Constrained Coding Techniques for Advanced Data Storage Devices

Paul H. Siegel Director, CMRR Electrical and Computer Engineering University of California, San Diego

Outline

- Digital recording channel model
- Constrained codes (track-oriented)
 - Bit-stuffing, bit-flipping, symbol-sliding
 - Information theory of constrained codes
- Constrained codes (page-oriented)
 - Bit-stuffing in 2-dimensions
- Concluding remarks

Digital Recording Channel

Hard Disk Drive – Magnetic Transitions

78µm

Courtesy of Fred Spada

32µm

CD - Pits and Lands

Linear Density: 39.4 kb/in or 1.55 bits/µm

T3	0	833 nm
T4	\bigcirc	1111 nm
T5	\bigcirc	1388 nm
T6	\bigcirc	1666 nm
T7	\bigcirc	1944 nm
T8		2221 nm
Т9	\bigcirc	2499 nm
T10		2777 nm
T11		3054 nm
Note: this is at 1.2 m/sec, with a channel bit size of 277.662 nm GN		

Courtesy of Giesbert Nijhuis

(d,k) Runlength-Limited Constraints

Modulation codes for digital recording channels

 A = minimum number of 0's between 1's

 k = maximum number of 0's between 1's

• CD uses (d,k)=(2,10); Disk Drive uses (d,k)=(0,4)

Constrained Coding

• Problem:

- How can we transform unconstrained binary data streams into (*d*,*k*) constrained binary code streams?
- Issues:
 - Invertibility of transformation (unique decodability)
 - > Rate R, i.e., average ratio of # data bits to # code bits
 - Complexity of encoding and decoding operations

Bit-Stuffing Encoder

- Encoder "stuffs" extra bits into data stream, as needed to enforce the (*d*,*k*) constraint:
 - > Stuffs d **0**'s after every data 1
 - > Keeps track of total number of consecutive 0's
 - > Stuffs a 1 and d 0's after a runlength of k 0's

University of Arizona

Encoder

Data sequence: 110000101

Code sequence:

Decoder

Code sequence:

Encoder

Data sequence: 110000101 Code sequence: 1

Decoder

Code sequence:

Encoder

Data sequence: 110000101

Code sequence: 10

Decoder

Code sequence:

Encoder

Data sequence: 110000101

Code sequence: 101

Decoder

Code sequence:

- Data sequence: 110000101
- Code sequence: 1010
- Decoder
- Code sequence:
- Data sequence:

- Data sequence: 110000101
- Code sequence: 10100
- Decoder
- Code sequence:
- Data sequence:

- Data sequence: 110000101
- Code sequence: 101000
- Decoder
- Code sequence:
- Data sequence:

Encoder

Data sequence: 110000101

Code sequence: 10100010

Decoder

Code sequence:

Encoder

Data sequence: 110000101

Code sequence: 101000100

Decoder

Code sequence:

Encoder

Data sequence: 110000101

Code sequence: 1010001000

Decoder

Code sequence:

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0

Decoder

Code sequence:

- Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1
- Decoder
- Code sequence:
- Data sequence:

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0

Decoder

Code sequence:

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0

Decoder

Code sequence:

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1

Decoder

Code sequence:

Encoder

- Data sequence: 110000101
- Code sequence:
 10100010010101010

Decoder

Code sequence:

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Code sequence: 10100010001010010 Data sequence:

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:110000101Code sequence:1010001000101010010

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:110000101Code sequence:1010001000101010010

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:110000101Code sequence:1010001000101010010

Decoder

Encoder

Data sequence:110000101Code sequence:1010001000101010010

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Code sequence:1010001000101010010Data sequence:1010001000100010100010

Encoder

Data sequence:1 1 0 0 0 0 1 0 1Code sequence:1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder

Code sequence:1010001000101010010Data sequence:101000100010001010010

Biased Bits May Be Better!

