Q). Then v is the
desired representative, and Step 1 is complete.

Step 2. Let{F;};=; . bethe connected components of the intrin-
sic open j-stratum of |v|. Since dim(a) < 2k — 1, we can construct an
orientation respecting pipe P; from F;to Fi4y, for 1 </ = k — 1, with
distinct pipes disjoint [22, p. 67]. Note that since [v| is a subcomplex of
some triangulation of X, the pair (X — Iy, |v| N (X — Ly)) is locally
unknotted at all points in the interiors of j-dimensional simplices of |v|.
Therefore the piping construction can always be carried out.

Let Z be the P.L. subspace of X we obtain affer the piping is done.
Then Z supports a simplicial eycle which has coefficient 1 on every simplex
in Z. Since Z — E5 is connected, this cycle generates H j-(Z i Z). Clearly, its
support is (7, j)}-allowable and, by “filling in the pipes,” we see that it
represents the same homology class as g (w} in LH?;_T (X: Q). Let z be the
multiple of this ¢ycle such that [z] = [v] € IHf{X; Q). Then z satisfies the
conditions (1) of Definition 2.1. O

Remark 2.3. If X?is an irreducible P.L. pseudomanifold of dimen-
sion 2, any class « € IH? (X; Q) is represented by a cycle whose support isa
P.L. embedded §'. For example, in S! X S', with standard generatots «,
for H (S* X §%; Z), the class ac + b3, where a, b € Z, is represented by an
embedded S iff g.c.d.(a, b) = 1.

3. Regular Neighborhaods. Let X2 be an irreducible pseudomani-
fold. Let z be an irreducible representative for o € IH H(X; Q), with U a
(closed) regular neighborhood of |z| in X. Then U/ is a pseudomanifold
with collared boundary aU, and intrinsic stratification induced from that
of X [1, p. 437]. Let U = U U cone(3l) be I/ with the cone on al7 ad-
joined. The stratification of I induces a stratification on . Since |z| is
(m, k)-allowable, the cone point v, constitutes the entire 0-stratum of the
stratification of U.
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Proposrrion 3.1, If X is a Witr space and {«, oy = 0, then:
IHF O, Q) = 0.

To prove this, we prove a series of preliminary lemmas. Let 7:JC5~
(U; Z) — ICT(U; Z) be the inclusion of chain complexes, where 7 — is the
perversity: i —(c}) = mlc)for2 = ¢ = 2k — land m—(2k) = m(2k) — 1
=k — 2. An argument identical to that given in the proof of I1.2.1 proves

LeMMa 3.2, There is an exact sequence of integral intersection ho-
mology groups.

JHT (D) 2> [HEQU) > [HF—(0) - IHF D) > 0. O

We made no use of the irreducibility of z in Lemma 3.2, but it is cru-
cial in the next lemma.

Lemma 3.3, Let u be a generator of Hi(|z|; Z) = Zi(\z|, Z). Then
IHF(U; Z) = Z and the homolagy class of u is a generato.

Proof of 3.3. Let N denote a collar of 3L in 7. There is a P.L.
homeomorphism of N U cone(alV) with cone(dl/) = vo * dU. Let Uy =
Cl(/ — N). Suppose £ € IH}E’F{L’;’; Z}, with representative cycle y €
ICTF~(0; Z). Then |y| N vg = ¢. By pseudoradial projection, we can as-
sume |y| C Uy.

Give U the structure of a derived neighborhood [22, p. 33}. Then
every o € U satisfies:

o} = ([o] N |z *(fo| N D)

where A*p = ¢*4 = A, by the usual convention.

Triangulate the cycle y so that each simplex lies in a unique simplex
with interior in U. If a vertex v € | y | lies in Int(o), then | o| N |z| # ¢, and
we let 7 denote the simplex in |z| with |7]| = |a| N |z].

Define f(v) = #. Extend this map on vertices of |y | linearly over sim-
plices, obtaining a P.L. map f:|y| = |z| C U. Then f determines a geo-
metric cycle fo{v) in Ck(ﬁ'; Z). Since the support of f,(y) liesin |z |, foly)
€ IC?_(U; Z). Proceed as in 1.2.2 to show that f.(y) represents £. But,
F+(y) is a k-cycle supported in |z|, and Hy(|z|; Z) = Z by hypothesis.
Therefore f{y) = j-uforsomejeZ, andso £ = j-[ul.

