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Motivation - 1982

 Punch cards
e Optical disks
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Optical Disk Recording

SCIENCE, VOL. 215, 12 FEBRUARY 1982

Optical Disk Technology QE%S( Video signal
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Fig. 1. Pulse-width encoding.

Charles M. Goldstein

0

Can a previously recorded optical disk be re-used?
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Motivation - 2012

* Flash memory

« Aflash memory “block” is an array of ~220 “cells”.

« Acell is a floating-gate transistor with g “levels”.
corresponding to the voltage induced by the
number of electrons stored on the gate.

e Terminology:
— Single-level cell (SLC) stores 1 bit per cell
(@=2)
— Multi-level cell (MLC) stores 2 (or more) bits
per cell (q=4 or more).
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Flash Programming

 To increase a cell level, you just
add more electrons.

e To reduce the cell level, you must
first erase the entire block of cells

and then reprogram the block to
reflect the updated data.

-
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Flash Memory Endurance

Block erasure degrades the flash memory cells.
Flash memory endurance (also called lifetime) is
measured In terms of the number of program
and erase (P/E) cycles it tolerates before failure.
SLC flash memory lifetime is ~10° P/E cycles.
MLC flash memory lifetime is ~10% P/E cycles.

Can new data be written to a flash memory cell
without first erasing the entire block?



Write-Once Memory (WOM) Model

Introduced In 1982 by Rivest and Shamir

An array of “write-once bits” (or wits) with
2 possible values: 0 and 1.

Initial state of every wit is O.

Each wit can be irreversibly programmed
to 1.

Can a WOM be rewritten?



~ How to Reuse a “Write-Once” Memory*
RoNaLD L. RIVEST |
M Laboratory for Computer--S’éf?ﬁéé,'--'-‘Ca’mbrfdgé,' Massachusetts
. ap '
ADISHAMIR »
_ Weizmann Institute of Science, Rekozﬁat, .Isra'el | _'

“TROUBLE HIM NOT; HIS WITS ARE GONE.” KING LEAR, IILvi.89

Information and Control , vol. 55 nos. 1-3, December 1982



The Mother of all WOM codes

“Only 3 wits are needed to write 2 bits twice”

Data 1st Write | 2nhd Write
00 000 111
01 100 011
10 010 101
11 001 110
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Encoding and Decoding

e 1stwrite: Data 1st Write | 2"d Write
— Encode 2-bit word using %0 009 =
1st-write codebook. 01 100 i
10 010 101
11 001 110

o 2nd yrite:
— Decode first 2-bit woes from the written codeword.

— If new 2-bit word is the same as the first, there is no change
to the written codeword.

— If new 2-bit word is different, encode using 2"d-write
codebook. This never changes a written 1 to a O.

« Decoding: Each codeword is associated with a unique 2-bit
data pattern.



Another Representation

* No 2" write codeword changes a 1 to a 0.

00 | 000 111 | 00
01 | 100 011 | 01
10 | 010 101 | 10

11 | 001 110 | 11
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Binary WOM Codes

e An <Mj,..., M;>/n binary WOM code Is a coding
scheme that guarantees any sequence of
t writes using alphabet sizes M,,..., M, on n cells.

* We consider two cases
— unrestricted rate: M,..., M, may differ.
— fixed rate: M=M;= ... = M..

e Rivest-Shamir code is a <4,4 >/3 WOM code.



<26,26>/ 7 Binary WOM Code [RS82]

e Stores 26 messages twice in 7 binary cells
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e Letter in row I, column J stored as the 7-bit

binary representation of [*32+J
o 1St write: Upper case letters
o 2"dwrite: Lower case letters



WOM Code Sum-Rate

 Foran <M,,..., M;>/n binary WOM code the
sum-rate R Is the total number of bits stored per

cell in all t writes
e Thus,
R=Y R

t
1=1

where n log, M.
| n




Examples

<4,4>/3 WOM code
log,2° 4

R = +R, =2 ——~ 1.3333
R, +R, 2 3
<26,26>/7 WOM code
R=R, +R,=2 '09; 25 ~ 1.3429

What is the largest achievable sum-rate for a
t-write WOM code on n cells?
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Achievable rate region
[Heegard 1986, Fu and Han Vinck 1999]

 For a binary WOM the t-write achievable rate
region Is given hy:

t-1
R <[]@-p,)where0O<p,...,p <1/2}
=1

[h(p) =—plog, p - (1- p)log,(1-p)]



Achievable region: 2-write WOM codes
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WOM Capacity

 The unrestricted-rate capacity CW® of a
t-write binary WOM Is the maximum of the
achievable sum-rates.

