
1/11/05 1 

Capacity of Noiseless and Noisy 
Two-Dimensional Channels  

 
Paul H. Siegel 

Electrical and Computer Engineering 
Center for Magnetic Recording Research 

University of California, San Diego 
 



LANL Workshop 1/11/05 2 

Outline 

• Shannon Capacity 
• Discrete-Noiseless Channels 

• One-dimensional 
• Two-dimensional 

• Finite-State Noisy Channel 
• One-dimensional 
• Two-dimensional 

  

• Summary 
 



LANL Workshop 1/11/05 3 

Claude E. Shannon 
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The Inscription 
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The Formula on the “Paper” 

Capacity of a discrete channel with noise [Shannon, 1948] 
 

 
 
    
For noiseless channel, Hy(x)=0,  so: 
 
 

  
       
 
 
       

Gaylord, MI:  C = W log (P+N)/N 
Bell Labs:  no formula on paper 
(“H = – p log p – q log q” on plaque)                              

  

(x))H – (H(x)Max   C y=

 H(x)Max   C =
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Discrete Noiseless Channels 
(Constrained Systems) 

• A constrained system S is the set of sequences generated   by 
walks on a labeled, directed graph G. 

  
 Telegraph channel constraints [Shannon, 1948] 
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Magnetic Recording Constraints 

Forbidden words F={101, 010} 

0 
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Biphase 
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0 

Forbidden word F={11} 

Runlength constraints          
(“finite-type”: determined by finite 

list F of forbidden words) 

Spectral null constraints    
(“almost-finite-type”) 
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 (d,k) runlength-limited constraints 

• For                         , a    (d,k) runlength-limited 
    sequence is a binary string such that: 

 
  

 
• F={11} forbidden list corresponds to 

 
 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

<≤ kd0

),1(),( ∞=kd

sd     consecbetween  '0#  ≤
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Practical Constrained Codes 

         Finite-state encoder               Sliding-block decoder 
            (from binary data into S)              (inverse mapping from S to data) 

m data bits n code bits 

Encoder Logic 

   Rate m:n 

      (states) 

  Decoder 
     Logic 

n bits 

m bits 
We want: high rate R=m/n 
                low complexity  
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Codes and Capacity 

• How high can the code rate be? 
• Shannon defined the capacity of the constrained system S: 

 
 
 where N(S,n) is the number of sequences in S of length n. 
 

 Theorem [Shannon,1948] : If there exists a decodable code at rate 
R= m/n from binary data to S, then R W C. 

 Theorem [Shannon,1948] : For any rate R=m/n < C there exists a 
block code from binary data to S with rate km:kn, for some 
integer k D 1. 
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Computing Capacity: 
Adjacency Matrices 

• Let          be the adjacency matrix of the graph G 
representing S.   

                    
 
 
 
 
 
 

• The entries in            correspond to paths in G of length n.   
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Computing Capacity  
(cont.) 

• Shannon showed that, for suitable representing graphs G , 
 
  
 where                                                                           , i.e., 
 the spectral radius of the matrix       . 

 

• Assigning “transition probabilities” to the edges of G, the 
constrained system S becomes a Markov source x, with  
entropy H(x).  Shannon proved that  
 

 and expressed the maximizing probabilities in terms of the 
spectral radius and corresponding eigenvector of        . 
 
  
     

  

( )GA ρlogC =

( ) { }GG lue of Aan eigenva is: λ λ maxAρ =
GA

( )x HmaxC =

GA
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Maxentropic Measure 

 
• Let        denote the largest real eigenvalue of        , with 

corresponding eigenvector   
• Then the maxentropic (capacity-achieving) transition  

probabilities are given by  

 
 

• The stationary state distribution is expressed in terms of 
corresponding left and right eigenvectors.  

     

λ
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Computing Capacity  
(cont.) 

• Example: 
 
 
 
 

• More generally,                             ,  where            is the              
     largest real root of the polynomial 
 
 
    and 
 
                                     

),1(),( ∞=kd

6942.0
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Constrained Coding Theorems 

• Stronger coding theorems were motivated by the problem of 
constrained code design for magnetic recording. 
 

