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The Formula on the “Paper”

Capacity of a discrete channel with noise [Shannon, 1948]
C =Max (H(x) — Hy (X))
For noiseless channel, H,(x)=0, so:

C =Max H(x)

Gaylord, MI: C =W log (P+N)/N
Bell Labs: no formula on paper

(“H=-plog p-qlogqg” on plague)
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Discrete Noiseless Channels
(Constrained Systems)

® A constrained system S Is the set of sequences generated by
walks on a labeled, directed graph G.

Telegraph channel constraints [Shannon, 1948]

DASH

NO

DASH

WORD SPACE
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Magnetic Recording Constraints

Runlength constraints Spectral null constraints
(“finite-type”: determined by finite (“almost-finite-type™)
list F of forbidden words)

Biphase

1 1 1
o> > >

0 0 0

Forbidden word F={11} Even

1
o< >
1

0 1/_. 1 1
C.<O\.>O.<>
Forbidden words F={101, 010}
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(d,Kk) runlength-limited constraints

c For N<d « Ik a (dk)runlength-limited
sequence Is a binary string such that:

A < #0'< hetween congec

 F={11} forbidden list corresponds to (d,k) = (1, )

1000101001010001012000010
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Practical Constrained Codes

Finite-state encoder Sliding-block decoder
(from binary data into S) (inverse mapping from S to data)
n bits
m data bits n code bits |
e e e e e m - — a
— | Encoder Logic [ 1
Rate m:n Decoder
Logic
— (states)
m bits

We want: high rate R=m/n
low complexity
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Codes and Capacity

® How high can the code rate be?
® Shannon defined the capacity of the constrained system S:

1
C =|im—log N(S,n)

n—w [

where N(S,n) iIs the number of sequences In S of length n.

Theorem [Shannon,1948] : If there exists a decodable code at rate
R=m/n from binary data to S, then R UC.

Theorem [Shannon,1948] : For any rate R=m/n < C there exists a

block code from binary data to S with rate km:kn, for some
Integer k D1.
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Computing Capacity:
Adjacency Matrices

® Let Ags Dbe the adjacency matrix of the graph G
representing S.

® The entries in AGn correspond to paths in G of length n.
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Computing Capacity
(cont.)

® Shannon showed that, for suitable representing graphs G,

C =log p(Ag)

where  p(Ag )=max{ ||: 4 is an eigenvalue of A } , i.e.
the spectral radius of the matrix Ag.

® Assigning “transition probabilities” to the edges of G, the
constrained system S becomes a Markov source X, with
entropy H(x). Shannon proved that

C =max H(x)
and expressed the maximizing probabilities in terms of the
spectral radius and corresponding eigenvector of Ag .

1/11/05 LANL Workshop
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Maxentropic Measure

« Let A denote the largest real eigenvalue of Ag , with
corresponding eigenvector  B=|[B,,...,B,, |

* Then the maxentropic (capacity-achieving) transition
probabilities are given by

p..:BJ'.A‘J'
B A

 The stationary state distribution is expressed in terms of
corresponding left and right eigenvectors.

1/11/05 LANL Workshop
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Computing Capacity

(cont.)
® Example:  (d, k)= (1)
C- Iog1+£/g ~ 0.6942

* More generally, C,, =log A, , where Ay, isthe
largest real root of the polynomial

fo, k(X)) = X —x*? —...—x-1, fork <o
and
Cyi =Cy 14y ford =1,

1/11/05 LANL Workshop
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Constrained Coding Theorems

® Stronger coding theorems were motivated by the problem of
constrained code design for magnetic recording.

Theorem[Adler-Coppersmith-Hassner, 1983]

Let S be a finite-type constrained system. If m/n <C, then
there exists a rate m:n sliding-block decodable, finite-state
encoder.

(Proof is constructive: state-splitting algorithm.)

Theorem[Karabed-Marcus, 1988]
Ditto If S is almost-finite-type.
(Proof not so constructive...)

