Constrained Coding Techniques for
Advanced Data Storage Devices

Paul H. Siegel
Director, CMRR
Electrical and Computer Engineering
University of California, San Diego

LICMRR

2/8/05 r for Magnetic Recording Res

Outline

® Digital recording channel model
® Constrained codes (track-oriented)
» Bit-stuffing, bit-flipping, symbol-sliding
» Information theory of constrained codes
® Constrained codes (page-oriented)
» Bit-stuffing in 2-dimensions
® Concluding remarks

2/8/05 University of Arizona

Digital Recording Channel

Medium

Error _ _
—— Correction |—» I\/Ié)dulztlon — u\g{i”zt:tion
Encoder ncoaer q
1110110 11101101) 10010001001
“Constrained coding”
Error _
<«—— Correction I\/I[())dulaétlon — . Rﬁadt_
Decoder ecoaer qualization

2/8/05

University of Arizona

Hard Disk Drive — Magnetic Transitions

",

% Linear Density: 135.4 kb/in or 5.33bits/um
W™

VR CR R R LR I 1l LR R
ITELE L 0 R T AR IR L R)

32um WU ORI OO TR SRR A L LAY
" :} |Il l l"'l ' | i

ool (PR ROCR A SOLACR TR AE O S HEEACE ERCRS AREA LA R AR |
PR CACKR JECHM AL SO0 ELENHE AL CE AL A0 SO0 4 JOLERE I JF A
i | . | ' 111

—
/8um
Courtesy of Fred Spada

2/8/05 University of Arizona 4

CD - Pits and Lands

Linear Density: 39.4 kb/in or 1.55 bits/um

T 833 nm
P10010010000010000100010001000000000010 T4 oo i
s 1388 nm
100001001000000001000100000010000100010 Té6 FE— 1666 nm

100000001000 0001000000000100010000000129

0190100100000 01000001000000001000100001

Note: this is at 1.2 m/sec,

0010000P0000R001001l0001000000000100100000 with a channel bit size of 277.662 nm

Courtesy of Giesbert Nijhuis

2/8/05 University of Arizona .

(d,k) Runlength-Limited Constraints

« Modulation codes for digital recording channels
» d = minimum number of 0’s between 1’s
» k = maximum number of O’s between 1’s

e CD uses (d,k)=(2,10) ; Disk Drive uses (d,k)=(0,4)

2/8/05 University of Arizona 6

Constrained Coding

e Problem:

» How can we transform unconstrained binary data
streams into (d,k) constrained binary code
streams?

Issues:
» Invertibility of transformation (unigue decodability)
» Rate R, I.e., average ratio of # data bits to # code bits
» Complexity of encoding and decoding operations

2/8/05 University of Arizona ;

Bit-Stuffing Encoder

 Encoder “stuffs” extra bits into data stream, as needed
to enforce the (d,k) constraint:

» Stuffs d 0’s after every data 1
» Keeps track of total number of consecutive 0’s
» Stuffsalandd O0’safter arunlength of k 0’s

2/8/05 University of Arizona 8

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Datasequence: 110000101
Code seguence:

Decoder
Code seguence:
Data sequence:

2/8/05 University of Arizona

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Datasequence: 110000101
Code sequence: 1

Decoder
Code seguence:
Data sequence:

2/8/05 University of Arizona

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Datasequence: 110000101
Code sequence: 10

Decoder
Code seguence:
Data sequence:

2/8/05 University of Arizona

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Datasequence: 110000101
Code sequence: 101

Decoder
Code seguence:
Data sequence:

2/8/05 University of Arizona

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
1010

University of Arizona

13

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100

University of Arizona

14

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
101000

University of Arizona

15

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010

University of Arizona

16

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
101000100

University of Arizona

17

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
1010001000

University of Arizona

18

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
101000100010

University of Arizona

19

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
1010001000101

University of Arizona

20

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010

University of Arizona

21

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
101000100010100

University of Arizona

22

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
1010001000101001

University of Arizona

23

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

University of Arizona

24

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010

University of Arizona

25

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Datasequence: 110000101
Codesequence: 10100010001010010

Decoder
Codesequence: 10100010001010010
Data sequence: 1

2/8/05 University of Arizona

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Datasequence: 110000101
Codesequence: 10100010001010010

Decoder
Codesequence: 10100010001010010
Data sequence: 10

2/8/05 University of Arizona

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Datasequence: 110000101
Codesequence: 10100010001010010

