
Constrained Codes for Multilevel Flash Memory

Paul H. Siegel

Center for Magnetic Recording Research
University of California, San Diego

North American School
of Information Theory

August 12, 2015

Constrained Codes for Multilevel Flash Memory

Paul H. Siegel

Center for Memory and Recording Research
University of California, San Diego

North American School
of Information Theory

August 12, 2015

Acknowledgement

Dr. Roberto Padovani

Thanks, Roberto ...

for endowing this lectureship

and for

CDMA-based mobile phones!

Padovani Lecture Siegel Coding for Flash Memories 3

Acknowledgement

Dr. Roberto Padovani

Thanks, Roberto ...

for endowing this lectureship

and for

CDMA-based mobile phones!

Padovani Lecture Siegel Coding for Flash Memories 3

Acknowledgement

Dr. Roberto Padovani

Thanks, Roberto ...

for endowing this lectureship

and for

CDMA-based mobile phones!

Padovani Lecture Siegel Coding for Flash Memories 3

Acknowledgement

Dr. Roberto Padovani

Thanks, Roberto ...

for endowing this lectureship

and for

CDMA-based mobile phones!

Padovani Lecture Siegel Coding for Flash Memories 3

To our friend and colleague ...

Jack Keil Wolf - 2010 Padovani Lecturer
Padovani Lecture Siegel Coding for Flash Memories 4

Introduction

Padovani Lecture Siegel Coding for Flash Memories 5

In the beginning...

• The theory of constrained coding began with Claude Shannon's
1948 paper, �A Mathematical Theory of Communication.�

• In the Introduction, he presented the model of a general
communication system, in the celebrated �Fig. 1�:

Padovani Lecture Siegel Coding for Flash Memories 6

Constrained channels

• In Part I, Section 1, he de�ned a discrete noiseless channel:
a system allowing transmission of a set of �nite sequences over
an alphabet, subject to certain constraints.

• We'll call such a channel a constrained channel.

• His example � the telegraph channel, in �Fig. 2�:

Padovani Lecture Siegel Coding for Flash Memories 7

Telegraph channel

• The telegraph channel allows certain constrained sequences of
symbols denoted DOT, DASH, LETTER SPACE, and WORD
SPACE.

and therefore

C = Lim
T!∞

logAXT
0

T
= logX0:

In case there are restrictions on allowed sequences we may still often obtain a difference equation of this
type and findC from the characteristic equation. In the telegraphy case mentioned above

N(t) = N(t�2)+N(t�4)+N(t�5)+N(t�7)+N(t�8)+N(t�10)

as we see by counting sequences of symbols according to the last or next to the last symbol occurring.
HenceC is� log�0 where�0 is the positive root of 1= �2+�4+�5+�7+�8+�10. Solving this we find
C = 0:539.

A very general type of restriction which may be placed on allowed sequences is the following: We
imagine a number of possible statesa1;a2; : : : ;am. For each state only certain symbols from the setS1; : : : ;Sn

can be transmitted (different subsets for the different states). When one of these has been transmitted the
state changes to a new state depending both on the old state and the particular symbol transmitted. The
telegraph case is a simple example of this. There are two states depending on whether or not a space was
the last symbol transmitted. If so, then only a dot or a dash can be sent next and the state always changes.
If not, any symbol can be transmitted and the state changes if a space is sent, otherwise it remains the same.
The conditions can be indicated in a linear graph as shown in Fig. 2. The junction points correspond to the

DASH

DOT

DASH

DOT

LETTER SPACE

WORD SPACE

Fig. 2—Graphical representation of the constraints on telegraph symbols.

states and the lines indicate the symbols possible in a state and the resulting state. In Appendix 1 it is shown
that if the conditions on allowed sequences can be described in this formC will exist and can be calculated
in accordance with the following result:

Theorem 1:Let b(s)i j be the duration of thesth symbol which is allowable in statei and leads to statej.
Then the channel capacityC is equal tologW whereW is the largest real root of the determinantal equation:

���∑
s

W�b
(s)
i j � �i j

���= 0

where�i j = 1 if i = j and is zero otherwise.

For example, in the telegraph case (Fig. 2) the determinant is:���� �1 (W�2+W�4)
(W�3+W�6) (W�2+W�4�1)

����= 0:

On expansion this leads to the equation given above for this set of constraints.

2. THE DISCRETESOURCE OFINFORMATION

We have seen that under very general conditions the logarithm of the number of possible signals in a discrete
channel increases linearly with time. The capacity to transmit information can be specified by giving this
rate of increase, the number of bits per second required to specify the particular signal used.

We now consider the information source. How is an information source to be described mathematically,
and how much information in bits per second is produced in a given source? The main point at issue is the

4

• The symbols have duration 2, 4, 3, and 6 time units,
represented by 10, 1110, 000, and 000000.

• The constraint is that no spaces can follow each other.
(Note that two letter spaces equal a word space.)

Padovani Lecture Siegel Coding for Flash Memories 8

Constrained coding

• Shannon asked two general questions about this and other
constrained channels:

Q1: How do we measure the capacity of the channel to transmit
information (in bits per unit time)?

Q2: Do there exist coding algorithms that e�ciently translate
information sequences into allowable sequences?

• His answers:

A1: The asymptotic growth rate C of the number of allowable
signals of duration T time units.
(For the telegraph channel, C = 0.539 bits per time unit.)

A2: Yes.

Padovani Lecture Siegel Coding for Flash Memories 9

Constrained coding

• Shannon asked two general questions about this and other
constrained channels:

Q1: How do we measure the capacity of the channel to transmit
information (in bits per unit time)?

Q2: Do there exist coding algorithms that e�ciently translate
information sequences into allowable sequences?

• His answers:

A1: The asymptotic growth rate C of the number of allowable
signals of duration T time units.
(For the telegraph channel, C = 0.539 bits per time unit.)

A2: Yes.

Padovani Lecture Siegel Coding for Flash Memories 9

Constrained coding

• Shannon asked two general questions about this and other
constrained channels:

Q1: How do we measure the capacity of the channel to transmit
information (in bits per unit time)?

Q2: Do there exist coding algorithms that e�ciently translate
information sequences into allowable sequences?

• His answers:

A1: The asymptotic growth rate C of the number of allowable
signals of duration T time units.
(For the telegraph channel, C = 0.539 bits per time unit.)

A2: Yes.

Padovani Lecture Siegel Coding for Flash Memories 9

Constrained coding

• Shannon asked two general questions about this and other
constrained channels:

Q1: How do we measure the capacity of the channel to transmit
information (in bits per unit time)?

Q2: Do there exist coding algorithms that e�ciently translate
information sequences into allowable sequences?

• His answers:

A1: The asymptotic growth rate C of the number of allowable
signals of duration T time units.

(For the telegraph channel, C = 0.539 bits per time unit.)

A2: Yes.

Padovani Lecture Siegel Coding for Flash Memories 9

Constrained coding

• Shannon asked two general questions about this and other
constrained channels:

Q1: How do we measure the capacity of the channel to transmit
information (in bits per unit time)?

Q2: Do there exist coding algorithms that e�ciently translate
information sequences into allowable sequences?

• His answers:

A1: The asymptotic growth rate C of the number of allowable
signals of duration T time units.
(For the telegraph channel, C = 0.539 bits per time unit.)

A2: Yes.

Padovani Lecture Siegel Coding for Flash Memories 9

Constrained coding

• Shannon asked two general questions about this and other
constrained channels:

Q1: How do we measure the capacity of the channel to transmit
information (in bits per unit time)?

Q2: Do there exist coding algorithms that e�ciently translate
information sequences into allowable sequences?

• His answers:

A1: The asymptotic growth rate C of the number of allowable
signals of duration T time units.
(For the telegraph channel, C = 0.539 bits per time unit.)

A2: Yes.

Padovani Lecture Siegel Coding for Flash Memories 9

Fundamental Theorem for Noiseless Channel

Theorem (Shannon, 1948)

Let a source have entropy H (bits per symbol) and a channel have

a capacity C (bits per time unit). Then it is possible to encode the

output of the source in such a way as to transmit at the average

rate C
H − ε symbols per time unit over the channel where ε is

arbitrarily small. It is not possible to transmit at an average rate

greater than C
H .

• The proof is non-constructive (typical sequences).

• If the source is binary and unconstrained, then H = 1, and
achievable transmission rates approach the channel capacity C .

Padovani Lecture Siegel Coding for Flash Memories 10

Morse code

• The Morse code is a combined source-constrained code for the
English language over the telegraph channel.

• The last telegram was sent on July 14, 2013.

Padovani Lecture Siegel Coding for Flash Memories 11

Morse code

• The Morse code is a combined source-constrained code for the
English language over the telegraph channel.

• The last telegram was sent on July 14, 2013.

Padovani Lecture Siegel Coding for Flash Memories 11

The Morse code lives on...

Image capture: Mar 2014 © 2015 Google Terms Privacy Report a problem

IC School at EPFL

Padovani Lecture Siegel Coding for Flash Memories 12

The Morse code lives on...

Image capture: Mar 2014 © 2015 Google Terms Privacy Report a problem

IC School at EPFL

Padovani Lecture Siegel Coding for Flash Memories 12

The Morse code lives on...

Image capture: Apr 2014 Image capture: Apr 2014 © 2015 Google

Sylvain Froidevaux - SCENICVIEW

See inside - Apr 2014

 EPFL - IC School main Building (BC Building)

IC School at EPFL (Building BC)

Padovani Lecture Siegel Coding for Flash Memories 13

The Morse code lives on...

A closer look ...

Image capture: Apr 2014 Image capture: Apr 2014 © 2015 Google

Sylvain Froidevaux - SCENICVIEW

See inside - Apr 2014

 EPFL - IC School main Building (BC Building)

IC School at EPFL (Building BC)

Padovani Lecture Siegel Coding for Flash Memories 14

Decoding the IC School

Padovani Lecture Siegel Coding for Flash Memories 15

Constrained coding

• As with channel coding and source coding, Shannon's results
launched a new �eld of research: coding for constrained
channels.

• Since the 1960s, data storage technology has consistently
spurred progress in the theory and design of constrained codes,
and vice versa.

• New fundamental problems, deep mathematical results,
practical code design techniques, and connections to other
disciplines have been � and continue to be � found.

• This lecture will describe a selection of these developments in
the context of constrained coding for multilevel �ash memory.

Padovani Lecture Siegel Coding for Flash Memories 16

Outline

• Flash memory basics

• One-dimensional (1D) constrained codes

• Two-dimensional (2D) constrained codes

• Concluding remarks

Padovani Lecture Siegel Coding for Flash Memories 17

Flash Memory Basics

Padovani Lecture Siegel Coding for Flash Memories 18

Flash memory cell

• Floating gate transistor: the basic �ash memory unit (cell).

• Program via charge injection: threshold voltage represents
stored bit values

Control Gate

Source

Drain

Vth

Floating Gate

• Incremental Step Pulse
Program (ISPP)

• Increasing cell level is easy.

• Decreasing cell level is hard
(more on this later)

Padovani Lecture Siegel Coding for Flash Memories 19

Flash memory cell

• Floating gate transistor: the basic �ash memory unit (cell).

• Program via charge injection: threshold voltage represents
stored bit values

Control Gate

Source

Drain

Vth

Floating Gate

• Incremental Step Pulse
Program (ISPP)

• Increasing cell level is easy.

• Decreasing cell level is hard
(more on this later)

Padovani Lecture Siegel Coding for Flash Memories 19

Flash memory cell

• Floating gate transistor: the basic �ash memory unit (cell).

• Program via charge injection: threshold voltage represents
stored bit values

Control Gate

Source

Drain

Vth

Floating Gate

• Incremental Step Pulse
Program (ISPP)

• Increasing cell level is easy.