It is easy to check that [«] is nontrivial. O
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By the intersection pairing theorem [11], there is a nondegenerate
pairing induced by intersection product:

IH(0; Q) X IHTH(0; Q) <5 Q.

Here 7i+ is the perversity satisfying (m—) + (#+) = £. Choose § €
IH%Y (U; Q) a generator such that

{a, ) = 1.

LemMa 3.4, The following diagram commutes and rows are exact.

HF(0; Q) —> D, Q) -0

; lf

IHPY (0, Q) =—— [HUO;Q) « 0
i

All maps are induced by inclusion of chain complexes. The map g is
given by:

g(&) = K&, a)-8.

Proaf. Since ICfﬂ(ﬁ; Q)= ICTH([?; Q), the map j is injective.
Finally, the description of g is immediate from the definition of 8, and
commutativity now follows easily. O

We now prove Proposition 3.1.

Proaf of 3.1. Refer to the diagram of 3.4. Under the hypothesis of
the proposition, g is the zero map. Injectivity of f and commutativity imply
that i © k is the zero map also. ¥ inherits a Witt space structure from X, so
I.3.4 implies that { is an isomorphism, so £ must in fact be the zere map.
The proposition now follows from surjectivity of %. 1

4. The Surgery Exact Diagram. LetX be an irreducible Witt space
of dimension 2k. Assume there is a decomposition of IHT (X; Q),

H{X; Q) = V@V,

where Vo = (yy, ..., ¥, Vi = (¢, 8,) and with respect to this basis the
intersection pairing satisfies
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lay, v =B, v =0, i=1,...,1
{ag, a1y ={8;,8,>=0
{B;,ap) = £1.

Let I be a regular neighborhood of an irreducible representative cycle
z for ;. We may assume that 8/ is bicollared in X [1, p. 437]. Form the
space

X, =X — Int(l)) U cone(dl/).

The passage from X to X is called an elementary surgery. Note X is (topo-
logically) homeomorphic to the space obtained from X by collapsing Uto a
point.

The following sequence of propositions, whose proofs will be deferred
briefly, partially describe the effect of the elementary surgery.

ProOPOSITION 4.1. X is an irveducible Witt space.

ProrosiTioN 4.2. Let Y be the mapping cylinder of the collapse
X — X, with a collar X X Iattached. Then Y can be given the structure of
a Witt cobordism between X and X . (We call Y the trace of the elemen-
tary surgery on X.)

ProposITION 4.3.  There is an isomorphism
HiX; Q =V,

which preserves the intersection form.
Repeated application of these propositions yields the result alluded to
in the introduction.

Turorem 4.4. Ler X be an Irreducible Witt space of dimension 2k,
kEz L IfwX) =0, then X is Witt cobordant to zero.

Praof. Suppose dim X = 0 (mod 4). Then w{X) = 0 implies that the
inner product space IH (X; Q} is split [14]. Choose a basis {ay, 8, a1,
B3, ..., o, B8, ) with respect to which the matrix of the form is diag[(? é),

L0 O Let Vo= (2. 83, ..., @,, B,) and V, = (o, A;), and apply
4.1-4.3. We obtain X, Witt cobordant to X with IH{(X,; Q) = (a3, 84,
-- -y ,, 3,), isomorphic to Vj as rational inner product space. Now de-
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compose IHJ (X, Q), setting V§ = (&4, 84, ..., o, 8 and V} = (a3,
83), and repeat the procedure. Continue until we obtain X,,, cobordant to
X, with IH} (X,,; Q) = 0. The cobordism to X is obtained by pasting the
traces of the elementary surgeries along their boundaries. Now attach
cone(X,) to complete the cobordism of X to zero.

If dim X = 2 (mad 4), then the intersection form on IH?(X; Q) is

skew-symmetric. Choose a symplectic basis {a, 8y, ..., o, , 8,} with re-
spect to which the matrix of the form is diagf(_$ 3), ..., (¢ 5)]. The
same reasoning as above shows that a sequence of » surgeries will yield a
cobordism of X to zero. O

We now supply the proofs of 4.1-4.3.