 Theorem[Adler-Coppersmith-Hassner, 1983]  
 Let S be a finite-type constrained system.  If m/n ≤ C,  then  

there exists a rate m:n sliding-block decodable, finite-state 
encoder.   

 (Proof is constructive: state-splitting algorithm.) 
 
 Theorem[Karabed-Marcus, 1988] 
 Ditto if S is almost-finite-type. 
 (Proof not so constructive…)         
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Two-Dimensional Constrained Systems 

• Band-recording and page-oriented recording 
technologies require 2-dimensional constraints, 
for example: 
 

• Two-Dimensional Optical Storage (TwoDOS) - Philips 
• Holographic Storage  - InPhaseTechnologies 
• Patterned Magnetic Media – Hitachi, Toshiba, …  
• Thermo-Mechanical Probe Array – IBM  
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TwoDOS 

Courtesy of Wim Coene, Philips Research 
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Constraints on the Integer Lattice Z2 

•            :                         constraint  in  x - y  directions: 
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(d,k) Constraints on the Integer Lattice Z2 

• For 2-dimensional (d,k) constraints          , the capacity is given by: 
 
 
 
 
 
 

• The only nontrivial (d,k) pairs for which              is known precisely are 
      those with zero capacity, namely [Kato-Zeger, 1999] : 
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(d,k) Constraints on Z2 – Capacity Bounds 

• Transfer matrix methods provide numerical bounds on  
     [Calkin-Wilf, 1998] , [Nagy-Zeger, 2000] 

 
 

 

• Variable-rate “bit-stuffing” encoders for         yield best 
known lower bounds on           for d >1 [Halevy, et al., 2004]: 
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2-D Bit-Stuffing             RLL Encoder 
 
 
 
 
 

 
• Source encoder converts binary data to i.i.d bit stream 

(biased bits) with                              ,  rate penalty        . 
• Bit-stuffing encoder inserts redundant bits which can be 

identified uniquely by decoder. 
• Encoder rate R(p) is a lower bound of the capacity.        

(For d=1,  we can determine R(p)  precisely.) 
 
 

Data Source

Bit-stuffing
Decoder

Source
Encoder

Bit-stuffing
Encoder

Discrete
Noiseless
Channel

Source
DecoderData Sink

( ) ( ) pp, −== 10Pr 1Pr )( ph

),( ∞d
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2-D Bit-Stuffing  (1,∞) RLL Encoder 

• Biased sequence:  1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 
 
 
 

 
 
 

1 0 
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0 
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Optimal bias  Pr(1) = p = 0.3556 
 R(p)=0.583056   (within 1% of capacity) 
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Enhanced Bit-Stuffing Encoder 

• Use 2 source encoders, with parameters  p0 , p1 . 
 

 
0 

0 

0 0 

0 

1 

Optimal bias  

Pr(1) = p0 = 0.328167 

Optimal bias  

Pr(1) = p1 = 0.433068 

R(p0 , p1)=0.587277   (within 0.1% of capacity) 
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Non-Isolated Bit (n.i.b.) Constraint on Z2 

• The non-isolated bit constraint              is defined by the 
forbidden set: 
 
 
 
 
 
 
 
 
 
 
 

• Analysis of the coding ratio of a bit-stuffing encoder yields: 
 

                    0.91276 ≤ Csq
nib ≤ 0.93965 

 
 
 
 
 

 
 
  
















































=   

1
101

1
  , 

0
010

0
  F

nib
sqS



LANL Workshop 1/11/05 25 

Constraints on the Hexagonal Lattice A2 

•            :                         constraints: 
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Hard Hexagon Capacity 

• Capacity of hard hexagon model           is known precisely! [Baxter,1980]*                                  
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Hard Hexagon Capacity 

• Alternatively, the hard hexagon entropy constant       satisfies 
a degree-24 polynomial with (big!) integer coefficients. 
 