1/11/05 LANL Workshop
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Two-Dimensional Constrained Systems

Band-recording and page-oriented recording
technologies require 2-dimensional constraints,
for example:

Two-Dimensional Optical Storage (TwoDOS) - Philips
Holographic Storage - InPhaseTechnologies

Patterned Magnetic Media — Hitachi, Toshiba, ...
Thermo-Mechanical Probe Array — IBM
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TwoDOS

Readout

Laser

Diffraction Grating

Array of Laser-Spots

Broad 2D-Spiral

Broad Spiral

S

(spiral contains 11 bit-rows)

HE,;
= H »
Photo-Detector

Courtesy of Wim Coene, Philips Research
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Constraints on the Integer Lattice Z2

iy

Independent Sets

Hard-Square Model

. S:c’;o . (d,k)=(1,00) constraint Iin x -y directions:
1 1
1 1
1 1
1 1 1
1 1
1 1
1 1

1/11/05
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(d,k) Constraints on the Integer Lattice Z2

* For 2-dimensional (d,k) constraints qu"f the capacity is given by:

d, k
COk = fim —mn
m,N—oo mn

« The only nontrivial (d,k) pairs for which C 9K is known precisely are
those with zero capacity, namely [Kato-Zeger, 1999] :

Cd,d+1:O d>0

Ci*>0,k>d+2
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(d,k) Constraints on Z? — Capacity Bounds

Transfer matrix methods provide numerical bounds on C*®
[Calkin-Wilf, 1998] , [Nagy-Zeger, 2000]

0587891161775 < CL* < 0587891161868

Variable-rate “bit-stuffing” encoders for qu"”yield best
known lower bounds on C%* for d >1 [Halevy, et al., 2004]:
h(p)

C* > lim max _o. 1
m,n—wo  0<p<l 1_|_ 2dp— pZ(l_ I:)Zd—l) (mln{m,n})/d( )

d Lower bound d Lower bound
0.4267 4 0.2858
3 0.3402 5 0.2464
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2-D Bit-Stuffing (d,o0) RLL Encoder

Source Bit-stuffing
Encoder Encoder

v

Discrete
Noiseless
Channel

v

Source Bit-stuffing
Decoder Decoder

Data Source ————p»|

Data Sink |——

« Source encoder converts binary data to 1.1.d bit stream
(biased bits) with Pr(l)=p,Pr(0)=1-p, rate penalty h(p).

 Bit-stuffing encoder inserts redundant bits which can be
identified uniquely by decoder.

e Encoder rate R(p) Is a lower bound of the capacity.
(For d=1, we can determine R(p) precisely.)
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2-D Bit-Stuffing (1,.0) RLL Encoder

e Biasedsequence: 1110001001000011000

110111010107} 0
O112]1]011]10]0
0[0]J0fO0Of21]0
OJj]0fof11]0
110f(0fo0

010

0

Optimal bias Pr(1) =p = 0.3556
R(p)=0.583056 (within 1% of capacity)
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Enhanced Bit-Stuffing Encoder

» Use 2 source encoders, with parameters p,, Py -

Optimal bias Optimal bias
Pr(1) = p,= 0.328167 Pr(1) = p, = 0.433068

R(p, , p;)=0.587277 (within 0.1% of capacity)
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Non-Isolated Bit (n.i.b.) Constraint on Z2

ib
e The non-isolated bit constraint SanI IS defined by the
forbidden set:

T
Il
o
O O
o

1
11 0 1) ¢
1

« Analysis of the coding ratio of a bit-stuffing encoder yields:

0.91276 < C" < 0.93965
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Constraints on the Hexagonal Lattice A,

° Srl]eo)f . (d,k)=(1,00) constraints:

AVAV X\AAA

RE, <

e
K F

Hard-Hexagon Model

LANL Workshop
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Hard Hexagon Capacity

1,0
hex

 Capacity of hard hexagon model C.. is known precisely! [Baxter,1980]*

C.* =log x,,, where k = k,x,x,x, and

hex

Kl — 4—135/411—5/12C—2

- 2 __%11]/3
K, = 1—\/1—C+\/2+C+2\/1+C+C2} 363
B b B 2501 331/2

] , _
K, =|—1-+/1-c +\/2+c+2\/l+c+cz} 11979 N

! 42 C=F+§a[(b+1)]/3—(b—l)”ﬂ
K, = \/1—a+\/2+a+2\/1+a+a2} 4 8

So, C:* ~0.480767622

hex
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Hard Hexagon Capacity

« Alternatively, the hard hexagon entropy constant X satisfies
a degree-24 polynomial with (big!) integer coefficients.