- For large values of *k*−*d*, it seems like bit-stuffing may be more efficient if the data stream is properly biased, with fewer 1's than 0's, since 1's always generate *d* stuffed 0's.
- How can we transform a sequence of independent unbiased (i.e., fair) coin flips, where

$$Pr(0) = Pr(1) = \frac{1}{2}$$

into a sequence of independent biased (i.e., not fair) coin flips, where, for $p \neq \frac{1}{2}$

$$Pr(0) = p$$
$$Pr(1) = 1 - p$$

Distribution Transformer

• A "distribution transformer" maps an unbiased data stream to a biased stream invertibly:

• There is a rate penalty, given by the binary entropy function:

$$h(p) = -p \log p - (1-p) \log (1-p) \le 1$$

Binary Entropy Function

$$h(p) = -p \log p - (1-p) \log (1-p)$$

University of Arizona

Distribution Transformer Implementation

- A "distribution transformer" can be implemented by using the decoder of a source code that compresses a *p*-biased sequence of bits with compression ratio 1/h(p) to 1.
- In practice, the transformer could be based upon stream-oriented arithmetic coding techniques and achieve a rate very close to h(p).

Bit-Stuffing Algorithm Flow

Bit-Stuffing Rate vs. Bias

Bit-Flipping

 After k-1 consecutive 0's, a 1 seems preferable to another 0: 1 generates d stuffed 0's, whereas a 0 generates a stuffed 1 along with d stuffed 0's.

• No need for a second distribution transformer if we just complement the next biased bit at state k-1, i.e. $p_2=1-p_1$

Bit-Flipping

• After *k*-1 consecutive 0's, a 1 seems preferable to another 0: 1 generates *d* stuffed 0's, whereas a 0 generates a stuffed 1 along with *d* stuffed 0's.

• No need for a second distribution transformer if we just "flip" the next biased bit at state k-1, i.e. $p_2=1-p_1$

Bit-Flipping vs. Bit-Stuffing

• Theorem [Aviran et al., 2003]: Bit-flipping achieves average rate strictly higher than bit-stuffing for $d \ge 1$ and $d+2 \le k < \infty$.

(Also, starting the bit-flipping at state k-1 is optimal.)

• Question: Can we improve on bit-flipping, at least for some (*d*,*k*) constraints, still using only one distribution transformer?

YES! (e.g., symbol-sliding [Yogesh S. et al., 2004])

- Can we determine the absolute highest possible coding rate of (*d*,*k*) codes?
 YES! [Shannon, 1948]
- Can we achieve it (or get arbitrarily close) using stuffing, flipping, sliding, multiple transformers, or other coding methods?

YES! [Shannon, 1948], and his followers...

Claude E. Shannon

Claude Elwood Shannon 1916 - 2001

Shannon Statue – CMRR

The Inscription on the Statue

CLAUDE ELWOOD SHANNON

1916 – 2001

FATHER OF INFORMATION THEORY

HIS FORMULATION OF THE MATHEMATICAL THEORY OF COMMUNICATION PROVIDED THE FOUNDATION FOR THE DEVELOPMENT OF DATA STORAGE AND TRANSMISSION SYSTEMS THAT LAUNCHED THE INFORMATION AGE.

DEDICATED OCTOBER 16, 2001

EUGENE DAUB, SCULPTOR

Discrete Noiseless Channels (Constrained Systems)

• A constrained system S is the set of sequences generated by walks on a labeled, directed graph G.

Telegraph channel constraints [Shannon, 1948]

Constrained Codes and Capacity

- Shannon showed that the number of length-n constrained sequences is approximately 2^{Cn} .
- The quantity *C* is called the capacity of the constrained system.

Theorem [Shannon,1948] : If there exists a decodable code at rate R = m/n from binary data to S, then R *WC*.

Theorem [Shannon,1948] : For any rate R=m/n < Cthere exists a block code [*look-up table*] from binary data to *S* with rate *km:kn*, for some integer *k D1*.

Computing Capacity

- Shannon also showed how to compute the capacity *C*.
- For (d,k) constraints, $C_{d,k} = \log \lambda_{d,k}$, where $\lambda_{d,k}$ is the largest real root of the polynomial

$$f_{d,k}(x) = x^{k+1} - x^{k-d} - \dots - x - 1$$
, for $k < \infty$

• For (d,∞) constraints, use the relation [Ashley et al. 1987]:

$$C_{d,\infty} = C_{d-1, 2d-1}, \text{ for } d \ge 1.$$

Achieving Capacity (sometimes...)

