
2/8/05 1

Constrained Coding Techniques for
Advanced Data Storage Devices

Paul H. Siegel
Director, CMRR

Electrical and Computer Engineering
University of California, San Diego

University of Arizona 2/8/05 2

Outline

• Digital recording channel model
• Constrained codes (track-oriented)

 Bit-stuffing, bit-flipping, symbol-sliding
 Information theory of constrained codes

• Constrained codes (page-oriented)
 Bit-stuffing in 2-dimensions

• Concluding remarks

University of Arizona 2/8/05 3

Digital Recording Channel

Error
Correction
Encoder

Modulation
Encoder

Write
Equalization

Read
Equalization

Modulation
Decoder

Error
Correction
Decoder

Head/
Medium

“Constrained coding”

1110110 11101101 10010001001

University of Arizona 2/8/05 4

Hard Disk Drive – Magnetic Transitions

78μm

32μm

Linear Density: 135.4 kb/in or 5.33bits/μm

Courtesy of Fred Spada

University of Arizona 2/8/05 5

CD - Pits and Lands

Linear Density: 39.4 kb/in or 1.55 bits/μm

Courtesy of Giesbert Nijhuis

University of Arizona 2/8/05 6

(d,k) Runlength-Limited Constraints

• Modulation codes for digital recording channels
 d = minimum number of 0’s between 1’s
 k = maximum number of 0’s between 1’s

• CD uses (d,k)=(2,10) ; Disk Drive uses (d,k)=(0,4)

0 1 2 d d+1 k

0 0 0 0 0 0 0

1
1 1

.

University of Arizona 2/8/05 7

Constrained Coding

• Problem:
How can we transform unconstrained binary data

streams into (d,k) constrained binary code
streams?

• Issues:
 Invertibility of transformation (unique decodability)
 Rate R, i.e., average ratio of # data bits to # code bits
 Complexity of encoding and decoding operations

University of Arizona 2/8/05 8

Bit-Stuffing Encoder

• Encoder “stuffs” extra bits into data stream, as needed
to enforce the (d,k) constraint:
 Stuffs d 0’s after every data 1
 Keeps track of total number of consecutive 0’s
 Stuffs a 1 and d 0’s after a runlength of k 0’s

0 1 2 d d+1 k-1
.

k
1

1
1

1

0 0 0 0 0 0 0 0

University of Arizona 2/8/05 9

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence:

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 10

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 11

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 12

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 13

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 14

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 15

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 16

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 17

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 18

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 19

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 20

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 21

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 22

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 23

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 24

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence:
Data sequence:

University of Arizona 2/8/05 25

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence:

University of Arizona 2/8/05 26

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1

University of Arizona 2/8/05 27

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0

University of Arizona 2/8/05 28

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0

University of Arizona 2/8/05 29

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1

University of Arizona 2/8/05 30

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0

University of Arizona 2/8/05 31

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0

University of Arizona 2/8/05 32

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0

University of Arizona 2/8/05 33

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0

University of Arizona 2/8/05 34

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1

University of Arizona 2/8/05 35

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1

University of Arizona 2/8/05 36

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0

University of Arizona 2/8/05 37

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0

University of Arizona 2/8/05 38

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0

University of Arizona 2/8/05 39

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0

University of Arizona 2/8/05 40

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1

University of Arizona 2/8/05 41

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1

University of Arizona 2/8/05 42

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0

University of Arizona 2/8/05 43

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0

University of Arizona 2/8/05 44

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1

University of Arizona 2/8/05 45

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0

University of Arizona 2/8/05 46

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0

University of Arizona 2/8/05 47

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0

University of Arizona 2/8/05 48

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1

University of Arizona 2/8/05 49

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

University of Arizona 2/8/05 50

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Data sequence: 1 1 0 0 0 0 1 0 1
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

Decoder
Code sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
Data sequence: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0

University of Arizona 2/8/05 51

Biased Bits May Be Better!

• For large values of k−d, it seems like bit-stuffing may be more
efficient if the data stream is properly biased, with fewer 1’s
than 0’s, since 1’s always generate d stuffed 0’s.