Decoder
Codesequence: 10100010001010010
Data sequence: 10

2/8/05 University of Arizona

Bit-Stuffing Demonstration
(d,k)=(1,3)

Encoder
Datasequence: 110000101
Codesequence: 10100010001010010

Decoder
Codesequence: 10100010001010010
Data sequence: 101

2/8/05 University of Arizona

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
1010

University of Arizona

30

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
1010

University of Arizona

31

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100

University of Arizona

32

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
101000

University of Arizona

33

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
1010001

University of Arizona

34

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
1010001

University of Arizona

35

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100010

University of Arizona

36

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100010

University of Arizona

37

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
101000100

University of Arizona

38

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
1010001000

University of Arizona

39

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100010001

University of Arizona

40

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100010001

University of Arizona

41

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
101000100010

University of Arizona

42

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
101000100010

University of Arizona

43

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
1010001000101

University of Arizona

44

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100010001010

University of Arizona

45

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100010001010

University of Arizona

46

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
101000100010100

University of Arizona

47

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
1010001000101001

University of Arizona

48

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100010001010010

University of Arizona

49

Bit-Stuffing Demonstration

Encoder
Data sequence:

Code seguence:

Decoder

Code seguence:

Data sequence:

2/8/05

(d,k)=(1,3)

110000101
10100010001010010

10100010001010010
10100010001010010

University of Arizona

50

Biased Bits May Be Better!

* For large values of k—d, it seems like bit-stuffing may be more
efficient if the data stream is properly biased, with fewer 1’s
than Q’s, since 1’s always generate d stuffed 0’s.

* How can we transform a sequence of independent unbiased
(i.e., fair) coin flips, where

Pr(0) = Pr(1) =%
Into a sequence of independent biased (i.e., not fair) coin flips,
where, for p£ %2
Pr(0)=p
Pr(l)=1-p

2/8/05 University of Arizona 51

Distribution Transformer

o A “distribution transformer” maps an unbiased data
stream to a biased stream invertibly:

Yo Y5 p 1-p
Vo \’ \
001001 ...|pistribution | 00001010 ...
| Transformer]
n bits n/h(p) bits
* There Is a rate penalty, given by the binary entropy

function:
h(p) = —plogp —(1-p)log (1-p) <1

2/8/05 University of Arizona 5

h(p)

2/8/05

Binary Entropy Function

h(p)= —plogp —(1—p)log (1-p)

University of Arizona

53

Distribution Transformer Implementation

« A “distribution transformer” can be implemented by
using the decoder of a source code that compresses a

p-biased sequence of bits with compression ratio
1/n(p) to 1.

 In practice, the transformer could be based upon
stream-oriented arithmetic coding techniques and
achieve a rate very close to h(p).

Yo Y% P 1-p

Vo Distribution | ¥ ’

001001 -+ | Transformer 00001019
| (Source]

n bits Decoder) n/h(p) bits

2/8/05 University of Arizona £4

Bit-Stuffing Algorithm Flow

Encoder
Yo Yo e p 1-p
01001... Distribution 00110...
y|Transformer >
n (Source n

Decoder) h (p)

2/8/05 University of Arizona

P 1P Distribution| ¥ %
00110... 01001...
o Transformer| ~ -~~~ -
n (Source 7
Encoder)
h(p)

55

Bit-Stuffing Rate vs. Bias

Rate
—8— (1,3, »
R(p)
——(2,7, =)

0 Bias p 1

2/8/05 University of Arizona

56

Bit-Flipping

o After k-1 consecutive 0’s, a 1 seems preferable to another O:
1 generates d stuffed 0’s, whereas a 0 generates a stuffed 1
along with d stuffed O’s.

0

E v E E

* No need for a second distribution transformer if we just
complement the next biased bit at state k-1, 1.e. p,=1-p,

2/8/05 University of Arizona

S7

Bit-Flipping

o After k-1 consecutive 0’s, a 1 seems preferable to another O:
1 generates d stuffed Q’s, whereas a 0 generates a stuffed 1
along with d stuffed O’s.

0
p p
Q. O @ . @ @ .
L L
- 1 1-p,

Pq

* No need for a second distribution transformer if we just
“flip” the next biased bit at state k-1, 1.e. p,=1-p,

2/8/05 University of Arizona

58

Bit-Flipping vs. Bit-Stuffing

e Theorem [Aviran et al., 2003]: Bit-flipping achieves
average rate strictly higher than bit-stuffing for d > 1
and d+2 <k < o0.