- Theorem [Bender-Wolf, 1993]: The bit-stuffing algorithm achieves capacity for (d,k)=(d,d+1) and $(d,k)=(d,\infty)$.
- Theorem [Aviran, et al., 2004]: The bit-flipping algorithm additionally achieves capacity for (*d*,*k*)=(2,4).
- Theorem [Yogesh S.-McLaughlin]: The symbol-sliding algorithm also achieves capacity for (d,k)=(d,2d+1).

Bit Stuffing Performance

Relative Average Rate vs Parameter k

Shannon Probabilities

- Shannon also determined the probabilities on the edges of the constraint graph that correspond to the highest achievable rate, i.e., that achieve capacity, in terms of λ .
- The constrained sequences are called "maxentropic."

Bit-Stuffing with Multiple Transformers

Maxentropic encoder achieves capacity!

The Formula on the "Paper"

Capacity of a discrete channel with noise [Shannon, 1948]

$$C = Max (H(x) - H_y(x))$$

For noiseless channel, $H_y(x)=0$, so:

$$C = Max H(x)$$

Capacity achieved by maximum entropy sequences

Magnetic Recording Constraints

Runlength constraints ("finite-type": determined by finite list F of forbidden words)

0

Forbidden word F={11}

Forbidden words F={101, 010}

Spectral null constraints ("almost-finite-type")

Even

Practical Constrained Codes

m bits

We want: high rate R=m/n low complexity

University of Arizona
Constrained Coding Theorems

• Powerful coding theorems were motivated by the problem of constrained code design for magnetic recording.

Theorem[Adler-Coppersmith-Hassner, 1983]

- Let S be a finite-type constrained system. If $m/n \leq C$, then there exists a rate m:n sliding-block decodable, finite-state encoder.
- (Proof is constructive: "state-splitting algorithm.")

Theorem[Karabed-Marcus, 1988] Ditto if *S* is almost-finite-type. (Proof not so constructive...)

Two-Dimensional Constrained Systems

- "Page-oriented" and "multi-track" recording technologies require 2-dimensional (2-D) constraints.
- Examples:
 - Holographic Storage InPhaseTechnologies
 - Two-Dimensional Optical Storage (TwoDOS) Philips
 - Patterned Magnetic Media Hitachi, Toshiba, …
 - > Thermo-Mechanical Probe Array IBM

Holographic Recording

Array constraints:

- 2-D runlength limited
- 2-D non-isolated bit
- 2-D low-pass filter

TwoDOS

Courtesy of Wim Coene, Philips Research

University of Arizona

2-D Constrained Codes

- There is no comprehensive algorithmic theory for constructing encoders and decoders for 2-D constrained systems. (See, however, [Demirkan-Wolf, 2004] .)
- There is no known general method for computing the capacity of 2-D constraints.
- That being the case, let's try...

2-D bit-stuffing!

Constraints on the Integer Grid

• 2-D (*d*,*k*) constraints satisfy the (*d*,*k*) constraint in rows and columns.

1	0	0	0	1	0	0
0	0	0	1	0	1	0
0	1	0	0	1	0	0
1	0	1	0	0	0	1
0	1	0	1	0	1	0
0	0	1	0	1	0	0
1	0	0	1	0	0	0

• $(d,k) = (1,\infty)$ constraint in rows and columns.

"Hard-Square Model"

2-D Bit-Stuffing Encoder (Hard-Square Model)

• Biased sequence: 111000100100011000

Optimal bias Pr(0) = p = 0.6444

R(p) = 0.583056

University of Arizona

Enhanced Bit-Stuffing Encoder (Hard-Square Model)

• Use 2 source encoders, with parameters p_0 , p_1 .