—It has been shown that CY = |og,(t+1).

» The fixed-rate capacity C,V of a t-write
binary WOM does not have a simple

expression, but can be computed
recursively.



Capacity: 2-write WOM
 The unrestricted-rate capacity of 2-write binary WOM is:

C®= max (R +R,)

(Ry,R, JeR?)
= max(h(p)+ (1~ p))

pel0,5]

e This sum is maximized when p=1/3, implying

R, ~0.918296, R =2/3

C" =log, 3~1.5849



Fixed-rate Capacity: 2-write WOM

 The fixed-rate capacity of a 2-write binary WOM
IS:

Cy” =h(p*)+(1-p*)

where p*<0.227 satisfies
h(p*)=(1-p*)
 This implies R =R,=0.773
C\?) ~1.5458.



Achievable region: 2-write WOM codes
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Coset Coding Construction
[Cohen, Godlewski, and Merxx 1986]

Let C[n,k] be a binary linear block code with parity-check
matrix H.

1stwrite: Write a “syndrome” s, of r=n—k bits by means
of a low-weight “error vector” y, such that H-y, = s,

2"d write: Write another “syndrome” s, of r bits by finding
(if possible) a vector y 7 not “overlapping” y, such that
H' y/z — Sl+82 .

Write y,=vy,+ Yy’ and decode using

H-y,=H- (y;+Yy5) =5 +(5,+Sy) =5,



<4,4>/3 as a “Coset” WOM Code

o Let C[n,k] be the binary 3-repetition code with parity-
check matrix _ )
0 1 1

1 0 1

H =

 2-bit “syndromes” s; = 00, 01, 10, 11 correspond to
vectors Yy, = 000, 100, 010, 001.

e All 2 x 2 submatrices of H are invertible, so, given vy,
we can find non-overlapping vector y % such that
H-y% =s,+S,, and then write y,= y,;+ V7 .



<4,4>/3 Coset Coding Example

{O
H =
1

e 1stwrite: Encode s, =01 intoy, = 100
satisfying H-y, =5,

o 2nd write: Decode y, =100to s, = 01.
Encode s, = 10 by finding non-
overlapping y % such that
H-y’%=s,+s, =11, namely y%,=001
and writing y,= y,+ y%, =100+001=101.

[Note: 101 correctly decodestos, =10 ]
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Generalized Coset Coding
[Wu 2010, Yaakobi et al. 2010]

* Let C[n,n-r] be a code with rxn parity-check matrix H.

e Foravectorve {0,1}", let H, be the matrix H with 0’s in the
columns that correspond to the positions of the 1's in v.

e 1stWrite: write a vector v,e V. ={v e {0,1}" | rank(H,) = r}.

e 274 \Write: Write an r-bit vector s, as follows:
— Decode s, = H-v,
— Find non-overlapping v/ with H- v/ = s,+s,
(possible because rank(H, ) =r).

— Write v, = v+ v’ to memory.

Decoding: Compute H-v,=H-:(v;+V%) =5+ (S;+5S,) =S,.
* [Note: The set V. is independent of the choice of H.]
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Sum-Rate Results

* The construction works for any code C[n,k].
* The rate of the first write is:
R,(C) = (logylVel) /n
* The rate of the second write Is:
R,(C) =r/n
e Thus, the sum-rate Is:
R(C) = (log,V| + r)/n

 Goal: Choose a code C to maximize R(C).
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Specific Constructions
[ nk,d]=[16,5,8] first-order Reed-Muller code:

V¢ | = 5065, (R,, R,)=(0.7691,0.6875), S0 |R = 1.4566.

Restricting first write to 211< 5065 messages yields a

fixed-rate code with R,= R,=11/16, so|R = 1.375.

* [ nk,d]=[23,12,8] Golay code:
V. | = 3300179, (R,, R;)=(0.9415,0.5217), so

 Previous best constructions:
— Fixed-rate: R-S <26, 26>/7 with R = 1.34

R~1.4632.

— Unrestricted rate: Wu <176,76>/10 with R = 1.371
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Achievable region: 2-write WOM codes
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Random codes and WOM Capacity
[Yaakobi et al. 2010 and Wu 2010]

 Recall: The 2-write achievable rate region is
R@={(Ry, Ry)|R; <h(p), R, <1-p,
for 0 <p < 1/2}.