Proof of 4.1.  The fact that X is a Witt space and 317 is bicollared in
X immediately implies that X is a Witt space. If & > 1, general position
praves that the nonsingular part of X — Int(If) is path connected. There-
fore X, is irreducible.

If £ = 1, then X has at most point singularities. Therefore z is an
embedded §* and U is homeomorphic to $* X [—1, 1]. The assumption
that [z] € IH?(X; Q) is nontrivial implies the nonsingular part of X —
Int(L7} is path connected, so X is itreducible.

Proof of 4.2,  The trace of the elementary surgery is homeomorphic
to the following polyhedron, defined analogously to the trace of a spherical
madification [18}]. To (X — Int(LF)) X [0, 1], attach ¥ along 37 X 0 and
cone(dU} along 3U X 1. There is an embedding of I7 in the resulting space
as AU X ] with U and cone(dL7) attached as above. Now attach cone({7) =
v * U along U via this embedding, yielding the trace of the surgery Y. Yisa
pseudomanifold with collared boundaty, and it ¢can be oriented so that
dY = X; — X. To prove that Y is a Witt space, it suffices to check that
Ik(v, Y} satisfies

IHE (R (v, Y); Q) = 0.

But lk{v, Y) = ﬁ, so Proposition 3.1 completes the proof. O
Proof of 4.3.

Step 1. Transverse chains

Let U denote (by abuse of notation) the fundamental eyele of X re-
stricted to the regular neighborhood U, and 317 its boundary chain. Let
TC%(X) be the subcomplex of IC% (X ) consisting of chains ¢ for which ¢
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and dc are dimensionally transverse to 3U/. To each element ¢ € TCT(X),
we can associate the intersection chain ¢ N U, and, by the Lefschetz
boundary formula;:

e NU)=3 NU+ (—1)*cnau.
This defines a homomorphism

t:TCH(X) — ICP(U) for each i

bytlc) = e N U,

Define ICT(X, X — U) to be the image of ¢ in ICT(I7). Give the
graded group IC7A(X, X — U} the structure of a chain complex, defining
§CRX, X —U) = IC" (X, X — U)

by
&8t(e)) = dc N U = H(dc).
Note that & is well-defined: if #{c¢) = 0, then
e =e NU)=3 NU+ (—D*cnNav=0.

Dimensional transversality implies that

dim(|dc N U| N e NaU|) =i — 2

eNU=0
and

e N auv = 0.
In particular, 5(t(c)) = dc N U = Q.

It is easy to check that § © § = 0. We conclude that ¢: TCP(X) —
ICF(X, X — U}is a chain homomorphism. Let X7 denote the ketnel of £,
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with the induced chain complex structure. There is a short exact sequence
of complexes:

0— K% - TCHX) > IC%X, X — U)— 0,
and an associated long exact sequence in homology:
- HyCEX, X — U)) > Hi (KT
-~ Hy(TCE(X)) = HyICR(X, X — U)) ~

The notation IC% (X, X — U)is justified by the folfowing fact. If ICH (X —
U) is defined as the subcomplex of IC% (X)) with chains supported on X —
Int(L/), then the homology of the quatient complex of the inclusion JCg (X
— U) - IC™(X}is isomorphic to the homology of IC7(X, X — U). This s
proved using arguments like those referred to in Step 2. In Steps 2-4 we
analyze the homology groups occurring in this sequence.

Step 2. HTCH(X)) = IH(X)
The inclusion of chain complexes

P TCR(X) - ICH(X)
induces an isomorphism on homology. In other words, H(TC i(X N =
IHZ(X).

Proof. For surjectivity, apply stratified general position [17] to a cy-
cle z € ICH(X). Injectivity follows from the relative general position
lemma.

Step 3. The complex ICEY (1)
Let imn+ denote the sequence with

m+ {c)=mlc) for 2=c=2k—1
m+ (k) =m2k) + 1 =k.
Although m+ is not a perversity, we may define (m+, j)-allowability of

the support of a geometric chain with respect to a stratification. Consider
the complex IC%™ () consisting of chains ¢ of dimension j such that |c| is
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(m+, j}-allowable and |8c| is (m+, j — 1}-allowable with respect to the
steatification on U,

The inclusion ICT (L) ~ ICT* (L) induces a short exact sequence of
complexes. We can analyze the homology of the quotient and obtain an
isomorphism

IHY (D) = 17 ()
and an exact sequence
0 - IHZO) » IHFYO) - IH].,QU) » IH]_(0) =~ ---.