» Baxter does offer this disclaimer regarding his derivation,
however:

1/11/05

**It is not mathematically rigorous, in that certain analyticity
properties of k are assumed, and the results of Chapter 13
(which depend on assuming that various large-lattice limits can
be interchanged) are used. However, | believe that these

assumptions, and therefore (14.1.18)-(14.1.24), are in fact
correct.”

LANL Workshop 27



(d,k) Constraints on A, — Capacity Bounds

Zero capacity region partially known [Kukorelly-Zeger, 2001].
Variable-to-fixed length “bit-stuffing” encoders for Sﬁe’f

yield best known lower bounds on Cﬁe’)‘(’o for d>1
[Halevy, et al., 2004].

Ci®> lim max h(p) ’
m,n—o0 O<p<11+3dp_ p

o 0(min{m,n})/d (1)

Lower bound

Lower bound

0.3387

0.2196

0.2630

0.1901
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Practical 2-D Constrained Codes

« There is no comprehensive algorithmic theory for
constructing encoders and decoders for 2-D constrained
systems.

. Very efficient bit-stuffing encoders have been defined and
analyzed for several 2-D constraints, but they are not
suitable for practical applications [Roth et al., 2001] ,
[Halevy et al., 2004] , [Nagy-Zeger, 2004].

 Optimal block codes with m x n rectangular code arrays
have been designed for small values of m and n, and some
finite-state encoders have been designed, but there is no
generally applicable method [Demirkan-Wolf, 2004] .

1/11/05 LANL Workshop
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Concluding Remarks

® The lack of convenient graph-based representations
of 2-D constraints prevents the straightforward
extension of 1-D techniques for analysis and code
design.

® There are strong connections to statistical physics that
may open up new approaches to understanding 2-D
constrained systems (and, perhaps, vice-versa).
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Noisy Finite-State ISI Channels (1-Dim.)

® Binary input process X[1]
® Linear intersymbol interference N[i]

® Additive, i.i.d. Gaussian noise n[i]~ N(0,c?)

y[i] = nz: h{k]x[1—k]+n[i]

1/11/05 LANL Workshop
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Example: Partial-Response Channels

® Impulse response:

h(D) = ZN: h[ilD' = (1-D)1+D)"™*

® Example: Dicode channel h(D)=(1-D)

oo

1/11/05 LANL Workshop 32



Entropy Rates

e Output entropy rate:

 Noise entropy rate:

« Conditional entropy rate:

1

H(Y):Iimn%%H

H(N)=> log (N,

HY [ X)=lim=H(Y,"| X]')=H(N)

N—o0 n

1/11/05 LANL Workshop
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Mutual Information Rates

 Mutual information rate:
1(X;Y)=H(Y)-H(Y|X)=H(Y)-H(N)
e Capacity: C = 1(X:Y
apacity g}%( )

o Symmetric information rate (SIR):

Inputs X = {x[i]} are constrained to be
Independent, identically distributed, and equiprobable
binary digits.

