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Flash Memory Structure

e Floating gate transistor (Cell) — Fundamental data storing unit

e Program a cell to different voltage levels to represent stored bits.

Source
I e Incremental Step Pulse Program
(ISPP)
Control Gate
- — Vi
Floating Gate / J
Drain
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Flash Memory Structure

e Common types of NAND Flash
e Single-Level Cell (SLC) — 1 bit/cell
e Multi-Level Cell (MLC) - 2 bits/cell

o Three-Level Cell (TLC) — 3 bits/cell
e Cells — Pages — Smallest unit for program and read operations

e Pages — Blocks — Smallest unit for the erase operation
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MLC Flash Memory Structure

B Lower Page
[ | Upper Page BIL,'_2 BIL,'_1 B:L,' BIL,'_|_1 ]3|L,'+2

High Voltage

Low Voltage

e Typical MLC flash page holds 4K - 16K bytes
e Typical block holds 64 - 128 pages

Technion Workshop 10 / 39
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Programming MLC Flash Blocks

BL; > BL;_1BL; BLj1BLij

B Lower Page WL

B Upper Page WL
WL 7~ T
WLy -

o Upper and lower pages within wordlines are independent.

e Programming of pages is done row-by-row.
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Programming MLC Flash Blocks

BL; > BL;_1BL; BLj1BLij

wr-=- {101t HoitH 1o 12} ---
M Lower Page s T

-1l 01— 01— 11 10f---
B Upper Page WL i

| [ [
WL 5" 01— 10— 00 11«“?)‘(? N
WLi_Jr_Z_ 0 | 0 H1 }---

o Upper and lower pages within wordlines are independent.
e Programming of pages is done row-by-row.
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Inter-cell Interference (1CI)
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Inter-cell Interference (1CI)

e Parasitic capacitance coupling occurs among neighboring cells.
e This causes random, data dependent errors after cells are programmed.

e ICl-induced errors are a dominant problem for small feature size
technology.
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Dominant Cell Errors

11V, 10 Vg 00 V. Ol

Most cell errors are adjacent cell-level errors in the upward direction:

0 — 1 (upper page error)
1 —2 (lower page error)
2 — 3 (upper page error)
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Dominant Cell Error Patterns

e Neighbor cells programmed to
the highest level ‘3" cause the
ICl.
most

e Wordline (horizontal) ICl effect
is symmetric.

@ e Bitline (vertical) ICl effect is
asymmetric.
e Bitline ICl causes more errors.
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Dominant Cell Error Patterns

e Neighbor cells programmed to
the highest level ‘3" cause the
most ICI.

e Wordline (horizontal) ICl effect
is symmetric.

@ e Bitline (vertical) ICl effect is
asymmetric.
e Bitline ICl causes more errors.

How can we control bitline ICl-induced errors under the constraints of
page-oriented, row-by-row programming?
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|Cl-Mitigating Constrained Codes
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Dominant Error Patterns - Binary Representations

e Binary representation of dominant cell error patterns:

Cell levels

LU-LU-LU

3-0-3
3-1-3
3-2-3

01-11-01
01-10-01
01-00-01

2-0-3
2-1-3

00-11-01
00-10-01
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Dominant Error Patterns - Binary Representations

o Lower pages of dominant cell error patterns:

Cell levels

LU-LU-LU

3-0-3
3-1-3
3-2-3

01-11-01
01-10-01
01-00-01

2-0-3
2-1-3

00-11-01
00-10-01
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Dominant Error Patterns - Binary Representations

o Upper pages of dominant cell error patterns:

Cell levels

LU-LU-LU

3-0-3
3-1-3
3-2-3

01-11-01
01-10-01
01-00-01

2-0-3
2-1-3

00-11-01
00-10-01
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|Cl-Mitigating No-010 Constraint

o All patterns except 3-2-3 contain 0-1-0 in lower pages.

Cell levels | LU-LU-LU
3-0-3 01-11-01
3-1-3 01-10-01
3-2-3 1-00-01
2-0-3 00-11-01
2-1-3 00-10-01

e Forbidding 0-1-0 in bitline lower pages eliminates vertical patterns
3-0-3 3-1-3, 2-0-3, 2-1-3
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|Cl-Mitigating Constraints

e The set S of binary sequences satisfying the no-010 constraint.

e The maximum possible coding efficiency of a code into these
sequences is the capacity Cap(S):

~ 0.8114.

n—o0 n

e This is the highest code rate we could achieve even if we encoded
bitline pages directly (i.e., vertically).
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Row-by-Row Coding for Bitline ICl Mitigation

e We present a row-by-row code construction that consists of two steps.

e Step 1: Probabilistic analysis (for target code rate)

e Step 2: Code construction using constant-weight codes

e The design method yields codes with the following properties:

e Encoding is row-by-row and fixed rate.
e Encoding / decoding a row requires the previous two rows.

e The code rate can approach the capacity Cap(S) ~ 0.8114
(as the number of wordlines and bitlines approaches infinity).
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Probabilistic Analysis

o We define a stationary Markov process in terms of:

e Probability mass function 7(x1x2), x1x € {0,1}2,
0 < 7m(xxp) <1, ZX1,X2€{0,1} m(x1x) = 1.

e For each x;xo, a conditional probability mass function
P(X3‘X1X2), x3 €0,1, P(1|X1X2) =1- P(0|X1X2).

e For a binary sequence b = b1 by ... b, we define

Pr(b) = m(b1b2) 1"’_[ P(bi|bj—2bj-1).
i=3
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Probabilistic Analysis (cont.)