We get another [ong exact sequence from the short exact sequence induced
by the inclusion ICYL) — ICEY (), where i+ is the perversity:

A+ (e)=nle) for 2=5c¢=<2k—1

n+ (2k) =n(2k) + 1 = k.
There is a commutative ladder of integral intersection homology groups:

0 — IHFO) — IHFY(0) — IH7.((3U) — [H}_(U) -

l l"' l !

0 — IHNO) — YWY - H_ (0U) = Hf_(0) —~

All vertical maps are induced by chain complex inclusions. Since X is Witt,
[ and AU are also Witt. Proposition 1.3.4 and the S-lemma imply that ¢ &
Q is an isomorphism.

We now identify IH” (U, 3U') with IHf*(ﬁ) in dimensions § = k. Let
N be a simplicial collar of 3L/ in I, There is a P.L. homeomorphism
cone(dl/) U N = cone(dU) preserving cone [ines in the cone on the left. In
l:’, we can triangulate any chain so that its intersection with cone(alU) U N
will be subordinate to the simplicial structure on cone(dl/} U N. Let p,
denote the chain map induced by pseudoradial projection along cone lines
from the cone vertex v to the boundaty of CHU — N), p,: C{0) ~ C (D).
Note that p,(v) = v, and p, o p, = P
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Define the homomorphisms:
YAICP X, X — Uy > ICPYW0), j=zk+1, and
Ve IZPEX, X — U) = IZEY(O)  (eyeles) by
$i(te)) = pyfr(e) + (—1VTlv % (¢ 0 aU)).

The discussion of ¢ in Step 1 shows that y; is well defined.

For j = k + 1, one checks that ¥, (8t{c)) = Y, (t(c)). Therefore ¥,
induces a homomorphism (¢,), on homology for j = k, which is in fact an
isomorphism.

Proof of surjectivity. Let z € IZ#T(U). The cycle p(z) represents
the same class as z in IH7 ¥ (U). The chain p ((z) N U lies in ICT (X, X —
U} and satisfies: ¢ (pz) N U} = pfz).

Proof of injectivity. Let z € IZ(X, X — U) and suppose ;(z) =
dw, where w € IC”_}-L(LAF). Then p,(w} N U lies in FCTH (X, X ~ U) and

Hpw) N UY=3p w)y N U
= plow) N U
=psz} N U
=yz) N U, sincep,opy = py.

The chains ¢;(z) and z + (—1)/T'v*(z N AU) are homologous in
IC_;“(I:’}, via the chain we denote by y. By the relative stratified general
position lemma, we can assume y is dimensionally transverse to 3U. Then y
NUeICH (X, X — U)and 8(y N U) = ($,(z) O U) — z. Thus z =
Slpdw) N U —y N O).

Step 4. The complex K7

Let IC%(X — U)be as in Step 1. Note that there is 2 natural inclusion
ICY(X — U) » ICR(X ~ U).

Define homomorphisms for all f,

¢ K"~ ICP(X — U)
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by ¢;(c) = ¢ N (X — Int{l/)), where by abuse of notation, X — Int(V/)
represents the restriction of the fundamental cycle of X to X — Int{{/).
Then ¢; is injective, because

(1) ¢ =(cNX—Int(l)) +NU) for ceTCX)
and
(2) te)=ceNU=0 for ceK}P.

Clearly the ¢, are chain maps and we regard them as an inclusion of chain
complexes.
The induced maps on homology (¢;), are isomorphisms for j < k.

Proof of surjecrivity. Let N be a collar of U in X — Int(}, and p,
be the chain map on C (X — U) induced by pseudoradial projection along
cone [ines to the inner boundary of N. If = EIC}?‘ (X —Ulforj=kandzis
a cycle, p (z) represents the same homology class in IH;% (X — U)). But
P z) € $(KT), since its support lies in X — U.