« Theorem: For any (R, R,)e R®@ and ¢ > 0, there exists a
linear code C satisfying

Proof: Use the “coset coding” construction with a
randomly chosen (n — k) x k parity-check matrix with

K = |_np_\ where R, <h(p), R, <1 -p.
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Computer search results

e Computer search using “randomly” chosen H.
— Best unrestricted-rate WOM code (22x33):
<M,M, > /n =< 20808251 922 5 /33

R ~1.4928

— Best fixed-rate WOM code (24x33):
<MM, >/n=<2*2%>/33

R ~1.4546




Rate Region and Code Constructions
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Capacity-achieving 2-write codes
[Shpilka 2012]

 Efficient capacity-achieving construction
based upon modified “coset coding”.

— 1stwrite: Program any binary vector of
weight at most m (fixed).

— 2"d write: Use a set of matrices (derived
using the Wozencraft code ensemble) such
that at least one of them succeeds on the
second write.



3-write Binary WOM Codes

Recall that C®) = log,(3+1)=2.

Kayser et al. 2010]: General construction based upon
2-write ternary WOM code, yielding sum-rate|R = 1.61
(with R = 1.66 the best it can achieve).

[Shpilka 2011]: Construction based upon efficient 2-write
WOM codes, yielding sum—rate‘R ~ 1.8.\

[Yaakobi & Shplika 2012]: Further refinements leading to
sum-rate|R = 1.88.




WOM codes for Non-Binary Flash

High Voltage High Voltage High Voltage
011
01
010
0 000
SLC Flash MLC Flash| oo TLC Flash -
1 Bit Per Cell 2 Bits Per Cell 3 Bits Per Cell
2 States 4 States 10 8 States 101
100
1
110
11
111
Low Voltage Low \oltage Low \oltage

gg[l/ZOlZ ICC 2012



Non-Binary WOM-Codes

Each cell has g levels {0,1,...,9-1}.

The achievable rate region of non-binary WOM-codes
was given by Fu and Han Vinck, 1999.

The maximal sum-rate of a t-writes, g-ary WOM code
IS
t+q-1
C :Iog[ i j
qg-1

Random “partition” coding achieves capacity.
Recent works give specific code designs.



Lattice-based g-ary WOM Codes
[Kurkoski 2012, Bhatia et al. 2012]

e Lattice-based WOM codes for multi-level
flash provides a possible way to combine
Increased endurance with error resilience.

* Techniqgues developed for lattice-based
data modems can be applied in the design
of WOM codes with worst-case optimal
sum-rates.

 The key tool Is “continuous approximation”.



2-cell 8-level WOM

Cell 2 @ *
3

Cell 1 @

« The x and y axis denote the cell levels in [0,7].



2-write g-level WOM Code

0

e The initial level on each cell i1s 0.



2-write g-level WOM Code

0

 Messages on the first write are encoded to points in
the first write region, shown in blue.



2-write g-level WOM Code

. 4 .
3

« The written cell levels (2,4) are indicated by the red dot.



2-write g-level WOM Code

. 4 .
3

« Messages on 2" write must encode to the red region.



2-write g-level WOM Code

0

* The 2"d second write region depends on 1st write
 We want to optimize the worst-case sum-rate.



2-write g-level WOM Code
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 When the number of levels q is large, the lattice
becomes denser.



Continuous Approximation

12

@ Y Region
[Oazl]x[(),[Z]
°% T 4]
« For large g, we approximate the discrete levels by a continuous
region whose area reflects the number of messages.
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Continuous Approximation: 2-writes

o First write: &
— Number of messages
L2(m17 yl)
V, =|L,

— Message encoded to
(X, Yy el

e Second write:
— Message encoded to

(X, ¥,) el (X1’ yl)

— Number of 2"d-write messages that can be stored in worst case:

V,= min [L,(x,Y,)

(X1’y1)€L1




Optimal Worst-case Sum-rate: 2-writes

&y

* We want to find the 15t -write Lao(z1, 11)
region A, that maximizes the
total number of messages
on both writes when the
first encoding is the point

(x,,y,) €L, with the fewest
choices in its 2"9-write region. X

e So, we find A, that maximizes:

V.-V, =

X1 Y1)



2-write Worst-case Sum-rate Region

&y

The region A, that

maximizes the worst-case

total number of messages Y
on both writes is a rectangular
hyperbola defined by

o @— '
[1—1j(1—lj2m2} ; T b
fl KZ

where @, =0.2847 . The resulting sum-rate is given by:

ViV, =30, (1_0)2)(6162)2

L2(m17 yl)

L, = {(X’ y)




Continuous approximation: 3 writes

e For 3 writes on 2 cells,
similar reasoning shows that
the optimal boundary of
the second-write region
L,(x,y,) isarectangular
hyperbola that maximizes the
number of messages for the
2"d and 3" writes.

