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Outline 

• Digital recording channel model 
• Constrained codes (track-oriented)  

 Bit-stuffing, bit-flipping, symbol-sliding  
 Information theory of constrained codes 

• Constrained codes (page-oriented) 
 Bit-stuffing in 2-dimensions 

• Concluding remarks 
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Hard Disk Drive – Magnetic Transitions 

78μm 

32μm 

Linear Density: 135.4 kb/in  or   5.33bits/μm 

Courtesy of Fred Spada 



University of Arizona 2/8/05 5 

CD - Pits and Lands 

Linear Density: 39.4 kb/in  or   1.55 bits/μm 

Courtesy of Giesbert Nijhuis 
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(d,k) Runlength-Limited Constraints 

• Modulation codes for digital recording channels 
 d = minimum number of 0’s between 1’s 
 k = maximum number of 0’s between 1’s 

 
 
 
 
 
 

• CD uses (d,k)=(2,10)  ;   Disk Drive uses (d,k)=(0,4) 
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Constrained Coding 

• Problem:  
How can we transform unconstrained binary data 

streams into (d,k) constrained binary code 
streams? 

 
• Issues: 
 Invertibility of transformation (unique decodability) 
 Rate R, i.e., average ratio of # data bits to # code bits 
 Complexity of encoding and decoding operations 
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Bit-Stuffing Encoder 

• Encoder “stuffs” extra bits into data stream, as needed 
to enforce the (d,k) constraint: 
 Stuffs  d   0’s after every data 1 
 Keeps track of total number of consecutive 0’s 
 Stuffs a 1 and d   0’s after a runlength of  k   0’s 

 

0 1 2 d d+1 k-1 ... ... 
. . . . . 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1 
Code sequence:     
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder  
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0  
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0  
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:      
Data sequence:       
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence: 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 



University of Arizona 2/8/05 32 

Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 



University of Arizona 2/8/05 35 

Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0  
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0  
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0 1 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0 1 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0 1 0  
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0 1 0 0  
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 
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Bit-Stuffing Demonstration 
(d,k)=(1,3) 

Encoder 
Data sequence:     1 1 0 0 0 0 1 0 1   
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
 
Decoder 
Code sequence:    1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0  
Data sequence:     1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 
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Biased Bits May Be Better! 

• For large values of k−d, it seems like bit-stuffing may be more 
efficient if the data stream is properly biased, with fewer 1’s 
than 0’s, since 1’s always generate d stuffed 0’s. 
 

• How can we transform a sequence of independent unbiased 
(i.e., fair) coin flips, where  

Pr(0) = Pr(1) = ½ 
 into a sequence of independent biased (i.e., not fair) coin flips, 

where, for p≠ ½ 
Pr(0) = p 

Pr(1) = 1− p 
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Distribution Transformer 

• A “distribution transformer” maps an unbiased data 
stream to a biased stream invertibly: 
 
 
 
 

• There is a rate penalty, given by the binary entropy 
function: 

Distribution  
Transformer 

0 0 1 0 0 1 … 0 0 0 0 1 0 1 0 … 

  ½    ½ p       1-p 

n  bits n/h(p)  bits 

h(p)  =  − p log p  − (1− p) log (1− p)   ≤ 1 
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Binary Entropy Function 

 
 
 

h(p)=  − p log p  – (1 − p) log (1− p)  

p 

h(p) 

p=0.5 

1 0 

0.5 

0.5 

1 

more 
0’s 

more 
1’s 
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Distribution Transformer Implementation 

• A “distribution transformer” can be implemented by 
using the decoder of a source code that compresses a 
p-biased sequence of bits with compression ratio 
1/h(p) to 1. 

• In practice, the transformer could be based upon 
stream-oriented arithmetic coding techniques and 
achieve a rate very close to h(p). 
 

 Distribution  
Transformer 

(Source  
Decoder) 

0 0 1 0 0 1 … 0 0 0 0 1 0 1 0 … 

  ½    ½ p       1-p 

n  bits n/h(p)  bits 
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Bit-Stuffing Algorithm Flow 

Encoder 

Decoder 

1-p 1 

1 1 p p p 

0 1 d d+1 k 
1 

1-p 

1-p 1 

1 1 p p p 

0 1 d d+1 k 
1 

1-p 

. . . . . . 