• Decreasing cell level is hard
(more on this later)

Padovani Lecture Siegel Coding for Flash Memories 19

Flash memory cell

• Floating gate transistor: the basic �ash memory unit (cell).

• Program via charge injection: threshold voltage represents
stored bit values

Control Gate

Source

Drain

Vth

Floating Gate

• Incremental Step Pulse
Program (ISPP)

• Increasing cell level is easy.

• Decreasing cell level is hard
(more on this later)

Padovani Lecture Siegel Coding for Flash Memories 19

Common types of �ash memory

High Voltage

Low Voltage

1 Bit Per Cell
2 Levels

SLC Flash

7 011
6 010
5 000
4 001
3 101
2 100
1 110
0 111

3 01

2 00

1 10

0 11

1 0

0 1

High Voltage

Low Voltage

2 Bits Per Cell
4 Levels

MLC Flash

High Voltage

Low Voltage

3 Bits Per Cell
8 Levels

TLC Flash

• Binary patterns are assigned to cell levels using a Gray code.

• In MLC �ash, the two bits are called the lower and upper bits.

Padovani Lecture Siegel Coding for Flash Memories 20

Programming MLC �ash cells

0
Initial State

Vth

0 I
Lower Bit Program

VI

11 01 Vth

0 1 2 3
Upper Bit Program

VA VB VC

11 10 00 01 Vth

Padovani Lecture Siegel Coding for Flash Memories 21

Reading MLC �ash cells

0 1 2 3
Lower Bit Read

VB

11 10 00 01 Vth

0 1 2 3
Upper Bit Read

VA VC

11 10 00 01 Vth

Padovani Lecture Siegel Coding for Flash Memories 22

MLC �ash memory structure

3
2
1
0

01
00
10
11

Low Voltage

High Voltage 10 11 01 10 11

11 01 01 11 10

01 10 00 11 00

00 01 11 01 11

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Cells are arranged in an array, called a block.

• Rows (wordlines) are ∼128K cells; columns (bitlines) are ∼64
cells.

• In each wordline, lower bits of cells constitute the lower page,
and upper bits constitute the upper page.

Padovani Lecture Siegel Coding for Flash Memories 23

MLC �ash memory structure

3
2
1
0

01
00
10
11

Low Voltage

High Voltage 10 11 01 10 11

11 01 01 11 10

01 10 00 11 00

00 01 11 01 11

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Pages are the basic unit for read and write operations.

• Once programmed, a page can be rewritten only after the
entire containing block is erased.

• Block erasures cause damaging wear on the �ash memory
cells, and are to be avoided.

Padovani Lecture Siegel Coding for Flash Memories 24

Programming MLC �ash blocks

Lower Page

Upper Page

10 11 01 10 11

11 01 01 11 10

01 10 00 11 00

00 01 11 01 11

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Upper and lower pages are independent.

• Pages are programmed row-by-row in a sequential order.

Padovani Lecture Siegel Coding for Flash Memories 25

Programming MLC �ash blocks

Lower Page

Upper Page

1010 1111 0101 1010 1111

11 01 01 11 10

01 10 00 11 00

00 01 11 01 11

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Upper and lower pages are independent.

• Pages are programmed row-by-row in a sequential order.

Padovani Lecture Siegel Coding for Flash Memories 25

Programming MLC �ash blocks

Lower Page

Upper Page

1010 1111 0101 1010 1111

1111 0101 0101 1111 1010

01 10 00 11 00

00 01 11 01 11

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Upper and lower pages are independent.

• Pages are programmed row-by-row in a sequential order.

Padovani Lecture Siegel Coding for Flash Memories 25

Programming MLC �ash blocks

Lower Page

Upper Page

101010 111111 010101 101010 111111

1111 0101 0101 1111 1010

01 10 00 11 00

00 01 11 01 11

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Upper and lower pages are independent.

• Pages are programmed row-by-row in a sequential order.

Padovani Lecture Siegel Coding for Flash Memories 25

Programming MLC �ash blocks

Lower Page

Upper Page

101010 111111 010101 101010 111111

1111 0101 0101 1111 1010

0101 1010 0000 1111 0000

00 01 11 01 11

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Upper and lower pages are independent.

• Pages are programmed row-by-row in a sequential order.

Padovani Lecture Siegel Coding for Flash Memories 25

Programming MLC �ash blocks

Lower Page

Upper Page

101010 111111 010101 101010 111111

111111 010101 010101 111111 101010

0101 1010 0000 1111 0000

00 01 11 01 11

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Upper and lower pages are independent.

• Pages are programmed row-by-row in a sequential order.

Padovani Lecture Siegel Coding for Flash Memories 25

Programming MLC �ash blocks

Lower Page

Upper Page

101010 111111 010101 101010 111111

111111 010101 010101 111111 101010

0101 1010 0000 1111 0000

0000 0101 1111 0101 1111

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Upper and lower pages are independent.

• Pages are programmed row-by-row in a sequential order.

Padovani Lecture Siegel Coding for Flash Memories 25

Programming MLC �ash blocks

Lower Page

Upper Page

101010 111111 010101 101010 111111

111111 010101 010101 111111 101010

010101 101010 000000 111111 000000

0000 0101 1111 0101 1111

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

• Upper and lower pages are independent.

• Pages are programmed row-by-row in a sequential order.

Padovani Lecture Siegel Coding for Flash Memories 25

Error mechanisms in �ash memories

• Program/Erase (P/E) cycling

• Block erasures cause cell wear

• A�ects lifetime and reliability.

• Inter-cell Interference (ICI)

• Cell coupling leads to data-dependent errors after
programming.

• A�ects reliability.

• Charge loss over time

• Programmed charge decays over time.

• A�ects data retention.

Padovani Lecture Siegel Coding for Flash Memories 26

Error mechanisms in �ash memories

• Program/Erase (P/E) cycling

• Block erasures cause cell wear

• A�ects lifetime and reliability.

• Inter-cell Interference (ICI)

• Cell coupling leads to data-dependent errors after
programming.

• A�ects reliability.

• Charge loss over time

• Programmed charge decays over time.

• A�ects data retention.

Padovani Lecture Siegel Coding for Flash Memories 26

Dominant cell errors

• 96.5% of cell errors are adjacent cell-level errors in the upward
direction, caused by inter-cell interference (ICI).

0 1 2 3

VA VB VC11 10 00 01

0→ 1 (upper page error)
1→ 2 (lower page error)
2→ 3 (upper page error)

Padovani Lecture Siegel Coding for Flash Memories 27

Dominant cell error patterns

3

3 0 3

3

3

3 31

3

3

3 2 3

3

• Neighbor cells programmed to level `3' cause the most ICI.

• Worst-case patterns are 3-0-3, 3-1-3, and 3-2-3 along
wordlines, bitlines, or both.

• Bitline ICI induces more errors.

Padovani Lecture Siegel Coding for Flash Memories 28

ICI-mitigation via coding

• How can we use coding to reduce the impact of ICI-induced
errors in �ash memory?

• One way is to use an error correcting code, such as a BCH or
LDPC code, applied independently to every page.

• This is what is done today.

Padovani Lecture Siegel Coding for Flash Memories 29

ICI-mitigation via coding

• Another way currently being explored is to ensure that the
ICI-prone cell-level patterns along wordlines and bitlines are
never programmed into the memory in the �rst place.

• This is where constrained coding can help.

• Let's see how we can apply it to MLC �ash memory...

Padovani Lecture Siegel Coding for Flash Memories 30

Outline (elaborated)

• Flash memory basics

• One-dimensional (1D) constrained codes
• Wordline page coding
• Joint wordline page coding

• Two-dimensional (2D) constrained codes
• Row-by-row bitline coding
• Combined wordline and bitline coding

• Concluding remarks

Padovani Lecture Siegel Coding for Flash Memories 31

1D: Wordline Page Coding

Padovani Lecture Siegel Coding for Flash Memories 32

Error-prone cell patterns - binary representations

• Under the restriction of independent programming of wordline
pages, how can we eliminate error-prone cell-level patterns?

• Consider the binary representation of the most susceptible
patterns: 3-0-3, 3-1-3, 3-2-3.

Cell levels 3-0-3 3-1-3 3-2-3

3-3-3

U 1 1 1 1 0 1 1 0 1

1 1 1

L 0 1 0 0 1 0 0 0 0

0 0 0

• We can forbid the strings 111 and 101 in wordline upper
pages; i.e., a �no 1X1� constraint.

• Equivalently, we can forbid 000 and 010 in wordline lower
pages; i.e., a �no 0X0� constraint.

Padovani Lecture Siegel Coding for Flash Memories 33

Error-prone cell patterns - binary representations

• Under the restriction of independent programming of wordline
pages, how can we eliminate error-prone cell-level patterns?

• Consider the binary representation of the most susceptible
patterns: 3-0-3, 3-1-3, 3-2-3.

Cell levels 3-0-3 3-1-3 3-2-3

3-3-3

U 1 1 1 1 0 1 1 0 1

1 1 1

L 0 1 0 0 1 0 0 0 0

0 0 0

• We can forbid the strings 111 and 101 in wordline upper
pages; i.e., a �no 1X1� constraint.

• Equivalently, we can forbid 000 and 010 in wordline lower
pages; i.e., a �no 0X0� constraint.

Padovani Lecture Siegel Coding for Flash Memories 33

Error-prone cell patterns - binary representations

• Under the restriction of independent programming of wordline
pages, how can we eliminate error-prone cell-level patterns?

• Consider the binary representation of the most susceptible
patterns: 3-0-3, 3-1-3, 3-2-3.

Cell levels 3-0-3 3-1-3 3-2-3

3-3-3

U 1 1 1 1 0 1 1 0 1

1 1 1

L 0 1 0 0 1 0 0 0 0

0 0 0

• We can forbid the strings 111 and 101 in wordline upper
pages; i.e., a �no 1X1� constraint.

• Equivalently, we can forbid 000 and 010 in wordline lower
pages; i.e., a �no 0X0� constraint.

Padovani Lecture Siegel Coding for Flash Memories 33

Error-prone cell patterns - binary representations

• Under the restriction of independent programming of wordline
pages, how can we eliminate error-prone cell-level patterns?

• Consider the binary representation of the most susceptible
patterns: 3-0-3, 3-1-3, 3-2-3.

Cell levels 3-0-3 3-1-3 3-2-3

3-3-3

U 1 1 1 1 0 1 1 0 1

1 1 1

L 0 1 0 0 1 0 0 0 0

0 0 0

• We can forbid the strings 111 and 101 in wordline upper
pages; i.e., a �no 1X1� constraint.

• Equivalently, we can forbid 000 and 010 in wordline lower
pages; i.e., a �no 0X0� constraint.

Padovani Lecture Siegel Coding for Flash Memories 33

Error-prone cell patterns - binary representations

• Under the restriction of independent programming of wordline
pages, how can we eliminate error-prone cell-level patterns?

• Consider the binary representation of the most susceptible
patterns: 3-0-3, 3-1-3, 3-2-3.

Cell levels 3-0-3 3-1-3 3-2-3 3-3-3

U 1 1 1 1 0 1 1 0 1 1 1 1
L 0 1 0 0 1 0 0 0 0 0 0 0

• We can forbid the strings 111 and 101 in wordline upper
pages; i.e., a �no 1X1� constraint.

• Equivalently, we can forbid 000 and 010 in wordline lower
pages; i.e., a �no 0X0� constraint.

Padovani Lecture Siegel Coding for Flash Memories 33

No 00 constraint

• We will impose a �no 0X0� constraint on lower pages: no
adjacent 0's in even positions or in odd positions.

• On interleaved subpages, this becomes a �no 00� contraint.

• The �no 00� constraint means that 0s are isolated, e.g.,

0 1 0 1 1 1 0 1 1 .