(Also, starting the bit-flipping at state k-1 is optimal.)

e Question: Can we improve on bit-flipping, at least for
some (d,k) constraints, still using only one distribution
transformer?

YES! (e.g., symbol-sliding [Yogesh S. et al., 2004])

2/8/05 University of Arizona -

2/8/05

Other Natural Questions

Can we determine the absolute highest possible
coding rate of (d,k) codes?

YES! [Shannon, 1948]

Can we achieve it (or get arbitrarily close) using
stuffing, flipping, sliding, multiple transformers, or
other coding methods?

YES! [Shannon, 1948] , and his followers...

University of Arizona 60

2/8/05

Claude E. Shannon

Claude Elwood Shannon
1816 - 2001

Shannon Statue - CMRR

University of Arizona

61

2/8/05

The Inscription on the Statue

CLAUDE ELWOOD SHANNON

1916 — 2001

FATHER OF INFORMATION THEORY

HIS FORMULATION OF THE MATHEMATICAL
THEORY OF COMMUNICATION PROVIDED
THE FOUNDATION FOR THE DEVELOPMENT OF
DATA STORAGE AND TRANSMISSION SYSTEMS
THAT LAUNCHED THE INFORMATION AGE.

DEDICATED OCTOBER 16, 2001

EUGENE DAUB, SCULFTOR

University of Arizona 62

Discrete Noiseless Channels
(Constrained Systems)

® A constrained system S Is the set of sequences generated by
walks on a labeled, directed graph G.

Telegraph channel constraints [Shannon, 1948]

DOT
10

LETTER SPACE
DASH

1110

WORDSPACE
000000

2/8/05 University of Arizona 63

Constrained Codes and Capacity

® Shannon showed that the number of length-n
constrained sequences is approximately 2.

® The quantity C is called the capacity of the
constrained system.

Theorem [Shannon,1948] : If there exists a decodable
code at rate R= m/n from binary data to S, then

R UC.

Theorem [Shannon,1948] : For any rate R=m/n < C
there exists a block code [look-up table] from binary
data to S with rate km:kn, for some integer k D1.

2/8/05 University of Arizona 64

Computing Capacity

® Shannon also showed how to compute the capacity C.

® For (d,k) constraints, C,, =log 4,, ,where A4,
IS the largest real root of the polynomial

fo,k(X) = Xt =x*% —...—x—=1, fork <o

* For (d,) constraints, use the relation [Ashley et al. 1987]:

Cio =Cyy9q, ford=1.

2/8/05 University of Arizona 65

Achieving Capacity (sometimes...)

e Theorem [Bender-Wolf, 1993]: The bit-stuffing algorithm
achieves capacity for (d,k)= (d,d+1) and (d,k)=(d,x).

e Theorem [Aviran, et al., 2004]: The bit-flipping algorithm
additionally achieves capacity for (d,k)=(2,4).

e Theorem [Yogesh S.-McLaughlin]: The symbol-sliding
algorithm also achieves capacity for (d,k)=(d,2d+1).

2/8/05 University of Arizona 66

Bit Stuffing Performance

Relative Average Rate vs Parameter k

1.000 o0

0.995
2
& —— (0, k, =)
o
Li; 0.990 - (1’ k, oo)
5 (2, k, =)
©
p —x— (3, k, co)
(D)
g 0.985 o (4’ k’ uo)
g —— (5, k, oo)
<
0.980
O . 975 0.975
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Parameter k
2/8/05 University of Arizona 67

Shannon Probabilities

e Shannon also determined the probabilities on the edges of the
constraint graph that correspond to the highest achievable
rate, i.e., that achieve capacity, interms of A .

* The constrained sequences are called “maxentropic.”

1 1 1 1 P1 . Pi-q

2/8/05 University of Arizona 68

Bit-Stuffing with Multiple Transformers

Distribution
»| Transformer
p,-bias

Smart Smart
Distribution

—] MUX »| Transformer DEMUX Bit -
Data p,-bias Stuffer

Distribution
Transformer
Py.q-bias

- Maxentropic encoder achieves capacity!

2/8/05 University of Arizona 69

The Formula on the “Paper”

Capacity of a discrete channel with noise [Shannon, 1948]
C =Max (H(x) — Hy (X))
For noiseless channel, H,(x)=0, so:

C =Max H(x)

!