&y

‘ 1[43(3:2Jy2)

Lz(-’f?laym

Y (1,91)




Continuous approximation: 3 writes

e For 3 writes on 2 cells,
similar reasoning shows that
the optimal boundary of
the second-write region
L,(x,y,) isarectangular
hyperbola that maximizes the
number of messages for the
2"d and 3" writes.

&y

‘ 1[43(3:2Jy2)
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]L2 (281 aN
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Continuous approximation: 3 writes

e For 3 writes on 2 cells, 2

similar reasoning shows that
the optimal boundary of
the second-write region

L,(x,y,) isarectangular
hyperbola that maximizes the

number of messages for the |

2nd and 31 writes. ° T

e If A,is arectangular hyperbola, the corresponding
boundaries line up perfectly.



Continuous approximation: 3 writes

e For 3 writes on 2 cells, &
similar reasoning shows that
the optimal boundary of
the second-write region
L,(x,y,) isarectangular
hyperbola that maximizes the
number of messages for the
2"d and 3" writes. K x a

e If A,is arectangular hyperbola, the corresponding
boundaries line up perfectly.

 The optimal write-region boundaries are all hyperbolas.




Generalizations

* For 2 cells, t >3 writes, unrestricted rates, the
optimal worst-case sum-rate is achieved when
the boundaries of the write regions are all
rectangular hyperbolas.

* Further generalizations characterize the optimal
write regions for n cells, t writes, for both fixed-
rate and unrestricted-rate WOM codes.



Codes for Discrete-level Cells

14
13

12 i e

11 ~“*\“\\ 1[4?
10 -

2 T Ilo . \V

7 ——
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4 Ll —
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@ 1 2 3 4 5 6 7 8 9 10111213 14

e To design codes for cells with g levels, we quantize the optimal
write regions, creating corresponding codeword regions.

 Messages in i-th write are encoded into cell-level pairs in the
I-th region.
« Consistent labeling of messages to codewords is needed
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Example: 2-write 8-level WOM Code

7
6
96
40° Pk o6
24 points In
st \nyri
1 \_N”te 4 010 & 15 020
region
182 o8 o13 018 022
‘\
e o 612 o 17 021 024
0 1 2 3 4 5 6 7
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Example: 2-write 8-level WOM Code

6/11/2012

7 75 v11 117 v

6 74 '.10 716 v

5 v v? v 1o v

4 v2 v8 v 14 v

3 v v/ v 13 v
Worst-case |2"d —write

2—region-size iAs o \ vie—y
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;
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Example: 2-write 8-level WOM Code

296 v20 o v 12 S vl w1z .
ov2 v 14 ik, v18 v v 10 v 16 iE.-
5 v vl L1 ok 7.9 w15 v2!
4 e 6 -2 v8 v 14 v20
3 v % v 13 v 19
I T D X " 12 18
2—Consistent 1 lessage T \ Y Y
assignment for all 2" \
1 write region points v/ v3 v5
| 2 4
O \
0 1 2 3 4 5 3 7
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6/11/2012

26 v20 18 v19 -2 vl 12 -
o2 IRV i IKT: vl 10 v16 il
506 v8 i vi2 v3 O v 15 v
45 ol o 16 +6 L. v8 v 14 ;"
4 o 10 o15 020 o1 vl +13 -
83 o o l4 019 23 +6 12 v
\\
\
e o8 o13 018 02 o v3 v
\\
\
1 7 12 17 21 124 2
9. ] & [ ] [© ] @] @
0 1 2 3 4 5 3 7
ICC 2012
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Concluding Remarks

WOM codes offer the possiblility of increasing flash
endurance by reducing the number of program-
erase cycles.

Recent studies show they may reduce write
amplification [Luojie et al. 2012].

WOM codes have been proposed as a way to
combat inter-cell interference [Li 2011].

The combination of error-correction and WOM
coding Iis an active area of research.

Progress has been made in the design and analysis
of WOM codes, but much remains to be done!
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Thank You for Your Attention

e Using the < 26,26 >/ 7 Rivest-Shamir code
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