• As with the telegraph constraint, we can describe the allowable
words of the �no 00� constraint in terms of edge labelings of
paths on a directed graph:

��
��
A ��

��
B

�� -1
-0

�
1

Padovani Lecture Siegel Coding for Flash Memories 34

No 00 constraint

• We will impose a �no 0X0� constraint on lower pages: no
adjacent 0's in even positions or in odd positions.

• On interleaved subpages, this becomes a �no 00� contraint.

• The �no 00� constraint means that 0s are isolated, e.g.,

0 1 0 1 1 1 0 1 1 .

• As with the telegraph constraint, we can describe the allowable
words of the �no 00� constraint in terms of edge labelings of
paths on a directed graph:

��
��
A ��

��
B

�� -1
-0

�
1

Padovani Lecture Siegel Coding for Flash Memories 34

Constrained systems

• A labeled graph G = (V ,E , L) consists of:

• a �nite set of vertices, or states, V

• a �nite set of directed edges, E , with initial and terminal
states in V

• a labeling function on edges, L : E → Σ, where Σ is �nite
alphabet.

• We assume G is lossless: distinct paths with the same initial
state and terminal state have di�erent labelings.

• A constrained system, denoted S , is the set of words obtained
by reading the edge labels of �nite paths in a labeled, directed
graph G . We write S = S(G).

Padovani Lecture Siegel Coding for Flash Memories 35

Runlength-limited (RLL) constraints

• The (d , k)-RLL constraint, Sd ,k , contains all binary words with
runlengths of 0s no more than k , and at least d between
consecutive 1s.

• RLL constraints are used in magnetic and optical recording.

��
��

0 ��
��

1 ��
��
d−1 ��
��

d ��
��
d+1 ��

��
k−1 ��
��

k-0 0 · · · -0 -0 -0 0 · · · -0 -0

�6 �?1�?1�?1�?1

······

(d , k) constraint, k �nite

��
��

0 ��
��

1 ��
��
d−1 ��
��

d-0 0 · · · -0 -0 ��� 0

�6 �?1

···

(d ,∞) constraint

Padovani Lecture Siegel Coding for Flash Memories 36

(0, 1) and (1,∞) RLL constraints

• The �no 00� constraint is the (0, 1)-RLL constraint.

��
��

0 ��
��

1
�� -1

-0
�

1

• The �no 11� constraint is the (1,∞)-RLL constraint.

��
��

0 ��
��

1
-0

�
1

��� 0

• These constraints are bit-wise complements of one another.

Padovani Lecture Siegel Coding for Flash Memories 37

Combinatorial characterization of capacity

• The capacity of a constrained system S , denoted cap(S), is
de�ned by

cap(S) = lim sup
n→∞

1

n
log2N(n;S)

where

N(n;S) is the number of words of length n in S .

• The `lim sup' can be replaced by a `lim' by subadditivity.

• Capacity measures the growth rate of the number of sequences
of length n, i.e., N(n; S) ≈ 2n cap(S).

Padovani Lecture Siegel Coding for Flash Memories 38

Combinatorial characterization of capacity

• The capacity of a constrained system S , denoted cap(S), is
de�ned by

cap(S) = lim sup
n→∞

1

n
log2N(n;S)

where

N(n;S) is the number of words of length n in S .

• The `lim sup' can be replaced by a `lim' by subadditivity.

• Capacity measures the growth rate of the number of sequences
of length n, i.e., N(n; S) ≈ 2n cap(S).

Padovani Lecture Siegel Coding for Flash Memories 38

Computation of cap(S0,1)

��
��

0 ��
��

1
�� -1

-0
�

1

• Number of words N0(n) generated from state 0:

N0(n + 2) = N0(n + 1) + N0(n), ∀ n ≥ 0

with N0(0) = 1 and N0(1) = 2.

• N0(n) is Fibonacci number fn+2, with fn = 1√
5

[λn − (−λ)−n],

where λ = 1+
√
5

2
, the largest real root of x2 − x − 1.

• So,

cap(S0,1) = lim
n→∞

log2(fn+2)

n
= log2(λ) ≈ 0.6942

Padovani Lecture Siegel Coding for Flash Memories 39

Computation of cap(S0,1)

��
��

0 ��
��

1
�� -1

-0
�

1

• Number of words N0(n) generated from state 0:

N0(n + 2) = N0(n + 1) + N0(n), ∀ n ≥ 0

with N0(0) = 1 and N0(1) = 2.

• N0(n) is Fibonacci number fn+2, with fn = 1√
5

[λn − (−λ)−n],

where λ = 1+
√
5

2
, the largest real root of x2 − x − 1.

• So,

cap(S0,1) = lim
n→∞

log2(fn+2)

n
= log2(λ) ≈ 0.6942

Padovani Lecture Siegel Coding for Flash Memories 39

Computation of cap(S0,1)

��
��

0 ��
��

1
�� -1

-0
�

1

• Number of words N0(n) generated from state 0:

N0(n + 2) = N0(n + 1) + N0(n), ∀ n ≥ 0

with N0(0) = 1 and N0(1) = 2.

• N0(n) is Fibonacci number fn+2, with fn = 1√
5

[λn − (−λ)−n],

where λ = 1+
√
5

2
, the largest real root of x2 − x − 1.

• So,

cap(S0,1) = lim
n→∞

log2(fn+2)

n
= log2(λ) ≈ 0.6942

Padovani Lecture Siegel Coding for Flash Memories 39

Capacity of telegraph channel

and therefore

C = Lim
T!∞

logAXT
0

T
= logX0:

In case there are restrictions on allowed sequences we may still often obtain a difference equation of this
type and findC from the characteristic equation. In the telegraphy case mentioned above

N(t) = N(t�2)+N(t�4)+N(t�5)+N(t�7)+N(t�8)+N(t�10)

as we see by counting sequences of symbols according to the last or next to the last symbol occurring.
HenceC is� log�0 where�0 is the positive root of 1= �2+�4+�5+�7+�8+�10. Solving this we find
C = 0:539.

A very general type of restriction which may be placed on allowed sequences is the following: We
imagine a number of possible statesa1;a2; : : : ;am. For each state only certain symbols from the setS1; : : : ;Sn

can be transmitted (different subsets for the different states). When one of these has been transmitted the
state changes to a new state depending both on the old state and the particular symbol transmitted. The
telegraph case is a simple example of this. There are two states depending on whether or not a space was
the last symbol transmitted. If so, then only a dot or a dash can be sent next and the state always changes.
If not, any symbol can be transmitted and the state changes if a space is sent, otherwise it remains the same.
The conditions can be indicated in a linear graph as shown in Fig. 2. The junction points correspond to the

DASH

DOT

DASH

DOT

LETTER SPACE

WORD SPACE

Fig. 2—Graphical representation of the constraints on telegraph symbols.

states and the lines indicate the symbols possible in a state and the resulting state. In Appendix 1 it is shown
that if the conditions on allowed sequences can be described in this formC will exist and can be calculated
in accordance with the following result:

Theorem 1:Let b(s)i j be the duration of thesth symbol which is allowable in statei and leads to statej.
Then the channel capacityC is equal tologW whereW is the largest real root of the determinantal equation:

���∑
s

W�b
(s)
i j � �i j

���= 0

where�i j = 1 if i = j and is zero otherwise.

For example, in the telegraph case (Fig. 2) the determinant is:���� �1 (W�2+W�4)
(W�3+W�6) (W�2+W�4�1)

����= 0:

On expansion this leads to the equation given above for this set of constraints.

2. THE DISCRETESOURCE OFINFORMATION

We have seen that under very general conditions the logarithm of the number of possible signals in a discrete
channel increases linearly with time. The capacity to transmit information can be specified by giving this
rate of increase, the number of bits per second required to specify the particular signal used.

We now consider the information source. How is an information source to be described mathematically,
and how much information in bits per second is produced in a given source? The main point at issue is the

4

Symbol Duration
DOT 2
DASH 4

LETTER 3
WORD 6

• The di�erence equation is:

N(n) = N(n−2)+N(n−4)+N(n−5)+N(n−7)+N(n−8)+N(n−10)

• N(n) grows like cλn, where λ is the largest real root of

1− (x−2 + x−4 + x−5 + x−7 + x−8 + x−10).

• Therefore, cap(Stelegraph) = log2(λ) ≈ 0.5389.

Padovani Lecture Siegel Coding for Flash Memories 40

Algebraic characterization of capacity

• We can compute capacity using the adjacency matrix AG :

AG =
[
(AG)(u,v)

]
, u, v ∈ V

where (AG)(u,v) is the number of edges from u to v .

• For the (0, 1)-RLL graph, AG =

[
1 1
1 0

]
.

��
��

0 ��
��

1
�� -1

-0
�

1

Padovani Lecture Siegel Coding for Flash Memories 41

Algebraic characterization of capacity

• We can compute capacity using the adjacency matrix AG :

AG =
[
(AG)(u,v)

]
, u, v ∈ V

where (AG)(u,v) is the number of edges from u to v .

• For the (0, 1)-RLL graph, AG =

[
1 1
1 0

]
.

��
��

0 ��
��

1
�� -1

-0
�

1

Padovani Lecture Siegel Coding for Flash Memories 41

Algebraic computation of cap(S)

Theorem (Shannon, 1948)

Let G be an irreducible, lossless presentation of S . Then,

cap(S) = log2 λ(AG)

where λ(AG) is the largest real eigenvalue of AG .

• A graph G is irreducible if for any ordered pair of states u, v
there is a path from u to v .

• For (0, 1)-RLL, we have λ(AG) = 1+
√
5

2
, so

cap(S) = log2
1 +
√
5

2
≈ 0.6942.

Padovani Lecture Siegel Coding for Flash Memories 42

Computing cap(S) (variable-length labels)

Theorem (Shannon, 1948)

Let bsij be the duration of the sth symbol which is allowable in state

i and leads to state j . Then the channel capacity C is equal to

log λ where λ is the largest real root of the determinental equation:∣∣∣Σsλ
−bsij − δij

∣∣∣ = 0

where δij = 1 if i = j and is zero otherwise.

• For the telegraph channel, the equation is∣∣∣∣ −1 (λ−2 + λ−4)
(λ−3 + λ−6) (λ−2 + λ−4 − 1)

∣∣∣∣ = 0.

Padovani Lecture Siegel Coding for Flash Memories 43

Capacity formulas

• For 0 ≤ d < k <∞, C (d , k)
def
= cap(Sd ,k) = log2(λd ,k),

where λd ,k is the largest real solution of the equation

xk+1 − xk−d − . . .− x − 1 = 0.

• For d > 0, C (d ,∞)
def
= cap(Sd ,∞) = log2(λd ,∞), where λd ,∞

is the largest real solution of the equation

xd+1 − xd − 1 = 0.

Padovani Lecture Siegel Coding for Flash Memories 44

Capacity values

• Some (d , k)-RLL capacities

k\d 0 1 2 3 4 5
1 .6942
2 .8791 .4057
3 .9468 .5515 .2878
4 .9752 .6174 .4057 .2232
5 .9881 .6509 .4650 .3218 .1823
6 .9942 .6690 .4979 .3746 .2669 .1542
7 .9971 .6793 .5174 .4057 .3142 .2281
∞ 1.0000 .6942 .5515 .4650 .4057 .3620

• These are all irrational except for C (0,∞).

Padovani Lecture Siegel Coding for Flash Memories 45

Rate p : q �nite-state encoder schematic

• Practical encoders are �xed-rate, �nite-state-machines.

Encoder
Combinational

Logic

Encoder State

�

���

�-
-p bits - q bits

• If the encoder has only one state, it is a block encoder, i.e., a
look-up table.

Padovani Lecture Siegel Coding for Flash Memories 46

Shannon's Coding Theorem

Theorem (Converse to coding theorem)

If there exists a rate p : q encoder for S , then p/q ≤ cap(S).