Capacity achieved by maximum entropy sequences

2/8/05 University of Arizona 20

Magnetic Recording Constraints

Runlength constraints Spectral null constraints
(“finite-type”: determined by finite (“almost-finite-type™)
list F of forbidden words)

Biphase

1 1 1
o> > >

0 0 0

Forbidden word F={11} Even

1
o< >
1

0 1/_. 1 1
C.<O\.>O.<>
Forbidden words F={101, 010}

2/8/05 University of Arizona 1

Practical Constrained Codes

Finite-state encoder Sliding-block decoder
(from binary data into S) (inverse mapping from S to data)
n bits
m data bits n code bits |
e e e e e m - — a
— | Encoder Logic [1
Rate m:n Decoder
Logic
— (states)
m bits

We want: high rate R=m/n
low complexity

2/8/05 University of Arizona 29

Constrained Coding Theorems

® Powerful coding theorems were motivated by the problem of
constrained code design for magnetic recording.

Theorem[Adler-Coppersmith-Hassner, 1983]

Let S be a finite-type constrained system. If m/n <C, then
there exists a rate m:n sliding-block decodable, finite-state
encoder.

(Proof is constructive: “state-splitting algorithm.”)

Theorem[Karabed-Marcus, 1988]
Ditto if S is almost-finite-type.
(Proof not so constructive...)

2/8/05 University of Arizona 23

2/8/05

Two-Dimensional Constrained Systems

“Page-oriented" and “multi-track” recording technologies
require 2-dimensional (2-D) constraints.

Examples:

» Holographic Storage - InPhaseTechnologies
» Two-Dimensional Optical Storage (TwoDOS) — Philips
» Patterned Magnetic Media — Hitachi, Toshiba, ...

» Thermo-Mechanical Probe Array — IBM

University of Arizona

74

Holographic Recording

Array constraints:
 2-D runlength limited

e 2-D non-isolated bit

e 2-D low-pass filter

2/8/05 University of Arizona -

TwoDOS

Readout

Laser

Diffraction Grating

Array of Laser-Spots

Broad 2D-Spiral

Broad Spiral

A

(spiral contains 11 bit-rows)

Courtesy of Wim Coene, Philips Research

2/8/05 University of Arizona 76

2-D Constrained Codes

* There is no comprehensive algorithmic theory for
constructing encoders and decoders for 2-D constrained

systems. (See, however, [Demirkan-Wolf, 2004] .)

e There is no known general method for computing the
capacity of 2-D constraints.

e That being the case, let’s try...

2-D bit-stuffing!

2/8/05 University of Arizona -

Constraints on the Integer Grid

e 2-D (d,k) constraints satisfy the (d,k) constraint in rows
and columns.

00 :

10 0 071 «(d,k) =(L,0) constraint
o, 0 0/12 /010 In rows and columns.

0/ 100 1|00

t oj1j0j0 01 “Hard-Square Model”
o1 o 1o 1 o0

oo/ l]oj1 00

l1olo/ Y]lololo

2/8/05 University of Arizona -8

2-D Bit-Stuffing Encoder
(Hard-Square Model)

e Biasedsequence: 1110001001000011000

1{ol1l0f0]0]o0O
ojl1]0f1]0]o0O
ofofloJof1]o
010jJ0]1]0
1{0]0]o

0]o0

0

Optimal bias Pr(0) = p = 0.6444
R(p) = 0.583056

2/8/05 University of Arizona

Enhanced Bit-Stuffing Encoder
(Hard-Square Model)

» Use 2 source encoders, with parameters p,, Py -

Optimal bias Optimal bias
Pr(0) = p,= 0.671833 Pr(0) = p, = 0.566932

R(p,, p,) = 0.587277

2/8/05 University of Arizona 80

Capacity of 2-D (d,k) Constraints

* For 2-D (d,k) constraints, there is no known simple
“formula” that lets us compute the capacity che

+ In fact, the only nontrivial (d,k) pairs for which C*

Is known are those with zero capacity [Ashley-Marcus 1998],
[Kato-Zeger 1999]:

C4* =0, for d >1

2/8/05 University of Arizona

81

Capacity of Hard-Square Model

e Sharp bounds on C* have been computed:

0587891161775 < C1* < 0587891161868

[Calkin-Wilf, 1998] , [Nagy-Zeger, 2000]:

 Bit-stuffing encoder with one distribution transformer achieves
rate R(p) =0.583056 within 1% of capacity.

 Bit-stuffing encoder with two distribution transformers achieves
rate R(p,, p,) = 0.587277 within 0.1% of capacity.

2/8/05 University of Arizona 8

Bit-Stuffing Bounds on Cd*

 Bit-stuffing encoders can also be extended to 2-D (d,«)
constraints.