. . . . . . 

Distribution  
Transformer  

(Source  
Decoder) 

0 1 0 0 1 … 0 0 1 1 0 … 
  ½    ½ 

)( ph
n

p   1-p 

Distribution  
Transformer 

(Source  
Encoder) 

0 1 0 0 1 … 0 0 1 1 0 … 

)( ph
n

p   1-p       ½  ½ 
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Bit-Stuffing Rate vs. Bias 
     

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

  

 (1, 3, ∞)
(1, 7, ∞)
(2, 7, ∞)

0 1 

p=0.5 

Rate  
R(p) 

Bias   p 
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Bit-Flipping 

• After k-1 consecutive 0’s, a  1 seems preferable to another 0:         
1 generates d stuffed 0’s, whereas a 0 generates a stuffed 1 
along with d stuffed 0’s. 
 
 
 
 
 
 

• No need for a second distribution transformer if we just 
complement the next biased bit at state k-1,  i.e. p2=1-p1 

0 0 0 0 0   0 0 0 

0 1 2 d d+1 k-1 ... ... 

. . . . . 

k 
1 

1  
1 1 

p1 p1 p1 
p2 

1-p2 
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Bit-Flipping 

• After k-1 consecutive 0’s, a  1 seems preferable to another 0:  
1 generates d stuffed 0’s, whereas a 0 generates a stuffed 1 
along with d stuffed 0’s. 
 
 
 
 
 
 

• No need for a second distribution transformer if we just    
“flip” the next biased bit at state k-1,  i.e. p2=1-p1 

0 0 0 0 0   0 0 0 

0 1 2 d d+1 k-1 ... ... 

. . . . . 

k 
1 

1  
1 1 

p1 p1 p1 
p2 

1-p2 

p1 
1-p1 
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Bit-Flipping vs. Bit-Stuffing 

• Theorem [Aviran et al., 2003]: Bit-flipping achieves 
average rate strictly higher than bit-stuffing for d ≥ 1 
and d+2 ≤ k < ∞.         

 (Also, starting the bit-flipping at state k-1 is optimal.) 
 

• Question:  Can we improve on bit-flipping, at least for 
some (d,k) constraints, still using only one distribution 
transformer? 

 YES! (e.g., symbol-sliding [Yogesh S.  et al., 2004]) 
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Other Natural Questions 

 
• Can we determine the absolute highest possible 

coding rate of (d,k) codes? 
 YES! [Shannon, 1948] 

 
•  Can we achieve it  (or get arbitrarily close) using 

stuffing, flipping, sliding, multiple transformers, or 
other coding methods? 

 YES! [Shannon, 1948] , and his followers… 
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Claude E. Shannon 

Shannon Statue – CMRR 
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The Inscription on the Statue 
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Discrete Noiseless Channels 
(Constrained Systems) 

• A constrained system S is the set of sequences generated   by 
walks on a labeled, directed graph G. 

 Telegraph channel constraints [Shannon, 1948] 

 
  
   

 

 

DOT   
10 

DASH 
1110 

DOT 
10 

DASH 
1110 

LETTER SPACE      
000 

WORDSPACE 
000000            
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Constrained Codes and Capacity 

• Shannon showed that the number of length-n 
constrained sequences is approximately 2Cn. 

• The quantity C is called the capacity of the 
constrained system. 

 Theorem [Shannon,1948] : If there exists a decodable 
code at rate R= m/n from binary data to S, then  

 R W C. 
 Theorem [Shannon,1948] : For any rate R=m/n < C 

there exists a block code [look-up table] from binary 
data to S with rate km:kn, for some integer k D 1. 
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Computing Capacity 

• Shannon also showed how to compute the capacity C. 
 

• For (d,k) constraints,                             , where            
  is the largest real root of the polynomial 
 
      
 
 

• For (d,∞) constraints, use the relation [Ashley et al. 1987]: 
 
 

 
 
 
 

       

kdkd logC ,,  λ= kd ,λ

∞<−−−−= −+ kxxxxf dkk
kd for   ,1)( 1

, 

. 1for   ,12 ,1, ≥= −−∞ dCC ddd
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Achieving Capacity (sometimes…) 

• Theorem [Bender-Wolf, 1993]:  The bit-stuffing algorithm 
achieves capacity for (d,k)= (d,d+1) and (d,k)=(d,∞). 
 