Theorem (Block coding theorem)

There exists a sequence of rate pm : qm block encoders for S such

that limm→∞ pm/qm = cap(S).

• Minimum block sizes for rates near capacity may be large.

• C (0, 1) ≈ 0.6942: rate 2/3, p : q = 12 : 18.

• C (1, 7) ≈ 0.6793: rate 2/3, p : q = 42 : 63.

• C (2, 7) ≈ 0.5174: rate 1/2, p : q = 17 : 34.

Padovani Lecture Siegel Coding for Flash Memories 47

Rate 2 : 3 �nite-state encoder for (0, 1)-RLL

��
��
A ��

��
B

�� -00/011

' $
?

01/011' $
?

10/110� �
W11/010

�
O 00/101& %6
01/111

��� 10/101
�	� 11/111

• Labels represent input / output words.

• Input labels on edges with the same initial state are distinct.

• Output labelings of paths satisfy the (0, 1)-RLL constraint.

• There is a state-dependent decoder requiring look-ahead at
most one codeword (encoder has �nite anticipation a = 1).

Padovani Lecture Siegel Coding for Flash Memories 48

Finite-State Coding Theorem

Theorem (Adler-Coppersmith-Hassner, 1983)

Let S be a constrained system with capacity cap(S).
If p/q ≤ cap(S), then there exists a rate p : q �nite-state encoder

for S with �nite anticipation.

• Key implications:

• Finite anticipation ensures a state-dependent decoder with
�nite look-ahead.

• If cap(S) is rational, then a capacity-achieving code exists.

• If p and q are any integers with p/q ≤ cap(S), then an
encoder using these block lengths exists.

• The proof is constructive: the state-splitting (ACH) algorithm.

Padovani Lecture Siegel Coding for Flash Memories 49

ACH recipe (from [MSW92])

. ,,

16 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. IO, NO. I . .JANUARY 1992

Applying this procedure to the RLL (0, I) encoder
graph in Fig. 13 we obtain the encoder graph shown in
Fig. 14. The labels are of the form s / t , where s denotes
the input tag, and t denotes the codeword.

If we initialize to state 01, the data string
00 10 10 11 encodes to the RLL (0 , 1) string

011 110 101 111.

E. The State-Splitting Algorithm
We now summarize the steps in the encoder construc-

tion procedure.
1) Find a deterministic FSTD G (or, more generally,

an FSTD with finite local anticipation) which represents
the given constrained system S (most constrained systems
have a natural deterministic representation that is used to
describe them in the first place).

2) Find the adjacency matrix A = A(G) of G.
3) Compute the capacity Cap(S) as log, of the largest

4) Select a desired code rate p : q satisfying
eigenvalue X(A) of A .

P
4

Cap(S) I -

(one usually wants to keep p , q relatively small for com-
plexity reasons).

5) Construct Gq.
6) Using the approximate eigenvector algorithm, find

an (Aq, 2p)-approximate eigenvector U .

7) Eliminate all states i with U , = 0, and restrict to an
irreducible sink component H if necessary.

8) Find a basic v-consistent partition for some state in
H.

9) Find the basic v-consistent state splitting corre-
sponding to this partition, creating FSTD H ’ and approx-
imate eigenvector U ’ .

10) Iterate steps 8) and 9) until you obtain a graph H
with minimum outdegre? at least 2p.

11) At each state of H , delete all but 2p outgoing edges
and tag these edges with the binary p-blocks, one for each
edge.

12) Congratulate yourself with a nice banana “split.”
We remark that “generalized v-consistent state split-

tings” (splitting a state into many states) and “rounds of
splitting” (splitting several states simultaneously), that
will be discussed in Section IV, can be used to shorten
the code construction procedure. Also, there is a variable
length state splitting approach that produces codes of fixed
rate p : q , and in many cases this also shortens the code
construction procedure. See [38] and [39].

F. State-Dependent Decoders
Having shown how to construct an encoder, it is now

time to consider the other half of the code-the decoder.
In this section, we show that our encoders always have
state-dependent decoders. In order to see this, first recall
that we started the code construction procedure with a de-

U1 1 / 1 1 1

Fig. 14. Encoder graph with input tags.

terministic FSTD G or one that at least has finite local
anticipation. Recall that this latter property is preserved
under taking powers. Thus, Gq will also have finite local
anticipation (the anticipation would be measured in num-
bers of q-blocks). Recall from Proposition 1 that state
splitting also preserves finite local anticipation, although
it, may increase the anticipation. Thus, the encoder FSTD
H, obtained from state splitting, will have local antici-
pation a for some a .

Now, we can decode as follows.
1) Use the initial state io of the encoder as the initial

state of the decoder.
2) If the current state is i, the current codeword to be

decoded together with the a upcoming codewords consti-
tute a sequence of length a + 1 (measured in q-blocks)
that is generated by a path that starts at i ; by definition of
local anticipation, the initial edge e of such a path is
uniquely determined; the data word generated is the input
tag of e ; the next decoder state is the terminal state of e .

3) Repeat step 2) as long as codewords are provided.
Having now completely described the construction of

the encoder and decoder, we have completed the proof of
Theorem 1.

As an example, we decode the RLL (0, 1) code string
generated above using the encoder in Fig. 14. Starting at
state 01, the edge determined by the codeword 01 1, with
upcoming codeword 110 is the edge from state O l to state
O l with code label 01 1, so the decoder will generate the
input tag 00. Proceeding, the codeword 110 (with up-
coming word 101) determines the edge from state O1 to
state 1 with label 110 and input tag 10. The reader can
decode the next codeword 101 in a similar manner, and
that is as far as we can go without knowing more upcom-
ing codewords.

IV. SYSTEMS OF FINITE TYPE AND SLIDING BLOCK
DECODERS

As mentioned in the Introduction, the kind of state-de-
pendent decoding discussed in the last section introduces
the possibility of catastrophic error propagation when the
code is used in a noisy environment. Consider the simple
(and, admittedly, artificial) example in Fig. 15.

If we set the initial state to be state 1 and encode the
sequence 0000000 , we obtain the constrained se-
quence aaaaaaa * . * . If the first symbol a is corrupted

i r - r I ‘

Padovani Lecture Siegel Coding for Flash Memories 50

Sliding block decoder schematic

• State-dependent decoders can propagate errors.

• Sliding-block decoders limit error propagation.

xi� ���
p bits

?

D
?

� ���yi−m · · · yi · · · yi+a

� ���q bits

• Decoder has look-ahead a and look-behind m.

• Error propagation is limited to m + a + 1 decoded words.

Padovani Lecture Siegel Coding for Flash Memories 51

Decoder table for rate 2 : 3 (0, 1)-RLL encoder

current codeword yi next codeword yi+1 decoded input D(yiyi+1)
010 � 11
011 101 or 111 01
011 010, 011, or 110 00
101 101 or 111 10
101 010, 011, or 110 00
110 � 10
111 101 or 111 11
111 010, 011, or 110 01

• Sliding-block decoder (shown only for valid codewords).

• Look-ahead a = 1 and look-behind m = 0.

• Error propagation limited to current and next input word.

Padovani Lecture Siegel Coding for Flash Memories 52

Sliding-Block Code Theorem for Finite-Type Constraints

Theorem (Adler-Coppersmith-Hassner, 1983)

Let S be a �nite-type constrained system with capacity cap(S).
If p/q ≤ cap(S), then there exists a rate p : q �nite-state encoder

for S with a sliding-block decoder.

• A constrained system S is �nite-type if it is de�ned by a �nite
list of forbidden words, e.g., (d , k)-RLL.

• The same construction works here too!

• Karabed-Marcus [1988] extended this to almost-�nite-type
constraints, including spectral-null constraints. The proof is
harder and non-constructive.

Padovani Lecture Siegel Coding for Flash Memories 53

State-splitting (ACH) algorithm

• Start with an irreducible, deterministic presentation G for
constraint S , and p/q ≤ capS .

• Apply Franaszek algorithm to �nd a nonnegative integer
approximate eigenvector v satisfying

Aq
G v ≥ 2p v.

• Construct Gq, the qth power of G , representing Sq.

• Through a sequence of graph transformations (state splittings)
guided by v, construct a graph H representing Sq that has
at least 2p outgoing edges at each state, i.e.

AH1 ≥ 2p1.

• Discard excess edges, merge states, if possible.

• Assign input words to edges, and start encoding!

Padovani Lecture Siegel Coding for Flash Memories 54

Example: rate 2:3 (0, 1)-RLL

Graph G 3

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 144

with the property thatX
e2E(1)

u

x�(e) � n y(1) and
X

e2E(2)
u

x�(e) � n y(2) ;

where y(1) and y(2) are positive integers and

y(1) + y(2) = xu :

The out-splitting determined by this partition is called a basic x-consistent splitting at
state u, and we denote the resulting labeled graph by H 0. It is straightforward to check that
the induced vector x0 = (x0v)v, indexed by the states of H 0, de�ned by

x0v =

8><>:
xv if v 6= u
y(1) if v = u(1)

y(2) if v = u(2)
;

is an (AH0; n)-approximate eigenvector.

The cube of the (0; 1)-RLL graph presentation is shown in Figure 5.4 (which is identical
to Figure 2.10). Figure 5.5 shows the result of a basic x-consistent splitting for Figure 5.4,
with respect to the (A3

G; 2
2)-approximate eigenvector x = (2 1)>. State 0 is split into

two descendant states, 0(1) and 0(2), according to the partition E
(1)
0 = f011; 110; 010g and

E
(2)
0 = f101; 111g. The induced vector is x0 = (1 1 1)>, and the resulting labeled graph

therefore has minimum out-degree at least 22 = 4.

��
��
0 ��

��
1

�� -111
�
 -

101
�Æ -

011

' $
010

?
� �

W110

� �O 101& %6
111

��� 110

Figure 5.4: Cube of (0; 1)-RLL graph presentation.

The notion of x-consistency can be extended to out-splittings in general as follows.

Given a labeled graph H, a positive integer n, and an (AH ; n)-approximate eigenvector
x = (xv)v2VH , an x-consistent partition of H is de�ned by partitioning the set, Eu, of
outgoing edges for each state u in H into N(u) disjoint subsets

Eu = E(1)
u [E(2)

u [� � � [E(N(u))
u ;

such that X
e2E(r)

u

x�(e) � nx(r)u for r = 1; 2; : : : ; N(u) ; (5.1)

Approximate eigenvector
v> = [2 1]

A3

Gv =

[
3 2
2 1

] [
2
1

]
=

[
8
5

]
≥ 22

[
2
1

]
.

Graph H after splitting state 0.CHAPTER 5. THE STATE-SPLITTING ALGORITHM 145

��
��
0(1)

��
��
0(2)

��
��
1

�
��

-

101

�
��

�

111

�
�
�
?011

6

101

6

111

�

�

011

z

����������

101

%�
111

HH
HH

HH
HH

HY

101

HH
HH

HH
HH

HHY

111

$
?

010 $
?

110

$
%

�
�O 110

Figure 5.5: Basic x-consistent splitting for Figure 5.4.

where x(r)u are nonnegative integers and

N(u)X
r=1

x(r)u = xu for every u 2 VH : (5.2)

The out-splitting based upon such a partition is called an x-consistent splitting. The vector
x0 indexed by the states u(r) of the split graph H 0 and de�ned by x0

u(r)
= x(r)u is called the

induced vector.

An x-consistent partition or splitting is called non-trivial if for at least one state u,
N(u) � 2 and x(1)u and x(2)u are positive. Observe that any basic x-consistent splitting is a
non-trivial x-consistent splitting.