1/11/05 LANL Workshop
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Finding the Output Entropy Rate

e For one-dimensional 1SI channel model:

()= lim ()
and n
H (Yln)= _E[Iog p(Yln =Y )]
where

Y =[Y[a]Y[2]...Y[n]]

1/11/05 LANL Workshop
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Sample Entropy Rate

 |f we simulate the channel N times, using inputs with
specified (Markovian) statistics and generating output

realizations
X(k) — [y[l](k) | y[2](k) L y[n](k) ], k — 1,2’ - N

then

_%ZN: Iog p&(k) )
k=1

convergesto H (Yln) with probability 1as N — oo.
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Computing Sample Entropy Rate

e The forward recursion of the sum-product (BCJR)
algorithm can be used to calculate the probability
p(y,") of a sample realization of the channel output.

e In fact, we can write
1 13 -
~log p(yl”)=—ﬁZlog oly: 1yi?)
i=1

where the quantity p(yi | y{_l) IS precisely the
normalization constant in the (normalized) forward
recursion.
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Computing Entropy Rates

« Shannon-McMillan-Breimann theorem implies

—%Iog p(y{‘)a—;H(Y)

n . -
as n—oo ,where Y; isasinglelongsample
realization of the channel output process.
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SIR for Partial-Response Channels

___ No Sl : : :
— Dicode : :
___ EPR4 :

0'8- L EEPR4 ........... ..
© j _ . 3.193.934.324.79
EEO.G‘ __________________ ______________ i 0.94
° ' 092
-§ ; 0.9
2 : :

%0.4, , el ,. ...... 0.88
< ; 0.86
0.84
08 : :
0 2 ' 3 4 5
-2 8

gNFl Per Inf%rrnation Bﬁ, /N (dg)
E/N,
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Computing the Capacity

o For Markov input process of specified order r, this
technigue can be used to find the mutual information
rate. (Apply it to the combined source-channel.)

* Forafixed order r, [Kavicic, 2001] proposed a Generalized
Blahut-Arimoto algorithm to optimize the parameters of the
Markov input source.

» The stationary points of the algorithm have been shown to
correspond to critical points of the information rate curve
[Vontobel,2002] .

1/11/05 LANL Workshop
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Capacity Bounds for Dicode h(D)=1-D

0.7

-~ Nols| -

~x.. Dicode SIR | : i ﬁx:"

| -@- Dicode x =1 ........... e @ﬁx ........ ]

42 Dicodex=2 | B

—_— ity UB | B
Capacity U ; | .iﬁ?,--.xf IIIIIIIIIIIIIIIII |

o
»

Achievable Rate
o o
» o

ot
w

o
()

L3 i ';

- -1
S?NFI Per Information Bi?, Ebe0 {dBB
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Markovian Sufficiency

Remark: It can be shown that optimized Markovian
processes whose states are determined by their
previous r symbols can asymptotically achieve the
capacity of finite-state intersymbol interference
channels with AWGN as the order r of the input
process approaches oo.

(This generalizes to 2 dimensional channels.)

[Chen-Siegel, 2004]
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Capacity and SIR in Two Dimensions

» In two dimensions, we could estimate H(Y) by
calculating the sample entropy rate of a very large
simulated output array.

* However, there is no counterpart of the BCJR
algorithm in two dimensions to simplify the
calculation.

 Instead, conditional entropies can be used to derive
upper and lower boundson H(Y) .

1/11/05 LANL Workshop
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Examples of Past{Y]i,j]}

L
1-

44

{Y[ijl}

[1, 2], 16, 0, 4, 2]

Past
LANL Workshop

=
V-
Rl -
Y.ﬂ.ﬁ
™
{.3
Nd

~

L |

)
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Conditional Entropies

For a stationary two-dimensional random field Y on the
Integer lattice, the entropy rate satisfies:

H(Y)=HlY[i.jllPast, _ {Y[i.i]}
(The proof uses the entropy chain rule. See [5-6])

* This extends to random fields on the hexagonal lattice,
via the natural mapping to the integer lattice.