Proof of injectivity.  Let a € Hi(K ™). If the cycle z represents «, then
P 4{z) represents & also. Assume p (z) = dw, where w € I ;’_‘H(X - U)If
J = k, then py(w) € 6(K 7", |). Moreover,

3p *(W) = P*(aw)
= pub(z)

= pd2)

Step 5. The surgery exact diagram
There is a commutative diagram of rational homology groups, with
exact rows and column (assume rational coefficients):

IHZ, (U, 30y — JHFAU) — IHF(U)— IHP W, atn)
Rt ’

4 _ r o
IHp L X — ) =2 HP (X —~ U)—=H (X)) IH X, X~ U)

IH™Y () IHIX = Uy HET WO = IHTH D)
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The lower horizontal exact sequence is a segment of the exact se-
quence in Step 1. We have used the isomorphisms proved in Steps 2, 3, and
4 to relabel some of the groups.

The upper horizontal exact sequence is derived from the inclusion
ICHQ@U) — ICT(U), where ICTE (U} is the subcomplex of IC%(X) with
chains supported in /. The homology of the quotient complex is denoted
by IHZ (U, 3U).

The two vertical homomorphisms in the middle of the ladder are in-
duced by the obvious inclusion of chain complexes. The excision isomot-
phism IH™(U, 8U) = IH"(X, X — U) follows from an atgument vety
much like the proof for ordinary homology. We do not require this isomot-
phism here, however.

The exactness of the vertical sequence fol[ows from stralghtforward
analysis of the inclusion IC”‘(X Iy - IC’“(X ).

The homomorphism r, is taken from lemma 3.2 and commutativity of
the triangle follows from chain level definitions of homomorphisms.

From Step 3, the map ¢, is given by £,(y} = {v, a,} -3, where 8 gener-
ates IHEY (Y and ( , > is inner product on IHF (X).

Step 6. Conelusion

Assume rational coefficients. Recall from the beginning of this section
the basis {a1, 81, ¥1, - - ., ¥1} Of IHZ (X} and the decomposition IH T (X )
= Vo @ V. From Step 3, we have

tlv) =0, i=1,....1
and
tulay) = 0.
Similarly,
14(8,) = 8

where IH (X, X — U) is identified with IHF+ (U) by the isomorphism in
Step 3. By exactness,

IHEX — U) = V{® («f) @ Image(d,)

as a rational vector space, and V3 @ («f) is isomorphic to Vy @ (e;) by an
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isomorphism compatible with intersection product. Now, Proposition 3.1,
Lemmas 3.2 and 3.3, and commutativity of the left triangle imply:

Image(j) = (o) @ Image(d,)
Finally, since the vertical sequence is exact, we conclude that:
HEX - U) = Vi = V.

The isomorphism is compatible with intersection product. This completes
the proof of 4.3. O

Chapter IV, Witt Space Boxdism Theory

1. The bordism theory Q%™ Let £ he the class of oriented pseudo-
manifolds L satisfying:

(1) L is a Witt space
(2} IH™(L; Q)Y = 0if dim L = 2/

The axioms for a Z/2Z-bordism theory [2] can be easily modified to give
axioms for an oriented bordism theory. It is not difficult to check that £ is
a class of (oriented) singularities (use 1.2.4). The associated sequence {F" }
is the class of all oriented Witt spaces. Let Q) ** denote the bordism theory
based on the class of singularities L.

ProposiTION 1.1.  The coefficient groups Q15 (pt) are:
Qe (pt) = Z
QY (pr) = 0, ifg # 0 (mod 4)
QY (pt) = W(Q), ifg>0 and g=0(mod4).

The isomorphisms in dimension g = ¢ are induced by the Witt class.

Proof. The case g = 0 is evident. When g = 1 (mod 2), observe that
any odd dimensional Witt space bounds the cone on itself.

The case ¢ = 2 (mod 4) follows from cobordism invariance (I1.2.1}
and surgery {I11.4.4). In applying I11.4.4, we can use the fact that any Witt
space X ** which is not irreducible is Witt cobordant to an irreducible Witt
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space X', Simply take connected sum of components of the 2k-stratum of
X,say Ey, ..., E,,, in order, so that the 2k-stratum of X~ is E #E# - -
FE,.