• Theorem [Aviran, et al., 2004]: The bit-flipping algorithm 
additionally achieves capacity for  (d,k)=(2,4).  
 

• Theorem [Yogesh S.-McLaughlin]: The symbol-sliding 
algorithm also achieves capacity for (d,k)=(d,2d+1). 
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Bit Stuffing Performance 

Relative Average Rate vs Parameter k
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Shannon Probabilities 

• Shannon also determined the probabilities on the edges of the 
constraint graph that correspond to the highest achievable 
rate, i.e., that achieve capacity,  in terms of      .  

• The constrained sequences are called “maxentropic.” 

0 1 2 d d+1 k-1 ... ... 
. . . . . 

k 
1- p1 1- p2 1-pk-d 

1 

λ

p1 p2 pk-d 1 1 1 1 ... 
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Bit-Stuffing with Multiple Transformers 

●
●
● 

Smart 

MUX 

Distribution 
Transformer 

p1-bias 

Distribution
Transformer

p2-bias 

Distribution 
Transformer 

pk-d-bias 

Bit 
Stuffer Data 

•  Maxentropic encoder achieves capacity! 

Smart 

DEMUX 
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The Formula on the “Paper” 

Capacity of a discrete channel with noise [Shannon, 1948] 
 

 
 
    
For noiseless channel, Hy(x)=0,  so: 
 
 

  
       
 
 
       

 
  

(x))H – (H(x)Max   C y=

 H(x)Max   C =

Capacity achieved by maximum entropy sequences 
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Magnetic Recording Constraints 

Forbidden words F={101, 010} 

0 
1 

0 0 

1 1 
Biphase 

Even 

1 0 

0 0 

1 1 

1 

0 

1 

0 

Forbidden word F={11} 

Runlength constraints          
(“finite-type”: determined by finite 

list F of forbidden words) 

Spectral null constraints    
(“almost-finite-type”) 
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Practical Constrained Codes 

         Finite-state encoder               Sliding-block decoder 
            (from binary data into S)                               (inverse mapping from S to data) 

m data bits n code bits 

Encoder Logic 

   Rate m:n 

      (states) 

  Decoder 
     Logic 

n bits 

m bits 
We want: high rate R=m/n 
                low complexity  
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Constrained Coding Theorems 

• Powerful coding theorems were motivated by the problem of 
constrained code design for magnetic recording. 
 

 Theorem[Adler-Coppersmith-Hassner, 1983]  
 Let S be a finite-type constrained system.  If m/n ≤ C,  then  

there exists a rate m:n sliding-block decodable, finite-state 
encoder.   

 (Proof is constructive: “state-splitting algorithm.”) 
 
 Theorem[Karabed-Marcus, 1988] 
 Ditto if S is almost-finite-type. 
 (Proof not so constructive…)         
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Two-Dimensional Constrained Systems 

• “Page-oriented" and “multi-track” recording technologies 
require 2-dimensional (2-D) constraints. 
 

• Examples: 
 

 Holographic Storage  - InPhaseTechnologies 
 

 Two-Dimensional Optical Storage (TwoDOS) – Philips 
 

 Patterned Magnetic Media – Hitachi, Toshiba, …  
 

 Thermo-Mechanical Probe Array – IBM  
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Holographic Recording 

  Array constraints: 
•  2-D runlength limited 

•  2-D non-isolated bit 

•  2-D low-pass filter  
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TwoDOS 

Courtesy of Wim Coene, Philips Research 
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2-D Constrained Codes 

             
•  There is no comprehensive algorithmic theory for                       
   constructing encoders and decoders for 2-D constrained 
   systems. (See, however, [Demirkan-Wolf, 2004] .) 
 
•  There is no known general method for computing the 
    capacity of  2-D constraints. 
 
•   That being the case, let’s try… 
 

2-D bit-stuffing! 
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Constraints on the Integer Grid 

• 2-D (d,k) constraints satisfy the (d,k) constraint in rows 
and columns.  
     