« Bounds on the bit-stuffing encoder rate yield the best known
lower bounds on C%* for d >1 [Halevy, et al., 2004].

 Bit-stuffing can also be applied to 2-D constraints on the
hexagonal lattice.

e Bounds on the bit-stuffing encoder rate yield the best known

lower bounds on Cd=, . for d >1 [Halevy, et al., 2004]

2/8/05 University of Arizona 83

Hard Hexagon Model

e (d,k)=(1,0) constraints on the hexagonal lattice

A/\/X\AAA M
|)

B e

e
BT e

Hard-Hexagon Model

/////////////////////////

Hard Hexagon Capacity

1,00
hex

 Capacity of hard hexagon model C.. is known precisely! [Baxter,1980]*

C.* =log x,,, where k = k,x,x,x, and

hex

K,l — 4—135/411—5/12C—2

- 2 __%11]/3
K, = 1—\/1—C+\/2+C+2\/1+C+C2} 363
B b B 2501 331/2

] , _
K, =|—1-+/1-c +\/2+c+2\/l+c+cz} 11979 N

! 42 C=F+§a[(b+1)]/3—(b—l)”ﬂ
K, = \/1—a+\/2+a+2\/l+a+a2} 4 8

So, - ~0.480767622

hex

Bit-stuffing encoder achieves rate within 0.5% of capacity!
2/8/05 University of Arizona g5

Hard Hexagon Capacity™*

« Alternatively, the hard hexagon entropy constant X satisfies
a degree-24 polynomial with (big!) integer coefficients.

» Baxter does offer this disclaimer regarding his derivation,
however:

2/8/05

**It is not mathematically rigorous, in that certain analyticity
properties of k are assumed, and the results of Chapter 13
(which depend on assuming that various large-lattice limits can
be interchanged) are used. However, | believe that these

assumptions, and therefore (14.1.18)-(14.1.24), are in fact
correct.”

University of Arizona 86

Concluding Remarks

® The theory and practice of 1-D constrained coding, including
bit-stuffing, i1s well-developed and powerful.

® The lack of convenient graph-based representations of 2-D
constraints prevents the straightforward extension of 1-D
techniques for information theoretic analysis and code design.
Both are active research areas.

® Bit-stuffing encoders yield some of the best known bounds on
capacity of 2-D constraints.

® There are connections to statistical physics that may open up

new approaches to understanding 2-D constrained systems
(and, perhaps, vice-versa).

2/8/05 University of Arizona 87

Acknowledgments

* Thanks to my colleagues:
» Ron Roth, Jack Wolf, Ken Zeger

e Thanks to our students:

» Sharon Aviran, Jiangxin Chen, Shirley Halevy,
Zsigmond Nagy

e Thanks to you — for listening (and bit-stuffing)!!

2/8/05 University of Arizona

88

	Slide Number 1
	Outline
	Digital Recording Channel
	Hard Disk Drive – Magnetic Transitions
	CD - Pits and Lands
	(d,k) Runlength-Limited Constraints
	Constrained Coding
	Bit-Stuffing Encoder
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Bit-Stuffing Demonstration�(d,k)=(1,3)
	Biased Bits May Be Better!
	Distribution Transformer
	Binary Entropy Function
	Distribution Transformer Implementation
	Bit-Stuffing Algorithm Flow
	Bit-Stuffing Rate vs. Bias
	Bit-Flipping
	Bit-Flipping
	Bit-Flipping vs. Bit-Stuffing
	Other Natural Questions
	Claude E. Shannon
	The Inscription on the Statue
	Discrete Noiseless Channels�(Constrained Systems)
	Constrained Codes and Capacity
	Computing Capacity
	Achieving Capacity (sometimes…)
	Bit Stuffing Performance
	Shannon Probabilities
	Bit-Stuffing with Multiple Transformers
	The Formula on the “Paper”
	Magnetic Recording Constraints
	Practical Constrained Codes
	Constrained Coding Theorems
	Two-Dimensional Constrained Systems
	Holographic Recording
	TwoDOS
	2-D Constrained Codes
	Constraints on the Integer Grid
	2-D Bit-Stuffing Encoder�(Hard-Square Model)
	Enhanced Bit-Stuffing Encoder�(Hard-Square Model)
	Capacity of 2-D (d,k) Constraints
	Capacity of Hard-Square Model
	Bit-Stuffing Bounds on Cd,∞
	Hard Hexagon Model
	Hard Hexagon Capacity
	Hard Hexagon Capacity*
	Concluding Remarks
	Acknowledgments