• Baxter does offer this disclaimer regarding his derivation, 
however: 

κ

  

*“It is not mathematically rigorous, in that certain analyticity 
properties of κ are assumed, and the results of Chapter 13 
(which depend on assuming that various large-lattice limits can 
be interchanged) are used. However, I believe that these 
assumptions, and therefore (14.1.18)-(14.1.24), are in fact 
correct.” 
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(d,k) Constraints on A2 – Capacity Bounds 

• Zero capacity region partially known [Kukorelly-Zeger, 2001]. 
• Variable-to-fixed length “bit-stuffing” encoders for 
     yield best known lower bounds on               for   d>1 
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Practical 2-D Constrained Codes 

          •  There is no comprehensive algorithmic theory for 
   constructing encoders and decoders for 2-D constrained 
   systems. 
 

•  Very efficient bit-stuffing encoders have been defined and 
   analyzed for several 2-D constraints, but they are not 
   suitable for practical applications [Roth et al., 2001] ,  
   [Halevy et al., 2004] , [Nagy-Zeger, 2004]. 
 

•  Optimal block codes with  m x n   rectangular code arrays 
   have been designed for small values of m and n, and some 
   finite-state encoders have been designed, but there is no 
   generally applicable method  [Demirkan-Wolf, 2004] . 
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Concluding Remarks   

• The lack of convenient graph-based representations 
of 2-D constraints prevents the straightforward 
extension of 1-D techniques for analysis and code 
design. 
 

• There are strong connections to statistical physics that 
may open up new approaches to understanding 2-D 
constrained systems (and, perhaps, vice-versa).  
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Noisy Finite-State ISI Channels (1-Dim.) 

• Binary input process 
 

• Linear intersymbol interference 
 

• Additive, i.i.d.  Gaussian noise   
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Example: Partial-Response Channels 

• Impulse response:  
 
 
 

• Example:  Dicode channel   
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Entropy Rates 

 
• Output entropy rate: 

 
• Noise entropy rate:  

 
• Conditional entropy rate: 
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Mutual Information Rates 

• Mutual information rate: 
 
 

• Capacity:   
 

• Symmetric information rate (SIR): 
     Inputs                          are constrained to be  
      independent, identically distributed, and equiprobable 
      binary digits. 

( ) ( ) ( ) ( ) ( )NHYHX|YHYHY;XI −=−=

{ }][ixX =

( )
( )Y;XImaxC

XP
=



LANL Workshop 1/11/05 35 

Finding the Output Entropy Rate 

• For one-dimensional ISI channel model: 
 
 

 and 
 
  
 where 
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Sample Entropy Rate 

• If we simulate the channel  N  times,  using  inputs with  
specified (Markovian) statistics and generating output 
realizations   

   
 
 then            
 

 
 

 converges to                with probability 1 as                . 
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Computing Sample Entropy Rate 
• The forward recursion of the sum-product (BCJR) 
 algorithm can be used to calculate the probability  
 p(y1

n) of a  sample realization of the channel output. 
  
• In fact, we can write 

 
 
 

  
 where the quantity                      is precisely the  
 normalization constant in the (normalized) forward 
 recursion. 
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Computing Entropy Rates 

• Shannon-McMillan-Breimann theorem implies 
 

     
  
  
 as                , where          is a single long sample 

realization of the channel output process. 
 

ny1

( ) ( )YHyplog
n .s.a

n →− 1
1

∞→n



LANL Workshop 1/11/05 39 

SIR for Partial-Response Channels 
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Computing the Capacity 

• For Markov input process of specified order r , this  
 technique can be used to find the mutual information 
 rate. (Apply it to the combined source-channel.)  
 

• For a fixed order r , [Kavicic, 2001] proposed a Generalized 
Blahut-Arimoto algorithm to optimize the parameters of  the 
Markov input source. 
 