 
  1 1 

1 

1 

1 

1 

1 1 

1 
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),1(),( ∞=kd

0 0 
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0 

0 

0 0 

0 

0 

0 0 

0 

0 

0 0 

0 

0 

0 

0 

0 

0 

0 0 0 0 0 

0 0 0 0 0 •                            constraint 
in  rows and columns.  

 

“Hard-Square Model” 
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2-D Bit-Stuffing Encoder 
(Hard-Square Model) 

• Biased sequence:  1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 
 
 
 

 
 
 

1 0 

0 

0 

0 

0 
0 1 

1 

1 

1 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 

0 

Optimal bias  Pr(0) = p = 0.6444 
R(p) = 0.583056 
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Enhanced Bit-Stuffing Encoder 
(Hard-Square Model) 

• Use 2 source encoders, with parameters  p0 , p1 . 
 

 
0 

0 

0 0 

0 

1 

Optimal bias  

Pr(0) = p0 = 0.671833 

Optimal bias  

Pr(0) = p1 = 0.566932 

R(p1 , p2) = 0.587277 
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Capacity of 2-D (d,k) Constraints 

• For 2-D  (d,k) constraints, there is no known simple 
  “formula” that lets us compute the capacity            . 
 
• In fact, the only nontrivial (d,k) pairs for which              
 is known are those with zero capacity [Ashley-Marcus 1998], 
  [Kato-Zeger 1999]: 
 
 
  
  

 
 

kdC ,

1for    ,01, ≥=+ dddC

kdC ,
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Capacity of Hard-Square Model 

• Sharp bounds on            have been computed: 
 

 
 

  
 [Calkin-Wilf, 1998] , [Nagy-Zeger, 2000]: 

 
• Bit-stuffing encoder with one distribution transformer achieves 
     rate  R(p) = 0.583056   within 1% of capacity. 

 
• Bit-stuffing encoder with two distribution transformers achieves 
 rate  R(p1 , p2) = 0.587277   within 0.1% of capacity. 
 

 

∞,1C

6858789116180   7558789116170 ,1 .. C ≤≤ ∞
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Bit-Stuffing Bounds on Cd,∞ 

• Bit-stuffing encoders can also be extended to 2-D  (d,∞) 
constraints. 

  

• Bounds on the bit-stuffing encoder rate yield the best known 
lower bounds on Cd,∞ for  d >1 [Halevy, et al., 2004]. 
 

• Bit-stuffing can also be applied to 2-D constraints on the 
hexagonal lattice. 
 

• Bounds on the bit-stuffing encoder rate yield the best known 
lower bounds on Cd,∞

hex for  d >1 [Halevy, et al., 2004]                             



University of Arizona 2/8/05 84 

Hard Hexagon Model 

• (d,k)=(1,∞)  constraints on the hexagonal lattice 
 
     
 
  

Hard-Hexagon Model 
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Hard Hexagon Capacity 

• Capacity of hard hexagon model           is known precisely! [Baxter,1980]*                                  
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 So,          480767622.0,1 ≈∞
hexC

Bit-stuffing encoder achieves rate within 0.5% of capacity! 



University of Arizona 2/8/05 86 

Hard Hexagon Capacity* 

• Alternatively, the hard hexagon entropy constant       satisfies 
a degree-24 polynomial with (big!) integer coefficients. 
 

• Baxter does offer this disclaimer regarding his derivation, 
however: 

κ

  

*“It is not mathematically rigorous, in that certain analyticity 
properties of κ are assumed, and the results of Chapter 13 
(which depend on assuming that various large-lattice limits can 
be interchanged) are used. However, I believe that these 
assumptions, and therefore (14.1.18)-(14.1.24), are in fact 
correct.” 
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Concluding Remarks   

• The  theory and practice of 1-D constrained coding, including 
bit-stuffing, is well-developed and powerful. 
 

• The lack of convenient graph-based representations of 2-D 
constraints prevents the straightforward extension of 1-D 
techniques for information theoretic analysis and code design.  
Both are active research areas. 
 

• Bit-stuffing encoders yield some of the best known bounds on 
capacity of 2-D constraints.  
 

• There are connections to statistical physics that may open up 
new approaches to understanding 2-D constrained systems 
(and, perhaps, vice-versa).  
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