• How can we transform a sequence of independent unbiased
(i.e., fair) coin flips, where

Pr(0) = Pr(1) = ½
 into a sequence of independent biased (i.e., not fair) coin flips,

where, for p≠ ½
Pr(0) = p

Pr(1) = 1− p

University of Arizona 2/8/05 52

Distribution Transformer

• A “distribution transformer” maps an unbiased data
stream to a biased stream invertibly:

• There is a rate penalty, given by the binary entropy
function:

Distribution
Transformer

0 0 1 0 0 1 … 0 0 0 0 1 0 1 0 …

 ½ ½ p 1-p

n bits n/h(p) bits

h(p) = − p log p − (1− p) log (1− p) ≤ 1

University of Arizona 2/8/05 53

Binary Entropy Function

h(p)= − p log p – (1 − p) log (1− p)

p

h(p)

p=0.5

1 0

0.5

0.5

1

more
0’s

more
1’s

University of Arizona 2/8/05 54

Distribution Transformer Implementation

• A “distribution transformer” can be implemented by
using the decoder of a source code that compresses a
p-biased sequence of bits with compression ratio
1/h(p) to 1.

• In practice, the transformer could be based upon
stream-oriented arithmetic coding techniques and
achieve a rate very close to h(p).

 Distribution
Transformer

(Source
Decoder)

0 0 1 0 0 1 … 0 0 0 0 1 0 1 0 …

 ½ ½ p 1-p

n bits n/h(p) bits

University of Arizona 2/8/05 55

Bit-Stuffing Algorithm Flow

Encoder

Decoder

1-p 1

1 1 p p p

0 1 d d+1 k
1

1-p

1-p 1

1 1 p p p

0 1 d d+1 k
1

1-p

.

.

Distribution
Transformer

(Source
Decoder)

0 1 0 0 1 … 0 0 1 1 0 …
 ½ ½

)(ph
n

p 1-p

Distribution
Transformer

(Source
Encoder)

0 1 0 0 1 … 0 0 1 1 0 …

)(ph
n

p 1-p ½ ½

University of Arizona 2/8/05 56

Bit-Stuffing Rate vs. Bias

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 (1, 3, ∞)
(1, 7, ∞)
(2, 7, ∞)

0 1

p=0.5

Rate
R(p)

Bias p

University of Arizona 2/8/05 57

Bit-Flipping

• After k-1 consecutive 0’s, a 1 seems preferable to another 0:
1 generates d stuffed 0’s, whereas a 0 generates a stuffed 1
along with d stuffed 0’s.

• No need for a second distribution transformer if we just
complement the next biased bit at state k-1, i.e. p2=1-p1

0 0 0 0 0 0 0 0

0 1 2 d d+1 k-1

.

k
1

1
1 1

p1 p1 p1
p2

1-p2

University of Arizona 2/8/05 58

Bit-Flipping

• After k-1 consecutive 0’s, a 1 seems preferable to another 0:
1 generates d stuffed 0’s, whereas a 0 generates a stuffed 1
along with d stuffed 0’s.

• No need for a second distribution transformer if we just
“flip” the next biased bit at state k-1, i.e. p2=1-p1

0 0 0 0 0 0 0 0

0 1 2 d d+1 k-1

.

k
1

1
1 1

p1 p1 p1
p2

1-p2

p1
1-p1

University of Arizona 2/8/05 59

Bit-Flipping vs. Bit-Stuffing

• Theorem [Aviran et al., 2003]: Bit-flipping achieves
average rate strictly higher than bit-stuffing for d ≥ 1
and d+2 ≤ k < ∞.

 (Also, starting the bit-flipping at state k-1 is optimal.)

• Question: Can we improve on bit-flipping, at least for
some (d,k) constraints, still using only one distribution
transformer?

 YES! (e.g., symbol-sliding [Yogesh S. et al., 2004])

University of Arizona 2/8/05 60

Other Natural Questions

• Can we determine the absolute highest possible

coding rate of (d,k) codes?
 YES! [Shannon, 1948]

• Can we achieve it (or get arbitrarily close) using

stuffing, flipping, sliding, multiple transformers, or
other coding methods?