Figures 5.6 and 5.7 give an example of an x-consistent splitting in which two states, 0
and 1, are split simultaneously. An (AG; 2)-approximate eigenvector is x = (2 2 1)> (in
this particular case, it is actually an eigenvector). An x-consistent splitting for states 0

and 1 can be carried out as follows. State 0 splits according to the partition E
(1)
0 = fag

and E
(2)
0 = fb; cg. State 1 splits, simultaneously, according to the partition E

(1)
1 = fdg and

E
(2)
1 = feg. This yields a new labeled graph H 0 with induced vector x0 = (1 1 1 1 1)>, and

the resulting labeled graph therefore has minimum out-degree at least 2.

We summarize in Proposition 5.6 the important features of x-consistent out-splittings.

Proposition 5.6 Let H be a labeled graph and let x be an (AH ; n)-approximate eigen-
vector. Suppose that H 0 is obtained from H by an x-consistent splitting and x0 is the induced
vector. Then

Approximate eigenvector
v> = [1 1 1]

AHv =

 1 1 2
2 2 0
2 2 1

 1
1
1

 =

 4
4
5

 .
Padovani Lecture Siegel Coding for Flash Memories 55

Encoder simpli�cation and input tagging

• Excess edge deleted, states merged

��
��
0(1) ��

��
0(2),1

�� -011

' $
?

011' $
?

110� �
W010

�
O 101& %6
111

��� 101
�	� 111

• Input tags assigned

��
��
0(1) ��

��
0(2),1

�� -00/011

' $
?

01/011' $
?

10/110� �
W11/010

�
O 00/101& %6
01/111

��� 10/101
�	� 11/111

Padovani Lecture Siegel Coding for Flash Memories 56

Comments on wordline page coding

• Wordline 3X3 cell patterns were eliminated by interleaved, rate
2:3 (0, 1)-RLL coding on lower pages.

• With no extra coding on upper pages, the overall rate is
R = 2

3
+ 1 ≈ 1.6666 bits/cell. (Highest possible rate is

R = C (0, 1) + 1 ≈ 1.6942.)

• A constrained cell-level code over {0, 1, 2, 3} could eliminate
3-0-3, 3-1-3, 3-2-3 with highest possible rate R ≈ 1.9374.

Padovani Lecture Siegel Coding for Flash Memories 57

Joint wordline page coding

Cell levels 3-0-3 3-1-3 3-2-3

U 1 1 1 1 0 1 1 0 1
L 0 1 0 0 1 0 0 0 0

• The proposed scheme used coding on only the lower pages.

• Is there a more e�cient scheme using jointly designed, but
independent, codes on lower and upper pages?

• There is a formula for this joint capacity that allows us to
answer that question. [Moision-Orlitsky-S, 2007]

• The answer is no!

Padovani Lecture Siegel Coding for Flash Memories 58

Perron-Frobenius Theory

• The capacity formula, coding theorems, and code
constructions make use of the Perron-Frobenius Theory of
nonnegative matrices.

• The P-F theory also provides the mathematical justi�cation of
the power method used by Brin and Page to iteratively
compute Google's PageRank ranking of Web pages!

• To state the results, we need two de�nitions:

• A nonnegative matrix A is irreducible if for any row-column
index (u, v), there is an integer nu,v such that (Anu,v)u,v > 0.

• An irreducible matrix A is primitive if the integer nu,v above
can be chosen independent of u, v .

Padovani Lecture Siegel Coding for Flash Memories 59

Perron-Frobenius Theory

Theorem (Perron-Frobenius)

An irreducible matrix A has an eigenvalue λ such that:

• λ is real and positive

• associated with λ are strictly positive right and left

eigenvectors, x and y>, unique up to scaling

• |λ| ≥ |µ| for any other eigenvalue of A, with strict inequality if

A is primitive; i.e., λ is the spectral radius ρ(A)

• λ is a simple root of the characteristic polynomial of A

• If A is primitive, and y>x = 1, then limk→∞(λ−1A)k = xy>.

Padovani Lecture Siegel Coding for Flash Memories 60

Example

• Let A =

[
1 1
1 0

]
; characteristic polynomial x2 − x − 1.

• The eigenvalues are λ = λ(A) = 1+
√
5

2
and µ = 1−

√
5

2
.

• Right and left eigenvectors associated with λ are given by:

x> = [λ 1] y = [λ 1].

• The characteristic polynomial factors as

x2 − x − 1 = (x − λ)(x − µ).

• The normalized product converges to

lim
k→∞

(λ−1A)k =
1

1 + λ2

[
λ2 λ
λ 1

]
Padovani Lecture Siegel Coding for Flash Memories 61

Google's PageRank

• Let {Pi} be the set of all web pages, i = 1, . . . , 4.77× 109,
each with PageRank π(i), normalized such that

∑
i π(i) = 1.

• The PageRank vector π = (π(i)) satis�es

π> = π> ·M

where M is a primitive, stochastic matrix that re�ects the link
structure among all pages, as well as some aspects of typical
web sur�ng behavior.

• The equation is solved using an iterative procedure

π(k+1)> = π(k)> ·M

with π(0)> = [1/n, . . . , 1/n].

• Convergence follows from the P-F Theorem!

Padovani Lecture Siegel Coding for Flash Memories 62

2D: Row-by-row bitline coding

Padovani Lecture Siegel Coding for Flash Memories 63

Bitline constraints

• Bitline ICI causes more errors than wordline ICI.

• A code enforcing (0, 1)-RLL constraints on interleaved bitline
lower bits eliminates bitline 3X3 cell patterns.

• We will construct such a code compatible with row-by-row
programming.

• The construction can achieve a rate close to C (0, 1).

Padovani Lecture Siegel Coding for Flash Memories 64

Row-by-cow coding for bitline (0, 1)-RLL

• The row-by-row code construction consists of 2 steps:

• Step 1: Probabilistic analysis

• Step 2: Code design using constant-weight codes

• The encoder has the following properties:

• Encoding is row-by-row and �xed rate.

• Encoding / decoding a row requires the previous row.

• The code rate can approach the capacity C (0, 1)
(as the number of bitlines approaches in�nity).

[Buzaglo-Yaakobi-S, 2015]

Padovani Lecture Siegel Coding for Flash Memories 65

Row-by-row encoder schematic

1 2 k n
0
1

b(k) ϵ S

w(0)

w(1)

Padovani Lecture Siegel Coding for Flash Memories 66

Row-by-row encoder schematic

1 2 k n
0
1
2

b(k) ϵ S

w(1)

w(2)

Padovani Lecture Siegel Coding for Flash Memories 67

Constant weight codes

• C(m,w) denotes the constant weight code that consists of all
binary sequences of length m and weight w .

• For example, the codebook for C(3, 2) is:

0 1 1
1 0 1
1 1 0

• The asymptotic encoding rate of the code C(n, bβnc) is

C (β) = lim
n→∞

(1/n) log2 |C(n, bβnc)| = h2(β);

e.g., C (2
3

) = h2(2
3

) = −2
3
log2(2

3
)− 1

3
log2(1

3
) ≈ 0.9183.

Padovani Lecture Siegel Coding for Flash Memories 68

Code Construction

• We use 2 length-n codes built from various C(m,w):

C1 = C(n, p(1)n)

C2 = C(p(0)n, p(0)n)× C(p(1)n, p(11)n)

• C(p(0)n, p(0)n) contains only the all-ones codeword [1 . . . 1].

• Set p(0) = 1/4, p(1) = 3/4, p(11) = 1/2, n a multiple of 4.

• Asymptotic rate for C1 and C2

R(C1) = C (p(1)) = h2 (3/4) ≈ 0.8112.

R(C2) = p(1)C (p(11)/p(1)) =
3

4
h2 (2/3) ≈ 0.6887.

Padovani Lecture Siegel Coding for Flash Memories 69

Encoding

C(n, p(1)n)

C(p(0)n, p(0)n) C(p(1)n, p(11)n)
Force a 1

• WL1: Encode using C(n, p(1)n).

• WLi , i ≥ 2:
Find index sets I0, I1 where values in WLi−1 are 0, 1.
For corresponding index sets in WLi , encode using
C(p(0)n, p(0)n) and C(p(1)n, p(11)n)

Padovani Lecture Siegel Coding for Flash Memories 70

Encoding example: n = 8

C(8, 6)

C(2, 2) C(6, 4)
Force a 1

WL1 1 1 0 1 0 1 1 1

WL2 1 0 1 1 1 1 0 1

WL3 1 1 1 0 1 0 1 1

WL4 1 0 1 1 0 1 1 1

• Each row has the same distribution of 0s and 1s.

• The bitline (0, 1)-RLL constraint is enforced.

Padovani Lecture Siegel Coding for Flash Memories 71

Encoding example: n = 8

C(8, 6)

C(2, 2) C(6, 4)
Force a 1

WL1 1 1 0 1 0 1 1 1

WL2 1 0 1 1 1 1 0 1

WL3 1 1 1 0 1 0 1 1

WL4 1 0 1 1 0 1 1 1

• Each row has the same distribution of 0s and 1s.

• The bitline (0, 1)-RLL constraint is enforced.

Padovani Lecture Siegel Coding for Flash Memories 71

Encoding example: n = 8

C(8, 6)

C(2, 2) C(6, 4)
Force a 1

WL1 1 1 0 1 0 1 1 1

WL2 1 0 1 1 1 1 0 1

WL3 1 1 1 0 1 0 1 1

WL4 1 0 1 1 0 1 1 1

• Each row has the same distribution of 0s and 1s.

• The bitline (0, 1)-RLL constraint is enforced.

Padovani Lecture Siegel Coding for Flash Memories 71

Encoding example: n = 8

C(8, 6)

C(2, 2) C(6, 4)
Force a 1

WL1 1 1 0 1 0 1 1 1

WL2 1 0 1 1 1 1 0 1

WL3 1 1 1 0 1 0 1 1

WL4 1 0 1 1 0 1 1 1

• Each row has the same distribution of 0s and 1s.

• The bitline (0, 1)-RLL constraint is enforced.

Padovani Lecture Siegel Coding for Flash Memories 71

Decoding

WL1 1 1 0 1 0 1 1 1

WL2 1 0 1 1 1 1 0 1

WL3 1 1 1 0 1 0 1 1

WL4 1 0 1 1 0 1 1 1

• WL1: Decode using C(n, p(1)n).

• WLi , i ≥ 2:
Find index set I1 where value in WLi−1 is 1.
For corresponding index set in WLi , decode using
C(p(1)n, p(11)n).

Padovani Lecture Siegel Coding for Flash Memories 72

Stationary Markov chains

• The probabilities used in the construction come from a
stationary Markov chain on the (0, 1)-RLL constraint graph.

• Stationary Markov chain P = (Q, π) on graph G :

• transition matrix Q = (Qu,v)u,v∈V

• stationary probability vector π = (πu)u∈V

• Stationarity condition

π> · Q = π>.

• The entropy of P is given by

H(P) = −
∑
u∈V

πu
∑
u→v

Qu,v log2Qu,v .

Padovani Lecture Siegel Coding for Flash Memories 73

Probabilistic characterization of capacity

Theorem (Shannon, 1948)

Let S be a constraint with irreducible, lossless presentation G .

Then

cap(S) = sup
P

H(P)

where the sup is taken over all stationary Markov chains P on G .

• Let x be a right eigenvector of AG associated with λ = λ(AG).

• The unique maxentropic Markov chain P∗ = (Q∗, π∗) has

Q∗u,v =
xv
λxu

as transition probability for edge u → v .

Padovani Lecture Siegel Coding for Flash Memories 74

Maxentropic Markov chain for (0, 1)-RLL

��
��
A ��

��
B

�� -1
-0

�
1

• Right eigenvector x = [λ 1].