• The stationary points of the algorithm have been shown to 
correspond to critical points of the information rate curve 
[Vontobel,2002] . 
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Capacity Bounds for Dicode h(D)=1-D 
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Markovian Sufficiency 
 

 Remark:  It can be shown that optimized Markovian 
processes whose states are determined by their 
previous r symbols can asymptotically achieve the 
capacity of finite-state intersymbol interference 
channels with AWGN as the order r of the input 
process approaches  ∞. 

    (This generalizes to 2 dimensional channels.) 
 
 [Chen-Siegel, 2004] 
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Capacity and SIR in Two Dimensions 

• In two dimensions, we could estimate               by   
calculating the sample entropy rate of a very large  
simulated output array. 

• However, there is no counterpart of the BCJR 
algorithm in two dimensions to simplify the 
calculation. 

• Instead, conditional entropies can be used to derive 
upper and lower bounds on  .  

( )YH

( )YH
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Examples of Past{Y[i,j]} 
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Conditional Entropies 

• For a stationary two-dimensional random field Y on the 
integer lattice, the entropy rate satisfies: 
 
 
 

 (The proof uses the entropy chain rule. See [5-6])   
 
• This extends to random fields on the hexagonal lattice, 

via the natural mapping to the integer lattice. 

( ) [ ] [ ]{ }( )j,i,kj,i YPastYHYH | ∞=
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Upper Bound on H(Y) 

• For a stationary two-dimensional random field Y, 
 
 
 

 where 
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Two-Dimensional Boundary of Past{Y[i,j]} 

• Define                            to be the boundary  
 

 of                             . 
 
• The exact expression for  
 is messy, but the geometrical concept is  
 simple. 
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Two-Dimensional Boundary of Past{Y[i,j]} 
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Lower Bound on H(Y) 

• For a stationary two-dimensional hidden Markov field Y, 
 

 where 
 
 

  
 and                                 is the “state information” for 
 
 the strip                             . 
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Computing the SIR Bounds 

• Estimate the two-dimensional conditional entropies 
         over a small array. 

 
• Calculate       to get                 
 for many realizations of output array.   

 
• For column-by-column ordering, treat each row 
 as a variable and calculate the joint probability 
                 row-by-row using the BCJR forward 
  recursion. 

( )BAP

( )BAH

( ) ( )BPBAP ,,

iY

{ }mYYYP ,,, 21 



LANL Workshop 1/11/05 51 

2x2 Impulse Response 

• “Worst-case” scenario - large ISI: 
 
 
 

• Conditional entropies computed from 100,000 
realizations. 
 

• Upper bound: 
 

•  Lower bound: 
 

 (corresponds to element in middle of last column) 
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SIR Bounds for 2x2 Channel 
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Computing the SIR Bounds 

• The number of states for each variable increases 
exponentially with the number of columns in the  

 array. 
 
• This requires that the two-dimensional impulse response 

have a small support region.  
 

• It is desirable to find other approaches to computing 
bounds that reduce the complexity, perhaps at the cost 
of weakening the resulting bounds. 
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Alternative Upper Bound 

• Modified BCJR approach limited to small impulse 
response support region. 

• Introduce “auxiliary ISI channel” and bound 
 

  
 where  
 
 
  
 and                   is an arbitrary conditional 
   
 probability distribution. 
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3x3 Impulse Response 

• Two-DOS transfer function 
 
 
 
 

• Auxiliary one-dimensional ISI channel with memory 
 length 4. 
 
• Useful upper bound up to Eb/N0 = 3 dB. 
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SIR Upper Bound for 3x3 Channel 
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Concluding Remarks 

• Recent progress has been made in computing information rates and 
capacity of 1-dim. noisy finite-state ISI channels. 
 

• As in the noiseless case, the extension of these results to 2-dim. 
channels is not evident. 
 

• Upper and lower bounds on the SIR of two-dimensional finite-state 
ISI channels have been developed. 
 

• Monte Carlo methods were used to compute the bounds for 
channels with small impulse response support region. 
 

• Bounds can be extended to multi-dimensional ISI channels. 
 

• Further work is required to develop computable, tighter bounds for 
general multi-dimensional ISI channels. 
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