 YES! [Shannon, 1948] , and his followers…

University of Arizona 2/8/05 61

Claude E. Shannon

Shannon Statue – CMRR

University of Arizona 2/8/05 62

The Inscription on the Statue

University of Arizona 2/8/05 63

Discrete Noiseless Channels
(Constrained Systems)

• A constrained system S is the set of sequences generated by
walks on a labeled, directed graph G.

 Telegraph channel constraints [Shannon, 1948]

DOT
10

DASH
1110

DOT
10

DASH
1110

LETTER SPACE
000

WORDSPACE
000000

University of Arizona 2/8/05 64

Constrained Codes and Capacity

• Shannon showed that the number of length-n
constrained sequences is approximately 2Cn.

• The quantity C is called the capacity of the
constrained system.

 Theorem [Shannon,1948] : If there exists a decodable
code at rate R= m/n from binary data to S, then

 R W C.
 Theorem [Shannon,1948] : For any rate R=m/n < C

there exists a block code [look-up table] from binary
data to S with rate km:kn, for some integer k D 1.

University of Arizona 2/8/05 65

Computing Capacity

• Shannon also showed how to compute the capacity C.

• For (d,k) constraints, , where
 is the largest real root of the polynomial

• For (d,∞) constraints, use the relation [Ashley et al. 1987]:

kdkd logC ,, λ= kd ,λ

∞<−−−−= −+ kxxxxf dkk
kd for ,1)(1

,

. 1for ,12 ,1, ≥= −−∞ dCC ddd

University of Arizona 2/8/05 66

Achieving Capacity (sometimes…)

• Theorem [Bender-Wolf, 1993]: The bit-stuffing algorithm
achieves capacity for (d,k)= (d,d+1) and (d,k)=(d,∞).

• Theorem [Aviran, et al., 2004]: The bit-flipping algorithm
additionally achieves capacity for (d,k)=(2,4).

• Theorem [Yogesh S.-McLaughlin]: The symbol-sliding
algorithm also achieves capacity for (d,k)=(d,2d+1).

University of Arizona 2/8/05 67

Bit Stuffing Performance

Relative Average Rate vs Parameter k

0.975

0.980

0.985

0.990

0.995

1.000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Parameter k

A
ve

ra
ge

 R
at

e/
C

ap
ac

ity

(0, k, ∞)

(1, k, ∞)

(2, k, ∞)

(3, k, ∞)

(4, k, ∞)

(5, k, ∞)

0.975

1.000

University of Arizona 2/8/05 68

Shannon Probabilities

• Shannon also determined the probabilities on the edges of the
constraint graph that correspond to the highest achievable
rate, i.e., that achieve capacity, in terms of .

• The constrained sequences are called “maxentropic.”

0 1 2 d d+1 k-1
.

k
1- p1 1- p2 1-pk-d

1

λ

p1 p2 pk-d 1 1 1 1 ...

University of Arizona 2/8/05 69

Bit-Stuffing with Multiple Transformers

●
●
●

Smart

MUX

Distribution
Transformer

p1-bias

Distribution
Transformer

p2-bias

Distribution
Transformer

pk-d-bias

Bit
Stuffer Data

• Maxentropic encoder achieves capacity!

Smart

DEMUX

University of Arizona 2/8/05 70

The Formula on the “Paper”

Capacity of a discrete channel with noise [Shannon, 1948]

For noiseless channel, Hy(x)=0, so:

(x))H – (H(x)Max C y=

 H(x)Max C =

Capacity achieved by maximum entropy sequences

University of Arizona 2/8/05 71

Magnetic Recording Constraints

Forbidden words F={101, 010}

0
1

0 0

1 1
Biphase

Even

1 0

0 0

1 1

1

0

1

0

Forbidden word F={11}

Runlength constraints
(“finite-type”: determined by finite

list F of forbidden words)

Spectral null constraints
(“almost-finite-type”)

University of Arizona 2/8/05 72

Practical Constrained Codes

 Finite-state encoder Sliding-block decoder
 (from binary data into S) (inverse mapping from S to data)

m data bits n code bits

Encoder Logic

 Rate m:n

 (states)

 Decoder
 Logic

n bits

m bits
We want: high rate R=m/n
 low complexity

University of Arizona 2/8/05 73

Constrained Coding Theorems

• Powerful coding theorems were motivated by the problem of
constrained code design for magnetic recording.