• Transition probabilities

Q∗ =

[
λ−1 λ−2

1 0

]
≈
[
0.618 0.382
1 0

]
• Stationary state probabilities

π∗ =

[
λ2

1 + λ2
1

1 + λ2

]
≈ [0.724 0.276]

Padovani Lecture Siegel Coding for Flash Memories 75

Probabilistic analysis

• Approximate P∗ by stationary Markov chain P = (Q, π):

• πun is an integer, for all u ∈ V

• (πuQu,v)n is an integer, for all u, v ∈ V .

• De�ne p(x)
def
= Pr(x) and p(11)

def
= Pr(x 1), for x ∈ {0, 1}:

• Then p(x)n and p(x1)n are also integers.

• For large enough n, we can �nd P with H(P) ≈ C (0, 1).

Padovani Lecture Siegel Coding for Flash Memories 76

Example: n = 8

• Conditional edge probability matrix Q = (Qu,v)

Q =

[
2/3 1/3
1 0

]
≈
[
0.618 0.382
1 0

]

• Stationary state probability vector π

π = [3/4 1/4] ≈ [0.724 0.276]

• p(0) = 1/4, p(1) = 3/4 ; p(01) = 1/4, p(11) = 1/2.

• H(P) = 3
4
h2(2

3
) ≈ 0.6887.

Padovani Lecture Siegel Coding for Flash Memories 77

Generalization: n-track parallel encoder

• Let S be a constrained system.

• We de�ne a rate-R , n-track parallel encoder for S as follows:

• For row i = 0, 1, 2, . . ., the encoder input x is n · R bits.

• For row i = 0, 1, 2, . . ., the encoder output is a codeword w(i)

of length n. (Encoding may depend on a �nite number of
previously written codewords.)

• For column k = 1, 2, . . . , n, the column word b(k) is in S .

• The encoder is (m, a) sliding-block-decodable if, for some
m, a ≥ 0, we can decode row codeword w(i), ∀ i ≥ m, from
row codewords w(i−m), . . . ,w(i), . . .w(i+a).

Padovani Lecture Siegel Coding for Flash Memories 78

Sliding-block decodable n-track parallel encoder

1 2 k n
0
1

i

m

a
w(i)

b(k) ϵ S

wk
(i)

Padovani Lecture Siegel Coding for Flash Memories 79

Parallel encoder for bitline constraint S

Theorem (Tal-Etzion-Roth, 2009)

Let G be a deterministic graph with memory m representing S .
For su�ciently large n, one can construct an (m, 0) sliding-block

decodable n-track parallel encoder for S at rate R , where

R ≥ cap(S)
(
1− c

n

)
− O

(
log n

n

)
where c is a constant that depends on the graph G .

Moreover, the encoder requires knowledge of no more than the

preceding m codewords.

Padovani Lecture Siegel Coding for Flash Memories 80

Remarks

• There is a general method for �nding an approximating
Markov process satisfying the integrality conditions.

• There are e�cient encoding and decoding algorithms for
constant weight codes.

• This technique can be used in conjunction with a wordline
ICI-mitigating constrained code on wordline upper pages.

• Combining the (0, 1)-RLL row-by-row code on bitline lower
bits with a (conventional) (1,∞)-RLL code on wordline upper
pages eliminates all bitline and wordline 3X3 cell patterns.

• Asymptotic rate R ≈ 0.6942 + 0.6942 = 1.3884 bits/cell.

Padovani Lecture Siegel Coding for Flash Memories 81

Shannon Statue at CMRR

Capacity of discrete channel with noise

C = Max(H(x) – Hy(x))

For discrete noiseless channel, Hy(x) = 0,
so

C = Max H(x)

Padovani Lecture Siegel Coding for Flash Memories 82

2D: Combined Wordline and Bitline Coding

Padovani Lecture Siegel Coding for Flash Memories 83

Combined wordline and bitline coding

• Enforcing the �no 1X1� constraint on upper bits along both
wordlines and bitlines will eliminate 3X3 patterns in both
directions.

• This translates to enforcing (1,∞)-RLL constraints on rows
and columns of 4 interleaved subarrays.

∗ 2 ∗ 2

× 4 × 4
∗ 2 ∗ 2

× 4 × 4

• Each interleaved subarray satis�es 2D (1,∞)-RLL constraints.

Padovani Lecture Siegel Coding for Flash Memories 84

2D (d , k)-RLL constraints

• The 2D (d , k)-RLL constrained system is the set of m × n
arrays with each row and each column satisfying the
(d , k)-RLL constraint.

• Example: 2D (1,∞)-RLL (hard-square model)

0 1 0 0 1 0

1 0 1 0 0 1

0 0 0 1 0 0

1 0 0 0 1 0

0 0 0 1 0 0

• We can de�ne other 2D constrained systems using other
�local� constraints.

Padovani Lecture Siegel Coding for Flash Memories 85

Capacity of 2D constraints

• The capacity of a 2D constrained system S is the growth rate
of the number of m × n arrays, N(m, n;S):

cap2(S) = lim sup
m,n→∞

log2N(m, n; S)

mn

• As for 1D constraints, the limit exists.

• The exact capacity is known for very few 2D constraints, e.g.,

• hard-hexagon model [Baxter, 1980]

• path-cover constraint [Schwartz-Bruck, 2008]

Padovani Lecture Siegel Coding for Flash Memories 86

Capacity of 2D RLL constraints

• Let cap2(d , k) denote capacity for 2D (d , k)-RLL.

• Clearly, cap2(0,∞) = 1 and cap2(0, 1) = cap2(1,∞).

• There is no known general formula for computing cap2(d , k).

• But, the zero-capacity region of 2D RLL constraints is known!

Padovani Lecture Siegel Coding for Flash Memories 87

Capacity of 2D RLL constraints

• Let cap2(d , k) denote capacity for 2D (d , k)-RLL.

• Clearly, cap2(0,∞) = 1 and cap2(0, 1) = cap2(1,∞).

• There is no known general formula for computing cap2(d , k).

• But, the zero-capacity region of 2D RLL constraints is known!

Padovani Lecture Siegel Coding for Flash Memories 87

Capacity of 2D RLL constraints

• Let cap2(d , k) denote capacity for 2D (d , k)-RLL.

• Clearly, cap2(0,∞) = 1 and cap2(0, 1) = cap2(1,∞).

• There is no known general formula for computing cap2(d , k).

• But, the zero-capacity region of 2D RLL constraints is known!

Padovani Lecture Siegel Coding for Flash Memories 87

Capacity of 2D RLL constraints

• Let cap2(d , k) denote capacity for 2D (d , k)-RLL.

• Clearly, cap2(0,∞) = 1 and cap2(0, 1) = cap2(1,∞).

• There is no known general formula for computing cap2(d , k).

• But, the zero-capacity region of 2D RLL constraints is known!

Padovani Lecture Siegel Coding for Flash Memories 87

Zero-capacity region for 2D (d , k)-RLL

Theorem (Kato-Zeger, 1999)

For every d ≥ 1 and every k > d ,

cap2(d , k) = 0⇐⇒ k = d + 1.

• Examples:

• cap2(1, 2) = 0.

• cap2(2, 4) > 0.

• This is strange, because C (1, 2) = C (2, 4) ≈ 0.4507.

Padovani Lecture Siegel Coding for Flash Memories 88

Zero-capacity region for 2D (d , k)-RLL

Theorem (Kato-Zeger, 1999)

For every d ≥ 1 and every k > d ,

cap2(d , k) = 0⇐⇒ k = d + 1.

• Examples:

• cap2(1, 2) = 0.

• cap2(2, 4) > 0.

• This is strange, because C (1, 2) = C (2, 4) ≈ 0.4507.

Padovani Lecture Siegel Coding for Flash Memories 88

Zero-capacity region for 2D (d , k)-RLL

Theorem (Kato-Zeger, 1999)

For every d ≥ 1 and every k > d ,

cap2(d , k) = 0⇐⇒ k = d + 1.

• Examples:

• cap2(1, 2) = 0.

• cap2(2, 4) > 0.

• This is strange, because C (1, 2) = C (2, 4) ≈ 0.4507.

Padovani Lecture Siegel Coding for Flash Memories 88

cap2(1, 2) = 0

• Let X = [xi ,j], (i , j) ∈ Z2 be an in�nite 2D (1, 2)-RLL array.

• Any pattern 1 0 0 1 in a row has 2 possible con�gurations

1 0

0 1

1 0 1 0 0 1 0 1

1 0

0 1

0 1

1 0

1 0 1 0 0 1 0 1

0 1

1 0

• The row determines the rest of the array by diagonal or
anti-diagonal extension:

xi ,j = x0,i+j , ∀i , j or xi ,j = x0,i−j , ∀i , j

• The number of m × n constrained arrays grows exponentially
in n, but not mn.

Padovani Lecture Siegel Coding for Flash Memories 89

cap2(1, 2) = 0

• Let X = [xi ,j], (i , j) ∈ Z2 be an in�nite 2D (1, 2)-RLL array.

• Any pattern 1 0 0 1 in a row has 2 possible con�gurations

1 0

0 1

1 0 1 0 0 1 0 1

1 0

0 1

0 1

1 0

1 0 1 0 0 1 0 1

0 1

1 0

• The row determines the rest of the array by diagonal or
anti-diagonal extension:

xi ,j = x0,i+j , ∀i , j or xi ,j = x0,i−j , ∀i , j

• The number of m × n constrained arrays grows exponentially
in n, but not mn.

Padovani Lecture Siegel Coding for Flash Memories 89

cap2(1, 2) = 0

• Let X = [xi ,j], (i , j) ∈ Z2 be an in�nite 2D (1, 2)-RLL array.

• Any pattern 1 0 0 1 in a row has 2 possible con�gurations

1 0

0 1

1 0 1 0 0 1 0 1

1 0

0 1

0 1

1 0

1 0 1 0 0 1 0 1

0 1

1 0

• The row determines the rest of the array by diagonal or
anti-diagonal extension:

xi ,j = x0,i+j , ∀i , j or xi ,j = x0,i−j , ∀i , j

• The number of m × n constrained arrays grows exponentially
in n, but not mn.

Padovani Lecture Siegel Coding for Flash Memories 89

cap2(1, 2) = 0

• Let X = [xi ,j], (i , j) ∈ Z2 be an in�nite 2D (1, 2)-RLL array.

• Any pattern 1 0 0 1 in a row sits in 2 possible con�gurations

1 0 0 1 0 1 0

0 1 0 0 1 0 1 0

1 0 1 0 0 1 0 1

0 1 0 1 0 0 1 0

0 1 0 1 0 0 1

0 1 0 1 0 0 1

0 1 0 1 0 0 1 0

1 0 1 0 0 1 0 1

0 1 0 0 1 0 1 0

1 0 0 1 0 1 0

• The row determines the rest of the array by diagonal or
anti-diagonal extension:

xi ,j = x0,i+j , ∀i , j or xi ,j = x0,i−j , ∀i , j

• The number of m × n constrained arrays grows exponentially
in n, but not mn.

Padovani Lecture Siegel Coding for Flash Memories 90

cap2(1,∞)

• Matrix methods, exploiting symmetry properties of the
constraint, yield very good bounds on cap2(1,∞):

0.587891161775 ≤ cap2(1,∞) ≤ 0.587891161868.

[Calkin-Wilf, 1998],[Forchhammer-Justesen, 1999], [Nagy-Zeger, 2000]

• A 2D (1,∞)-RLL code on upper bits, with uncoded lower bits, could
have overall rate:

R ≈ 0.587891161+ 1 ≈ 1.5878 > 1.3884

beating the row-by-row method.

Padovani Lecture Siegel Coding for Flash Memories 91

Strip encoder

• View 2D constrained array as stack of height-h strips.

• Encode data into 1D sequences of column symbols in Σh using
1D encoder (designed, e.g., by state-splitting).

• Glue strips together with �xed-height merging strips.