Finally, in the case g = 0 (mod 4), I1.2.1 and II1.4.4 show that the
homomarphism

w: N (hr) - W(Q)

induced by the Witt class is injective. In Section 2, we construct explicit
genetators for Q% (pr) and prove that w is also surjective (2.2). |

2. Generators for Q) ( pt).

TraeorREM 2.1, [7]. Let B be an n X n matrix with integer entries,
symmetric, and with even entries on the diagonal. Then, fork = 1, thereis
a manifold with boundary (M, M) of dimension 4k such that:

(1) Mis (2k — 1)-connected, dM is (2k — 2)-connected, and Hyy (M)
is free abelian; ’

(2) The matrix of intersections Hy (M) & H, (M) — Z is piven
by B. O

Given an element [V, 8] € W(Q), it is possible to find a basis {v,} for V
with respect to which the matrix of the inner product, B, is an integral
symmetric matrix with even entries on the diagonal. Theorem 2.1 produces
a manifold with boundary (M, 3M) such that H, (M; Q) represents the
Witt class [V, 8] in W(Q). In the long exact sequence of rational homology
groups (rational coefficients assumed):

—)HM(BM)—’H%(M}—E*H%(M, aM) —Hy (M )}—

the transformation i, has matrix B with respect to the bases {v;} and { v}*},
where {v¥} is dual to {v;} under the intersection pairing of H,, (M) with
Hy (M, 3M):

Therefore the Novikov group of (M, M) and the isomorphic group

IHB. (M Q), where M = M U cone(dM), represent the class of {V, ).
That is,
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w(M) = [V, 8] € W(Q).

This proves the result used in Section 1:

Prorosirion 2.2, The homomorphisms
w QR (pr) » WQ), k> 0.

which are induced by the Witt class, are surjective. O

Since M has a natural stratification with only even dimensional strata,
we obtain the following concrete result about Q5.

CororLARY 2.4.  The homomorphism of graded cobardism groups

Q% (pr) » Q¥ (pr)
is surjective. O
Remark 2.5. Simple examples show that the hémomorphism in 2.4

is not injective.

3. Witt spaces: A Geametric Cycle Theoxy for ko, R Z[1/2]. Sup-
pose that QF is a bordism theory based on a class & of P.L. spaces satisfy-
ing the following properties:

(1) ¥ is closed under the operations of taking cartesian product with a
P.L. manifold, and intersecting t{ransversely with a closed P.L.
manifold in Euclidean space.

(2) ¥ has a signature invariant defined on the cycle level which is co-
bordism Invariant:

There is a homomorphism
sign: Qu{pt) > Z
which extends the identification
Qo(pt) — Z.

(3} The signature can be extended to relative eycles (X, X)), so that it
is additive:
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If X, ¥ are relative cycles such that Z = 34X, —Z = 3Y, then
sign(X U2 YY) = sion(X, Z) + sigrlY, Z).

(4) The signature is multiplicative with respect to closed manifolds:

If X is a cycle in §, and M is a closed manifold, then:
sign(M X X) = sign(M)-sign(X), where
sign(M) denotes the classical signature of M.

Then, Dennis Sullivan [27] has defined a natural transformation of
homalogy theories:

15085 > ko, @Z[H,

[See Appendix for details.]
Moreover, for [X] € Q,(pt), where g = 0 (mod 4),

(XD = sign(X) e ZE} = ko, (pH) ® ZB—}

In Chapters I and II, we demonstrated that properties (1) through (4)
hold for the class of Witt spaces, so we receive a natural transformation:

ﬂWitt:Qﬂ\f’itt — ko, ®Z{%].
Now, Proposition 1.1 and the structure of W(Q) [14, 20] yield the main
result;

TreoreM 3.1. The natural transformation (5) is an equivalence of
hamology theories. O

Appendix. Sullivan’s Construction of ko, & Z[1/2] Orientations.
In Chapter IV, we defined a natural transformation

.I.me ‘ ﬂ}:’itt - ko . ® Z[%:{
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by assigning to every Witt space (X9, 4X) a canonical orientation class in
ko, (X, 4X) & Z[1/2]. What is needed to carry out this assignment is the
alchemy of Dennis Sullivan: Given a geometric homology theory 92 based
on a class of ¢ycles &F, with signature invariant, and satisfying the proper-
ties [isted in Section IV.3, Sullivan translates the signature data into ca-
nonical ko , @ Z[1/2] otientations for F-cycles, from which he constructs a
natural transformation of homology theories: u%:Q5 — ko, & Z[1/2],
such that the induced homomorphism on coefficient groups is the signa-
ture homemorphism.