 Theorem[Adler-Coppersmith-Hassner, 1983]
 Let S be a finite-type constrained system. If m/n ≤ C, then

there exists a rate m:n sliding-block decodable, finite-state
encoder.

 (Proof is constructive: “state-splitting algorithm.”)

 Theorem[Karabed-Marcus, 1988]
 Ditto if S is almost-finite-type.
 (Proof not so constructive…)

University of Arizona 2/8/05 74

Two-Dimensional Constrained Systems

• “Page-oriented" and “multi-track” recording technologies
require 2-dimensional (2-D) constraints.

• Examples:

 Holographic Storage - InPhaseTechnologies

 Two-Dimensional Optical Storage (TwoDOS) – Philips

 Patterned Magnetic Media – Hitachi, Toshiba, …

 Thermo-Mechanical Probe Array – IBM

University of Arizona 2/8/05 75

Holographic Recording

 Array constraints:
• 2-D runlength limited

• 2-D non-isolated bit

• 2-D low-pass filter

University of Arizona 2/8/05 76

TwoDOS

Courtesy of Wim Coene, Philips Research

University of Arizona 2/8/05 77

2-D Constrained Codes

• There is no comprehensive algorithmic theory for
 constructing encoders and decoders for 2-D constrained
 systems. (See, however, [Demirkan-Wolf, 2004] .)

• There is no known general method for computing the
 capacity of 2-D constraints.

• That being the case, let’s try…

2-D bit-stuffing!

University of Arizona 2/8/05 78

Constraints on the Integer Grid

• 2-D (d,k) constraints satisfy the (d,k) constraint in rows
and columns.

 1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

),1(),(∞=kd

0 0

0

0

0

0

0

0 0

0

0

0 0

0

0

0 0

0

0

0

0

0

0

0 0 0 0 0

0 0 0 0 0 • constraint
in rows and columns.

“Hard-Square Model”

University of Arizona 2/8/05 79

2-D Bit-Stuffing Encoder
(Hard-Square Model)

• Biased sequence: 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0

1 0

0

0

0

0
0 1

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

Optimal bias Pr(0) = p = 0.6444
R(p) = 0.583056

University of Arizona 2/8/05 80

Enhanced Bit-Stuffing Encoder
(Hard-Square Model)

• Use 2 source encoders, with parameters p0 , p1 .

0

0

0 0

0

1

Optimal bias

Pr(0) = p0 = 0.671833

Optimal bias

Pr(0) = p1 = 0.566932

R(p1 , p2) = 0.587277

University of Arizona 2/8/05 81

Capacity of 2-D (d,k) Constraints

• For 2-D (d,k) constraints, there is no known simple
 “formula” that lets us compute the capacity .

• In fact, the only nontrivial (d,k) pairs for which
 is known are those with zero capacity [Ashley-Marcus 1998],
 [Kato-Zeger 1999]:

kdC ,

1for ,01, ≥=+ dddC

kdC ,

University of Arizona 2/8/05 82

Capacity of Hard-Square Model

• Sharp bounds on have been computed:

 [Calkin-Wilf, 1998] , [Nagy-Zeger, 2000]:

• Bit-stuffing encoder with one distribution transformer achieves
 rate R(p) = 0.583056 within 1% of capacity.

• Bit-stuffing encoder with two distribution transformers achieves
 rate R(p1 , p2) = 0.587277 within 0.1% of capacity.

∞,1C

6858789116180 7558789116170 ,1 .. C ≤≤ ∞

University of Arizona 2/8/05 83

Bit-Stuffing Bounds on Cd,∞

• Bit-stuffing encoders can also be extended to 2-D (d,∞)
constraints.

• Bounds on the bit-stuffing encoder rate yield the best known
lower bounds on Cd,∞ for d >1 [Halevy, et al., 2004].

• Bit-stuffing can also be applied to 2-D constraints on the
hexagonal lattice.