↑
h
↓

1 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0

0 0 0 0 0 0

0 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 0 0

[Etzion, 1997]

Padovani Lecture Siegel Coding for Flash Memories 92

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0

0 1 0

0 1 0 0

0 0 1 0

0 0 0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0

0

1

0

0 1 0 0

0 0 1 0

0 0 0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0

0

1

0

0

1

0 0

0 0 1 0

0 0 0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0

0

1

0

0

1

0 0

0

0 1 0

0 0 0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0

0

1

0

0

1

0

0

0

0 1 0

0 0 0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0

0

1

0

0

1

0

0

0

0

1

0

0 0 0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Rate-1/2 encoder for 2D (1,∞)

• Fixed rate R = 1/2 encoder.

• Write data raster fashion along odd diagonals.

• Insert 0s elsewhere.

Data: 0 1 1 0 0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 0 0

• E�ciency R/cap2(1,∞) ≈ 0.85.

Padovani Lecture Siegel Coding for Flash Memories 93

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0 0

1 0 1 0 1

0 1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0

1 0 0 0

1 0 1 0 1

0 1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1

0 0 0

1 0 1 0 1

0 1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1

0 0 0

1

0 1 0 1

0 1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0

0 0

1

0 1 0 1

0 1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0

0 0

1 0

1 0 1

0 1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0

0 0

1 0

1 0 1

0

1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0

0

1 0

1 0 1

0

1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0

0

1 0 1

0 1

0

1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0

0

1 0 1

0 1

0 1

0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0

0

1 0 1

0 1

0 1

0 0 0

1

0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0 0

1 0 1

0 1

0 1

0 0 0

1

0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0 0

1 0 1 0

1

0 1

0 0 0

1

0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0 0

1 0 1 0

1

0 1 0

0 0

1

0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0 0

1 0 1 0

1

0 1 0

0 0

1 0

1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0 0

1 0 1 0 1

0 1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 94

Bit-stu�ng encoder for 2D (1,∞)

• Write into array raster fashion along successive diagonals.

• If the written bit above or to the left is 1, �stu�� a 0.

• If not, write the next data bit.

• Decoder proceeds in same order, discarding stu�ed bits.

• Example: 0 1 1 0 1 1 1 0 1 0 1 0

0 1 0 0 0

1 0 1 0 1

0 1 0 0 0

1 0 1 0 0

[S-Wolf, 1998]

Padovani Lecture Siegel Coding for Flash Memories 95

Remarks about bit-stu�ng encoders

• Bit-stu�ng is variable-rate.

• Biasing input can increase the code rate (use fewer 1s).

• Bit-stu�ng can be applied to other 2D constraints.

• Encoder rate provides a lower bound on capacity.

• Lower bounds on encoder rate can be e�ectively computed.
[Tal-Roth, 2010]

Padovani Lecture Siegel Coding for Flash Memories 96

Biased bit-stu�ng encoder block diagram

Data
source

Distribution
transformer

(lossless)

Bit-stuffing
encoder

• Lossless distribution transformer E converts i.i.d. equiprobable
bits to i.i.d. biased bits with Pr(0) = q.

• Rate penalty h2(q).

• Bit-stu�ng encoder accepts transformer output and writes to
array using bit-stu�ng rules.

Padovani Lecture Siegel Coding for Flash Memories 97

Biased (1,∞) bit-stu�ng encoder

row i

column
j

v x

u w

• Encoding rule for position x :

x =

{
0 if u = 1 or v = 1
next bit from E otherwise.

• The rate R(q) can be determined exactly.

Padovani Lecture Siegel Coding for Flash Memories 98

Exact analysis of 2D (1,∞) encoder

• Let γ = Pr(u = v = 0), the probability that x is not stu�ed.

• Average rate: R(q) = h2(q)γ where

γ =
(4− 3q)−

√
(4− 3q)2 − 4(1− q)(4− 3q)

2(1− q)(4− 3q)
.

• Find qopt = 1− popt to maximize rate R(q):

qopt ≈ 0.6444 =⇒ R(qopt) = 0.5830 . . .

• E�ciency:
R(qopt)

cap2(1,∞)
≥ 0.9917.

Padovani Lecture Siegel Coding for Flash Memories 99

Enhanced 2D (1,∞) bit-stu�ng encoder

row i

column
j

v x

u w

• Distribution transformers, E0 and E1, biases q0 and q1.

• Encoding rule for position x :

x =

{
0 if u = 1 or v = 1
next bit from Ew otherwise.

• Rate R(q0, q1) can again be determined exactly.

Padovani Lecture Siegel Coding for Flash Memories 100

E�ciency of enhanced 2D (1,∞) encoder

• Optimize parameters q0 and q1:

qopt0 ≈ 0.6718, qopt1 ≈ 0.6669

=⇒ R(qopt0 , qopt1) ≈ 0.587277.

• E�ciency of enhanced 2D (1,∞) bit-stu�ng encoder:

R(qopt0 , qopt1)

C2(1,∞)
≥ 0.9989

• Conditioning on more of the past much harder to analyze.

[Roth-S-Wolf, 2001]

Padovani Lecture Siegel Coding for Flash Memories 101

Further remarks

• Bit-stu�ng encoders have been studied for other 2D
constraints: (d ,∞), �no-isolated-bit�, �checkerboard�.

• A general method based upon linear programming for
bounding the rate of 2D bit-stu�ng encoders has provided
improved lower bounds on capacity of some 2D constraints.

• Further results on capacity bounds, positive capacity regions,
and asymptotic capacity for multidimensional constraints have
been obtained.

• Much remains to be done in the area of multidimensional
constrained coding.

Padovani Lecture Siegel Coding for Flash Memories 102

Shannon's crossword puzzles

• Did Shannon say anything about 2D constrained systems?

�The redundancy of a language is related to the

existence of crossword puzzles. If the redundancy is

zero any sequence of letters is a reasonable text in

the language and any two-dimensional array of

letters forms a crossword puzzle. If the redundancy is

too high the language imposes too many constraints

for large crossword puzzles to be possible.�

Padovani Lecture Siegel Coding for Flash Memories 103

Shannon's crossword puzzles

• More speci�cally ...

�A more detailed analysis shows that if we assume

the constraints imposed by the language are of a

rather chaotic and random nature, large crossword

puzzles are just possible when the redundancy is

50%. If the redundancy is 33%, three dimensional

crossword puzzles should be possible, etc.�

Padovani Lecture Siegel Coding for Flash Memories 104

Interpretation for constrained systems

• Translation of terms:

Language ⇒ constrained system S .

Redundancy ⇒ r(S) = 1− cap(S).

Crossword puzzles ⇒ 2D constraint S⊗2 consisting of m × n
arrays with rows and columns in S .

Large crossword puzzles possible ⇒ number of m × n arrays
grows exponentially in mn, cap2(S⊗2) > 0.

• If we add

Chaotic and random ⇒ rows and columns of arrays in S⊗2 are
statistically independent.

then Shannon's statement can be rederived.

Padovani Lecture Siegel Coding for Flash Memories 105

(d , k) crossword puzzles

• Application to (d , k)-RLL constraints:

• cap(1, 2) = cap(2, 4) ≈ 0.4057.

• r(1, 2) = r(2, 4) ≈ 0.5943 > 50% ⇒ no large puzzles

• cap2(1, 2) = 0 but cap2(2, 4) > 0.

• The analysis does not seem to apply to (d , k) constraints.

• Conclusion:

(d , k) crossword puzzles deserve further investigation!

Padovani Lecture Siegel Coding for Flash Memories 106

Concluding Remarks

Padovani Lecture Siegel Coding for Flash Memories 107

Concluding remarks

• Constrained coding is interesting, practical, and fun.

• New generations of storage technologies will need them.

• There are many other research directions beyond those
discussed here:

• Constrained error-correcting codes

• Constrained codes with unconstrained positions

• Constrained codes with global constraints

• Endurance codes, shaping codes, semiconstrained systems.

Padovani Lecture Siegel Coding for Flash Memories 108

-.... .- -. -.- -.-- --- ..-
t h a n k y o u

Padovani Lecture Siegel Coding for Flash Memories 109

References

Introduction

• C.E. Shannon, �The mathematical theory of communication,�
Bell Sys. Tech. J., vol. 27, pp. 379�423, 623�656, July,
October 1948.

Flash Memory Basics

• Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, �Codes
for asymmetric limited-magnitude errors with application to
multilevel �ash memories,� IEEE Trans. Inf. Theory, vol. 56,
no. 4, pp. 1582-1595, April 2010.

• E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swanson, and J.
K. Wolf, �Error characterization and coding schemes for �ash
memories,� in Proc. IEEE Globecom Workshops, Dec. 2010,
pp. 1856-1860.

• Y. Cai, E.F. Haratsch, O. Mutlu, and K. Mai, �Error patterns
in MLC NAND �ash memory: Measurement, characterization,
and analysis,� in Proc. DATE, March 2012, pp. 521-526.

Padovani Lecture Siegel Coding for Flash Memories 110

References

Flash Memory Basics (cont.)

• J. Moon, J. Lo, S. Lee, S. Kim, S. Choi, and Y.
Song,�Statistical characterization of noise and interference in
NAND �ash memory,� in IEEE Trans. Circuits and Systems - I:

Regular Papers, vol. 60, no. 8, August 2013, pp. 2153-2164.

• Y. Cai, E.F. Haratsch, O. Mutlu, and K. Mai, �Threshold
voltage distribution in MLC NAND �ash memory:
characterization, analysis, and modeling,� in Proc. DATE,
March 2013, pp.1285-1290.

• Y. Cai, O. Mutlu, E.F. Haratsch, and K. Mai, �Program
interference in MLC NAND �ash memory: Characterization,
modeling, and mitigation,� in Proc. IEEE ICCD, June 2013,
pp. 123-130.

• J. Cooke, �The inconvenient truths about NAND �ash
memory.� Micron MEMCON 7, 2007.

Padovani Lecture Siegel Coding for Flash Memories 111

References

Wordline Page Coding
Texts on constrained coding

• B.H. Marcus, R.M. Roth, P.H. Siegel, An Introduction to

Coding for Constrained Systems, Draft text (Fifth Edition),
October 2001. (available online)

• K.A.S. Immink, Codes for Mass Data Storage Systems,

Shannon Foundation Publishers. The Netherlands, 1999, 2004.

Expository articles and surveys on constrained coding

• B.H. Marcus, P.H. Siegel, and J.K. Wolf, �Finite-state
modulation codes for data storage,� IEEE J. Sel. Areas

Comm., vol. 10, no. 1, January 1992, pp. 5�37.

Padovani Lecture Siegel Coding for Flash Memories 112

References

Wordline Page Coding (cont.)

• K.A.S. Immink, P.H. Siegel, and J.K. Wolf, �Codes for digital
recorders,� IEEE Trans. Inform. Theory, Special

Commemorative Issue, vol. 44, no. 6, pp. 2260-2299, October
1998.

• B.H. Marcus, R.M. Roth, P.H. Siegel, �Constrained systems
and coding for recording channels,� Handbook of Coding

Theory, V.S. Pless and W.C. Hu�man (Editors), Elsevier,
Amsterdam (1998), pp. 1635�1764.

The ACH paper

• R.L. Adler, D. Coppersmith, M. Hassner, �Algorithms for
sliding block codes � an application of symbolic dynamics to
information theory,� IEEE Trans. Inform. Theory, vol. 29, no.
1, January 1983, pp. 5�22.

Padovani Lecture Siegel Coding for Flash Memories 113

References

Wordline Page Coding (cont.)
Articles on constrained codes for �ash memory

• A. Berman and Y. Birk, �Constrained �ash memory
programming,� Proc. IEEE Symp. Inf. Theory, July�August,
2011, pp. 2128�2132.

• R. Motwani, �Hierarchical constrained coding for �oating-gate
to �oating-gate coupling mitigation in �ash memory,� in Proc.