¢ By stationarity, we obtain a system of equations, linear in 7(x1x2)

7(00)P(0[00) 4 w(10)P(0[10) = =(00)
7(00)P(1]00) + 7(10)P(1]10) = m(01)
7(01)P(0/01) + x(11)P(0[11) = =(10)
m(01)P(1]01) + w(11)P(1]11) = m(11)

e We can express m(x1x2) in terms of P(0[X;X2), and the information

rate of the process can be written as

R(P) = H(P(X3|X1X2)).
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Probabilistic Analysis (cont.)

e To satisfy the no-010 constraint, we set P(0/01) = 0.

e Then P(0|xix2), x1x2 # 01 can be chosen to maximize R(P),
yielding R(P) = Cap(5).

e For our code construction, choose n and P such that 7(x;x2)n and
P(0|xix2)m(x1x2)n are integers.

e Since R(P) is continuous in P(0|x;x2), we can do this for rates
arbitrarily close to Cap(5).
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Code Construction

Define py = w(x0) + 7(x1) and py,x, = P(1|x1x2)7(x1x2).

Let C(m, w) be the constant-weight code that consists of all binary
sequences of length m and weight w.

The encoding process uses three codes built from various C(m, w):

C!' = C(n,pn)

C2 = C(pon,w(01)n) x C(pyn,w(11)n)

C® = C(w(00)n, poon) x C(w(01)n, porn) x
(

C(m(10)n, pron) x C(w(11)n, p11n).

P(0]01) = 0 implies pp1 = 7(01), so C(mw(01)n, porn) = {1}.
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Encoding

C(n, p1n)
C(p1n,(11)n)  C(pon,m(01)n)

C(w(11)n, p11n)  C(xw(10)n, pron) C(mw(01)n, porn) C(x(00)n, poon)
Force a 1

e WL;i: Encode using C(n, p1n).

e WI,: Find index sets ly and /; where values in WL are 0 and 1.
For corresponding index sets in WL,, encode using
C(pon, m(01)n) and C(pyn, m(11)n)

° WL,', iZ 3:
Find index sets Iy, where value in WL;_o, WL;_1 is x1xo.
For corresponding sets of indices in WL;, encode using the
four codes C(m(x1x2)n, Puyxp ) » X130 € {0,1}2.
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Example: Target rate R(P) = %
WL,

w
1 1

WLs

C(n, p1n)

C(p1n,w(11)n)  C(pon,m(01)n)

C(m(11)n, p1an)  C(m(10)n, pron)  C(m(01)n, porn)  C(m(00)n, poon)
Force a 1
® P = g v Po = 2
o m(11) =% ; (X1X2) =5, X 7’é 11.
e P(1]11) = P(1]10) = P(1]00) = 1 so C? and C3 use balanced codes.

Since lim,_,o(1/n) log, |C(n, LBnJ)| = H(pB), the asymptotic encoding rate
of the balanced codes is 1.

e The asymptotic rate of code C3 is therefore 4/5.
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Encoding: WL,
WLy
WL,
WL3
WL,

C(”; P1 n)

C(p1n,m(11)n)  C(pon,m(01)n)

C(7(10)n, p1on)

C(m(01)n, porn)  C(m(00)n, poon)

Force a 1

C(x(11)n, pr1n)

e Rows WL;_», WL;_1, i > 3 have a P-typical distribution of bitline pairs x;x».

e Since the asymptotic rate of C(w(ab)n, papn) is H(P(1|ab)), and its
proportional length is 7(ab), the asymptotic rate of the coding scheme for
general distribution P is R(P).

e The overall rate of the ICl-mitigating scheme is R = 1(1 + R(P)), or R=0.9
in the example.
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Decoding

WLy
WL
WL
WLy
WLs

e WL;: Decode using C(n, p1n).

e WLy: Find index sets I, where value in WL; is x, for x € {0,1}.
For corresponding index sets in WL,, decode using
C(pxn, m(x1)n).

° WL,’, i >3
Find index sets Iy, where value in WL;_o, WL;_1 is x1x2.
For corresponding sets of indices in WL;, decode using
C(m(x1x2)n, Pxys 1)
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Concluding Remarks
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Concluding Remarks

e Our code construction assumes the use of efficient encoding and
decoding algorithms for constant-weight codes.

e |t can be extended to any finite-memory, bitline ICI-mitigating
constraint in vertical lower pages (resp. upper) pages.

e It can also be used independently with a wordline ICI-mitigating
constrained code on horizontal upper pages (resp. lower) pages.
The overall rate is then the average of the two code rates.
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Concluding Remarks

e Our construction is an embodiment of the row-by-row coding method
proposed in:
Ido Tal, Tuvi Etzion, and Ron M. Roth,
“On Row-by-Row Coding for 2-D Constraints,”
IEEE Transactions on Information Theory, vol. 55, no. 8,
August 2009, pp. 3565-3575.

o Extensions to 2-dimensional constrained coding with vertical data
strips and merging strips are described there.
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Extensions

e One can allow the bitline ICI pattern 010 to appear with a specified
nonzero probability and carry out a similar probabilistic analysis and
code construction based upon constant-weight codes.

e One can then combine the row-by-row encoding with a systematic
error-correcting code, potentially yielding higher rates and good
performance, depending on the probability of a bitline ICI error
[Buzaglo, et al., ISIT 2015]. (illustrated for SLC no-101 constraint)

WLy

WL, 0 1 1
WLs 0 1

WLy 1 0

e The analysis of the asymptotic rate and performance of this scheme
poses several interesting and challenging problems.
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Thank you.
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