• Bounds on the bit-stuffing encoder rate yield the best known
lower bounds on Cd,∞

hex for d >1 [Halevy, et al., 2004]

University of Arizona 2/8/05 84

Hard Hexagon Model

• (d,k)=(1,∞) constraints on the hexagonal lattice

Hard-Hexagon Model

[]

=

1
1

,11,
1
1

F

⇔ 1 1 1

1

1

1 1

1

1

University of Arizona 2/8/05 85

Hard Hexagon Capacity

• Capacity of hard hexagon model is known precisely! [Baxter,1980]*

21
2

4

2
2

3

2
2

2

2125451
1

1221

12211

12211

1134

−

−−−

 +++++−=

 +++++−−−=

 +++++−−=

=

aaaa

cccc

cccc

c

κ

κ

κ

κ

∞,1
hexC

[]
31

3131

21

31

)1()1(
8
3

4
1

33
11979
2501

11
363
124

 −−++=

=

−=

bbac

b

a

and where,log 4321
,1 κκκκκκ ==∞

hhexC

 So, 480767622.0,1 ≈∞
hexC

Bit-stuffing encoder achieves rate within 0.5% of capacity!

University of Arizona 2/8/05 86

Hard Hexagon Capacity*

• Alternatively, the hard hexagon entropy constant satisfies
a degree-24 polynomial with (big!) integer coefficients.

• Baxter does offer this disclaimer regarding his derivation,
however:

κ

*“It is not mathematically rigorous, in that certain analyticity
properties of κ are assumed, and the results of Chapter 13
(which depend on assuming that various large-lattice limits can
be interchanged) are used. However, I believe that these
assumptions, and therefore (14.1.18)-(14.1.24), are in fact
correct.”

University of Arizona 2/8/05 87

Concluding Remarks

• The theory and practice of 1-D constrained coding, including
bit-stuffing, is well-developed and powerful.

• The lack of convenient graph-based representations of 2-D
constraints prevents the straightforward extension of 1-D
techniques for information theoretic analysis and code design.
Both are active research areas.

• Bit-stuffing encoders yield some of the best known bounds on
capacity of 2-D constraints.

• There are connections to statistical physics that may open up
new approaches to understanding 2-D constrained systems
(and, perhaps, vice-versa).

University of Arizona 2/8/05 88

Acknowledgments

• Thanks to my colleagues:
 Ron Roth, Jack Wolf, Ken Zeger

• Thanks to our students:
 Sharon Aviran, Jiangxin Chen, Shirley Halevy,

Zsigmond Nagy

• Thanks to you – for listening (and bit-stuffing)!!

	Slide Number 1
	Outline
	Digital Recording Channel
	Hard Disk Drive – Magnetic Transitions
	CD - Pits and Lands
	(d,k) Runlength-Limited Constraints
	Constrained Coding
	Bit-Stuffing Encoder
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Biased Bits May Be Better!
	Distribution Transformer
	Binary Entropy Function
	Distribution Transformer Implementation
	Bit-Stuffing Algorithm Flow
	Bit-Stuffing Rate vs. Bias
	Bit-Flipping
	Bit-Flipping
	Bit-Flipping vs. Bit-Stuffing
	Other Natural Questions
	Claude E. Shannon
	The Inscription on the Statue
	Discrete Noiseless Channels�(Constrained Systems)
	Constrained Codes and Capacity
	Computing Capacity
	Achieving Capacity (sometimes…)
	Bit Stuffing Performance
	Shannon Probabilities
	Bit-Stuffing with Multiple Transformers
	The Formula on the “Paper”
	Magnetic Recording Constraints
	Practical Constrained Codes
	Constrained Coding Theorems
	Two-Dimensional Constrained Systems
	Holographic Recording
	TwoDOS
	2-D Constrained Codes
	Constraints on the Integer Grid
	2-D Bit-Stuffing Encoder�(Hard-Square Model)
	Enhanced Bit-Stuffing Encoder�(Hard-Square Model)
	Capacity of 2-D (d,k) Constraints
	Capacity of Hard-Square Model
	Bit-Stuffing Bounds on Cd,∞
	Hard Hexagon Model
	Hard Hexagon Capacity
	Hard Hexagon Capacity*
	Concluding Remarks
	Acknowledgments