IEEE Globecom, December 2011.

• A. Berman and Y. Birk, �Low-complexity two-dimensional data
encoding for memory inter-cell interference reduction," Proc.

27th Conv. IEEE Israel (IEEEI),November 2012.

Padovani Lecture Siegel Coding for Flash Memories 114

References

Wordline Page Coding (cont.)

• Y. Kim, B. Kumar, K. L. Cho, H. Son, J. Kim, J. J. Kong, and
J. Lee,�Modulation coding for �ash memories,� in Proc. ICNC,
Jan. 2013, pp. 961-967.

• M. Qin, E. Yaakobi, and P. H. Siegel,�Constrained codes that
mitigate inter-cell interference in read/write cycles for �ash
memories,� IEEE JSAC, vol. 32, no. 5, pp. 836-846, May
2014.

• V. Taranalli, H. Uchikawa, and P.H. Siegel, �Error analysis and
inter-cell interference mitigation in multi-level cell �ash
memories,� in Proc. IEEE ICC, June 2015.

Padovani Lecture Siegel Coding for Flash Memories 115

References

Joint Wordline Page Coding
Distance-enhancing codes for PRML

• R. Karabed and P. Siegel, �Matched Spectral Null Codes for
Partial Response Channels,� IEEE Trans. Inform. Theory, vol.
37, no. 3, pt. II, pp. 818-855, May 1991.

• R. Karabed and P. H. Siegel, �Coding for higher order partial
response channels,� in Proc. SPIE (M. R. Raghuveer, S. A.
Dianat, S. W. McLaughlin, and M. Hassner, eds.), vol. 2605,
(Philadelphia, PA, USA), pp. 92�102, Oct. 1995.

• J. Moon and B. Brickner, �Maximum transition run codes for
data storage systems,� IEEE Trans. Magn., vol. 32,
pp. 3992�3994, Sept. 1996.

• W. G. Bliss, �An 8/9 rate time-varying trellis code for high
density magnetic recording,� IEEE Trans. Magn., vol. 33,
pp. 2746�2748, Sept. 1997.

Padovani Lecture Siegel Coding for Flash Memories 116

References

Joint Wordline Page Coding (cont.)

• B.E. Moision, P.H. Siegel, and E. Soljanin, �
Distance-Enhancing Codes for Digital Recording,� IEEE Trans.

Magn., vol. 34, no. 1, pp. 69-74, Jan. 1998.

• S.A. Atlekar, M. Berggren, B.E. Moision, P.H. Siegel, and J.K.
Wolf, �Error Event Characterization on Partial Response
Channels,� IEEE Trans. Inform. Theory, vol. 45, no. 1, pp.
241-247, January 1999.

• R. Karabed, P.H. Siegel, and E. Soljanin, �Constrained Coding
for Binary Channels with High Intersymbol Interference,� IEEE
Trans. Inform. Theory, vol. 45, pp. 1777-1797, September
1999.

• T. Lei Poo and B. H. Marcus, �Time-varying maximum
transition run constraints,� IEEE Trans. Inf. Theory, vol. 52,
no. 10, pp. 4464�4480, Oct. 2006.

Padovani Lecture Siegel Coding for Flash Memories 117

References

Joint Wordline Page Coding (cont.)
Codes avoiding speci�ed di�erences

• B.E. Moision, A. Orlitsky, and P.H. Siegel, �On Codes That
Avoid Speci�ed Di�erences,� IEEE Trans. Inform. Theory, vol.
47, no. 1, pp. 433�442, January 2001.

• V.D. Blondel, R. Jungers, and V. Protasov, �On the
complexity of computing the capacity of codes that avoid
forbidden di�erence patterns,� IEEE Trans. Inform. Theory,

vol. 52, no. 11, pp. 5122�5127, November 2006.

• B.E. Moision, A. Orlitsky, and P.H. Siegel, � On Codes with
Local Joint Constraints,� Lin. Alg. Appl., vol. 422, iss. 2-3,
pp. 442�454, April 15, 2007.

Padovani Lecture Siegel Coding for Flash Memories 118

References

Joint Wordline Page Coding (cont.)
Joint spectral radius

• G. C. Rota and G. Strang, �A note on the joint spectral
radius,� Indagationes Mathematicae, vol. 22, pp. 379�381,
1960.

• I. Daubechies and J. C. Lagarias, �Two-scale di�erence
equations II. Local regularity, in�nite products of matrices and
fractals,� SIAM J. Math. Anal., vol. 23, pp. 1031�1079, 1992.

• M. A. Berger and Y. Wang, �Bounded semi-groups of
matrices,� Linear Algebra Applications, vol. 166, pp. 21�27,
1992.

• G. Gripenberg, �Computing the joint spectral radius,� Linear
Algebra Applications, vol. 234, pp. 43�60, 1996.

Padovani Lecture Siegel Coding for Flash Memories 119

References

Row-by-Row Bitline Coding

• S.Halevy and R.M.Roth, �Parallel constrained coding with
application to two-dimensional constraints,� IEEE Trans.

Inform. Theory, vol. 48, pp. 1009�1020, 2002.

• I. Tal, T. Etzion, and R. Roth, �On row-by-row coding for 2-D
constraints,� IEEE Trans. Inform. Theory, vol. 55,
pp. 3565�3576, 2009.

• S. Buzaglo, P. H. Siegel, and E. Yaakobi, �Coding schemes for
inter-cell interference in �ash memory,� in Proc. IEEE Int.

Symp. Inform. Theory, pp. 3564�3570, Hong Kong, June
14�19, 2015

Padovani Lecture Siegel Coding for Flash Memories 120

References

Combined Wordline and Bitline Coding
Capacity of 2D constraints

• R.M. Robinson, �Undecidability and nonperiodicity for tilings
of the plane,� Inventiones Math., 12 (1971), 177�209.

• J. Ashley and B. Marcus, �Constant-weight/lowpass
modulation codes for holographic recording,� Research Report
RJ-10089 (91905), IBM Research Laboratory, San Jose,
California, 1997.

• N. Calkin and H.S. Wilf, �The number of independent sets in a
grid graph,� SIAM J. Discrete Math., 11 (1997), 54�60.

• T. Etzion, �Cascading Methods for Runlength-Limited Arrays,�
IEEE Trans. Inform. Theory, IT-43 (1997), 319-324.

• J. Ashley and B. Marcus, �Two-dimensional low-pass �ltering
codes,� IEEE Trans. Commun., vol. 46, no. 6, pp. 724�727,
June 1998.

Padovani Lecture Siegel Coding for Flash Memories 121

References

Combined Wordline and Bitline Coding (cont.)

• W. Weeks IV and R.E. Blahut, �The capacity and coding gain
of certain checkerboard codes,� IEEE Trans. Inform. Theory,

44 (1998), 1193�1203.

• A. Kato and K. Zeger, �On the capacity of two-dimensional
run length constrained channels,� IEEE Trans. Inform. Theory,

vol . 45, no. 5, July 1999, pp. 1527�1540.

• H. Ito, A. Kato, Z. Nagy, and K. Zeger, �Zero capacity region
of multidimensional run length constraints,� Electr. J.
Combinatorics, 6 (1999), R33.

• S. Forchhammer and J. Justesen, �Entropy bounds for
constrained two-dimensional random �elds,� IEEE Trans.

Inform. Theory, 45 (1999), 118�127.

Padovani Lecture Siegel Coding for Flash Memories 122

References

Combined Wordline and Bitline Coding (cont.)

• Z. Nagy and K. Zeger, �Capacity bounds for the 3-dimensional
(0, 1) runlength limited channel,� IEEE Trans. Inform. Theory,

46 (2000), 1030�1033.

• A. Kato and K. Zeger "Partial Characterization of the Positive
Capacity Region of Two-Dimensional Asymmetric Run Length
Constrained Channels" IEEE Trans. Inform. Theory, vol. 46,
no. 7, pp. 2666�2670, November 2000.

• Zs. Nagy and K. Zeger "Asymptotic Capacity of
Two-dimensional Channels with Checkerboard Constraints"
IEEE Trans. Inform. Theory, vol. 49, no. 9, pp. 2115�2125,
September 2003.

Padovani Lecture Siegel Coding for Flash Memories 123

References

Combined Wordline and Bitline Coding (cont.)
Bit-stu�ng encoders

• D. E. Knuth and A. C. Yao. �The complexity of nonuniform
random number generation,� Algorithms and Complexity: New

Directions and Recent Results, pp. 357�428, 1976.

• P.H. Siegel and J.K. Wolf, �Bit-stu�ng bounds on the capacity
of 2-dimensional constrained arrays,� ISIT'98 � IEEE Int'l

Symp. Inform. Theory, Cambridge, Massachusetts, 1998.

• R.M. Roth, P.H. Siegel, and J.K. Wolf, �E�cient Coding
Schemes for the Hard-Square Model ,� IEEE Trans. Inform.

Theory, vol. 47, no 3, pp. 1166�1176, March 2001.

Padovani Lecture Siegel Coding for Flash Memories 124

References

Combined Wordline and Bitline Coding (cont.)

• S. Halevy, J. Chen; R.M. Roth, P.H. Siegel, J.K. Wolf, �
Improved Bit-Stu�ng Bounds on Two-Dimensional
Constraints,� IEEE Trans. Inform. Theory, vol. 50, no. 5, pp.
824�838, May 2004.

• Zs. Nagy and K. Zeger "Bit Stu�ng Algorithms and Analysis
for Run Length Constrained Channels in Two and Three
Dimensions" IEEE Trans. Inform. Theory, vol. 50, no. 12, pp.
3146�3169, December 2004.

• I. Tal, R.M. Roth, Bounds on the rate of 2-D bit-stu�ng
encoders, IEEE Trans. Inform. Theory, 56 (2010), 2561�2567.
vol. 56, no. 6, June 2010.

• I. Tal, R.M. Roth, Convex programming upper bounds on the
capacity of 2-D constraints, IEEE Trans. Inform. Theory, 57
(2011), 381-391.

Padovani Lecture Siegel Coding for Flash Memories 125

References

Combined Wordline and Bitline Coding (cont.)
Crossword puzzles

• C.E. Shannon, �The mathematical theory of communication,�
Bell Sys. Tech. J., vol. 27, pp. 379�423, 623�656, July,
October 1948.

• C.E. Shannon, �Prediction and Entropy of Printed English,�
Bell Sys. Tech. J., vol. 30, no. 1, pp. 50�64, January 1951.

• J. K. Wolf and P.H. Siegel, �On Two-Dimensional Arrays and
Crossword Puzzles,� in Proc. 36th Allerton Conference on

Communication, Control and Computing, Monticello, Illinois,
pp. 366�371, Sept. 1998.

• Kees A.S. Immink, Paul H. Siegel, Jack K. Wolf, "Codes for
digital recorders," IEEE Trans. Inform. Theory, Special

Commemorative Issue, vol. 44, no. 6, pp. 2260�2299, October
1998.

Padovani Lecture Siegel Coding for Flash Memories 126

Acknowledgement of support

• Portions of this lecture were conceived and prepared while I
was on sabbatical at Technion - Israel Institute of Technology.
I thank my host Prof. Ronny Roth for useful discussions and
support.

• I also gratefully acknowledge the support provided by a
fellowship from the Lady Davis Foundation and by a Viterbi
Leaders Fellowship in connection with my appointment as a
Viterbi Visiting Faculty Chair in the Technion Computer
Engineering (TCE) Center.

• Portions of my own research reported on in this lecture were
supported by the National Science Foundation.

Padovani Lecture Siegel Coding for Flash Memories 127

	Introduction
	Flash Memory Basics
	1D: Wordline Page Coding
	2D: Row-by-row bitline coding
	2D: Combined Wordline and Bitline Coding
	Concluding Remarks