Optimal bias Optimal bias $Pr(0) = p_0 = 0.671833$ $Pr(0) = p_1 = 0.566932$

 $R(p_1, p_2) = 0.587277$

Capacity of 2-D (d,k) Constraints

- For 2-D (d,k) constraints, there is no known simple "formula" that lets us compute the capacity $C^{d,k}$.
- In fact, the only nontrivial (*d*,*k*) pairs for which $C^{d,k}$ is known are those with zero capacity [Ashley-Marcus 1998], [Kato-Zeger 1999]:

$$C^{d,d+1} = 0$$
, for $d \ge 1$

Capacity of Hard-Square Model

• Sharp bounds on $C^{1,\infty}$ have been computed:

 $0.587891161775 \le C^{1,\infty} \le 0.587891161868$

[Calkin-Wilf, 1998], [Nagy-Zeger, 2000]:

- Bit-stuffing encoder with one distribution transformer achieves rate R(p) = 0.583056 within 1% of capacity.
- Bit-stuffing encoder with two distribution transformers achieves rate $R(p_1, p_2) = 0.587277$ within 0.1% of capacity.

Bit-Stuffing Bounds on C^{d,∞}

- Bit-stuffing encoders can also be extended to 2-D (d,∞) constraints.
- Bounds on the bit-stuffing encoder rate yield the best known lower bounds on $C^{d,\infty}$ for d > 1 [Halevy, et al., 2004].
- Bit-stuffing can also be applied to 2-D constraints on the hexagonal lattice.
- Bounds on the bit-stuffing encoder rate yield the best known lower bounds on $C^{d,\infty}_{hex}$ for d > 1 [Halevy, et al., 2004]

Hard Hexagon Model

• $(d,k)=(1,\infty)$ constraints on the hexagonal lattice

Hard-Hexagon Model

Hard Hexagon Capacity

• Capacity of hard hexagon model $C_{hex}^{1,\infty}$ is known precisely! [Baxter, 1980]*

$$C_{hex}^{1,\infty} = \log \kappa_h$$
, where $\kappa = \kappa_1 \kappa_2 \kappa_3 \kappa_4$ and

$$\kappa_{1} = 4^{-1}3^{5/4}11^{-5/12}c^{-2} \qquad a = -\frac{124}{363}11^{1/3} \kappa_{2} = \left[1 - \sqrt{1 - c} + \sqrt{2 + c + 2\sqrt{1 + c + c^{2}}}\right]^{2} \qquad b = \frac{2501}{11979}33^{1/2} \kappa_{3} = \left[-1 - \sqrt{1 - c} + \sqrt{2 + c + 2\sqrt{1 + c + c^{2}}}\right]^{2} \qquad c = \left[\frac{1}{4} + \frac{3}{8}a\left[(b + 1)^{1/3} - (b - 1)^{1/3}\right]\right]^{1/3}$$

So, $C_{hex}^{1,\infty} \approx 0.480767622$

Bit-stuffing encoder achieves rate within 0.5% of capacity!

University of Arizona

Hard Hexagon Capacity*

- Alternatively, the hard hexagon entropy constant K satisfies a degree-24 polynomial with (big!) integer coefficients.
- Baxter does offer this disclaimer regarding his derivation, however:

*"It is not mathematically rigorous, in that certain analyticity properties of κ are assumed, and the results of Chapter 13 (which depend on assuming that various large-lattice limits can be interchanged) are used. However, I believe that these assumptions, and therefore (14.1.18)-(14.1.24), are in fact correct."

Concluding Remarks

- The theory and practice of 1-D constrained coding, including bit-stuffing, is well-developed and powerful.
- The lack of convenient graph-based representations of 2-D constraints prevents the straightforward extension of 1-D techniques for information theoretic analysis and code design. Both are active research areas.
- Bit-stuffing encoders yield some of the best known bounds on capacity of 2-D constraints.
- There are connections to statistical physics that may open up new approaches to understanding 2-D constrained systems (and, perhaps, vice-versa).

Acknowledgments

• Thanks to my colleagues:

➢ Ron Roth, Jack Wolf, Ken Zeger

- Thanks to our students:
 - Sharon Aviran, Jiangxin Chen, Shirley Halevy, Zsigmond Nagy
- Thanks to you for listening (and bit-stuffing)!!