The construction is found in [25] and [27]. We briefly sketch it here.

Sullivan proves in [25] that elements of KO*(X) @ Z[1/2] are commu-
tative diagrams:

Qra(X) ®Q—> Q
I I

0. X;Q/2) - Q/Z

where g, 7 are homomorphisms satisfying the “‘periodicity relations™:

AV L X) X (M~ pt)) = sign(M) 1V —L> X)

and

(VL5 X) X (M - p1)) = sign(M)- oV —L> X)

Here ﬂik(X, Q/Z) is the odd part of Q/Z-bordism. The elements of
KO'(X, A) @ Z[1/2] (that is, in the relative case) are analogously de-
scribed.

Now, suppose that X is a cycle in the geometric homology theoty Qg
mentioned eatlier. Let #:X¢ — R be a P.L. embedding into a large Fu-
clidean space such that X has codimension 4k, and let U/ be a regular
neighborhood of X. A canonical otientation uy in ko, (X} & Z[1/2] corre-
sponds by Alexander duality to a canonical element of ko* (U, aU) ®
Z[1/2].

That is, it corresponds to a commutative “diagram’’:
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0 (U, ) ®Q—> Q
l l

OL(U, 3U; Q/Z)  — > Q/Z

which satisfies the periodicity relation. Sullivan described how to obtain
such a diagram from the signature invariant and transversality for P.L.
manifolds in [25] and for general & in [26].

Given [(M, aM), f] in Qu.{U, dLJ), the relative block transversality
thearem ([8],' [16]) imtJlies that we can assume f1(X) C Misa cycle_with
the same local structure as X, with codimension 4k, say. Thatis, f '(X) is
a cycle in F, and has a signature sign(f ~ (X)) € Z. By relative transversal-
ity again, and by cobordism invariance of the signature, this procedure
associates to [(M, IM), f] a well-defined integer a5 (JM, M), F]). Define
ain (1) to be ax @ Q. For 7, it suffices to define a compatible collection of
homomorphisms: 7,:Qu{U, dU; Z/mnZ) - Z/nZ for r odd, compatible
with the partial ordering of divisibility.

To do this, recall that 2.(-; Z/rZ) is, geometrically, bordism of
Z/nZ-manifolds [19]. Using transversality as above, assign to a singular
Z/uZ-cycle [M, g] a Z/nZ-cycle g "1(X) in the bordism theory with Z/nZ
coefficients associated to QF.

If Y is the relative cycle from which g ~*(X) is obtained by identifica-
tions on the boundary, we define:

sign(g TU(X)) = sign(Y),

as in the case of Z/nZ-manifolds. Additivity of the signature invariant F
guarantees that the correspondence:

7. (U, 38U, Z/nZ) — Z/nZ
M, g] — sign(g 71 (X))

is a well-defined homomorphism. Let r = lim 7,
# odd

By multiplicativity of the signature with respect to manifolds, it is
clear that ¢, 7 satisfy the periodicity relations. Finally, the diagram (1} cor-
responding to ¢, r commutes. The definition of orientations for relative
eycles proceeds similarly.



1104 P. H. SIEGEL

The orientation yy satisfies:
. 1
cslux) = sign(X) € ko, (pr} & Z["z—il

where c: X — pr is the collapse map.

The natural transformation p¥ is defined using these orientations.
Specifically, given [(X, dX), f] € Q%(4, B), we set u*[(X, 8X), f] =
STalpx] € ka (A, B) Q Z[1/2], where f, is the induced homomorphism in
ko, & Z[1/2}.

Specializing now to the bordism theory associated to the class of Witt
spaces, we have the theorem:

THEOREM. [Every Witt space (X, 8X) of dimension g = 0 has a ca-
nonical orientation class py € ko ,(X, dX) @ Z[1/2]. If dX = ¢ then the
homomorphism

cq ko (X) & Z[%} = ka,(pt) ® Z[—;—]

carries py to sign(X ). There is, therefore, a natural transformation

HWE.E.E :Q:"{‘H s k0$ ® Z!:_;_j[

which reduces to the signature homemorphism on coefficient groups. L]
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