1/11/05 LANL Workshop
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Upper Bound on H(Y)

e For a stationary two-dimensional random field Y,

H(Y)< min HET

where

HYHY )= H{YEi]| Past, T i])

1/11/05 LANL Workshop
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Two-Dimensional Boundary of Past{Y]i,j]}

* Define Strip, I{Y [lj]} to be the boundary
of Pastk,I{Y[i,j]} .
* The exact expression for Stripk I{Y [|J]}

IS messy, but the geometrical concept Is
simple.
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Two-Dimensional Boundary of Past{Y]i,j]}

1/11/05

GE-I-—‘—-I-

c» 5 0o o0 o ‘]j‘
o Dqﬂﬂﬂ S
loio 0 0 o o @ e e e e e e
o o 0 0 © 0 e E T R o
5 6 6 o o o o O 0 0 O 0 O o
'_.éaéocrﬂo@ GEGGGGGGED
: o 5 o o o o 0O 0 0 0 0 © o
0io 0 0 o i_,;__?_‘_g\g\aoo
L o ‘o o 0 o . . .
Stip  {Y[ijl)

-\ - [1, 2], [5; 0, 4! 3]
Stri {Y[i,]}
2, 11,15, 4, 5, 0]
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Lower Bound on H(Y)

e For a stationary two-dimensional hidden Markov field Y,

where H (Y )Z mkaX H H
Hici (Y )= HIY[i.i]| Past, 4 [i, il x (st v i)

and X(Stk,l {Y[I,j]})

IS the “state information” for

the strip Stripk I{Y [Ij]}
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Computing the SIR Bounds

e Estimate the two-dimensional conditional entropies
H (A‘ B) over a small array.

« Calculate P(A, B), P(B) to get P(A‘B)
for many realizations of output array.

e For column-by-column ordering, treat each row Y,

as a variable and calculate the joint probability
P{L,Xz ,...,\im} row-by-row using the BCJR forward
recursion.

1/11/05 LANL Workshop
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2x2 Impulse Response

® “Worst-case” scenario - large ISI:

. [05 05
hl["”{% 0.5}

® Conditional entropies computed from 100,000
realizations.

. 1
® Upper bound: mm{H[zl][ﬂso |09(7ZEN)1}
L1 1
® |Lower bound: H[z,1],[7,7,3,0]_Elog(ﬂeNo)

(corresponds to element in middle of last column)

1/11/05 LANL Workshop
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SIR Bounds for 2x2 Channel

0.9
08

0.7

§I‘J.B

I

...............................

............................................................

............................................................................................

; ]
paf---ooee

02

0.1

-9~ SIR Upper Bound H"

—+~ SIR Upper Bound H'Z (1-D, Mem. Len. 8)

........... R RRTRtY k. gnwm#ﬂ“_n‘mw_ﬁ............_
-10 -5I~ EII ; 10
En/No (dB)
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Computing the SIR Bounds

e The number of states for each variable increases
exponentially with the number of columns in the

array.

« This requires that the two-dimensional impulse response
have a small support region.

 Itis desirable to find other approaches to computing
bounds that reduce the complexity, perhaps at the cost
of weakening the resulting bounds.
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Alternative Upper Bound

 Modified BCJR approach limited to small impulse
response support region.

* Introduce “auxiliary I1SI channel” and bound

H(Y)<H{ ,|2
where

=[]~ o[ vl ibPast, | (vl i} log[ vl ]| Past, (vl i} joy
and q(y[i, ill PaStk,I{y[i’ j]}) is an arbitrary conditional

probabillity distribution.
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3x3 Impulse Response

® Two-DOS transfer function

hi, jl=—1|1
V10
1 1

® Auxiliary one-dimensional ISI channel with memory
length 4.

¢ Useful upper bound up to E,/N,= 3 dB.
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SIR Upper Bound for 3x3 Channel

=10 -5 1] 5 10
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Concluding Remarks

Recent progress has been made in computing information rates and
capacity of 1-dim. noisy finite-state 1SI channels.

As in the noiseless case, the extension of these results to 2-dim.
channels is not evident.

Upper and lower bounds on the SIR of two-dimensional finite-state
ISI channels have been developed.

Monte Carlo methods were used to compute the bounds for
channels with small impulse response support region.

Bounds can be extended to multi-dimensional ISI channels.

Further work is required to develop computable, tighter bounds for
general multi-dimensional ISI channels.
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