## Capacity of Noiseless and Noisy Two-Dimensional Channels

Paul H. Siegel
Electrical and Computer Engineering
Center for Magnetic Recording Research
University of California, San Diego



#### **Outline**

- Shannon Capacity
- Discrete-Noiseless Channels
  - One-dimensional
  - Two-dimensional
- Finite-State Noisy Channel
  - One-dimensional
  - Two-dimensional
- Summary

#### Claude E. Shannon



Claude Elwood Shannon 1916 - 2001



## The Inscription

#### **CLAUDE ELWOOD SHANNON**

1916 - 2001

#### **FATHER OF INFORMATION THEORY**

HIS FORMULATION OF THE MATHEMATICAL THEORY OF COMMUNICATION PROVIDED THE FOUNDATION FOR THE DEVELOPMENT OF DATA STORAGE AND TRANSMISSION SYSTEMS THAT LAUNCHED THE INFORMATION AGE.

**DEDICATED OCTOBER 16, 2001** 

**EUGENE DAUB, SCULPTOR** 

## The Formula on the "Paper"

Capacity of a discrete channel with noise [Shannon, 1948]

$$C = Max (H(x) - H_y(x))$$

For noiseless channel,  $H_y(x)=0$ , so:

C = Max H(x)

Gaylord, MI:  $C = W \log (P+N)/N$ 

Bell Labs: no formula on paper

("H =  $-p \log p - q \log q$ " on plaque)



## Discrete Noiseless Channels (Constrained Systems)

• A constrained system S is the set of sequences generated by walks on a labeled, directed graph G.

Telegraph channel constraints [Shannon, 1948]



### Magnetic Recording Constraints

Runlength constraints
("finite-type": determined by finite
list F of forbidden words)



Forbidden word F={11}



Forbidden words  $F=\{101, 010\}$ 

## Spectral null constraints ("almost-finite-type")

Biphase



Even



## (d,k) runlength-limited constraints

• For 0 < d < k, a (d,k) runlength-limited sequence is a binary string such that:

d < #0's between consec

• F={11} forbidden list corresponds to  $(d,k) = (1,\infty)$ 

 $1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0$ 

#### **Practical Constrained Codes**

#### Finite-state encoder

#### Sliding-block decoder

(from binary data into S)

(inverse mapping from S to data)



We want: high rate R=m/n low complexity

## Codes and Capacity

- How high can the code rate be?
- Shannon defined the capacity of the constrained system S:

$$C = \lim_{n \to \infty} \frac{1}{n} \log N(S, n)$$

where N(S,n) is the number of sequences in S of length n.

Theorem [Shannon,1948]: If there exists a decodable code at rate R = m/n from binary data to S, then R VC.

Theorem [Shannon,1948]: For any rate R=m/n < C there exists a block code from binary data to S with rate km:kn, for some integer k D1.

10

# Computing Capacity: Adjacency Matrices

• Let  $A_G$  be the adjacency matrix of the graph G representing S.



• The entries in  $A_G^n$  correspond to paths in G of length n.

# Computing Capacity (cont.)

• Shannon showed that, for suitable representing graphs G,

$$C = log \rho(A_G)$$

where  $\rho(A_G) = max\{ |\lambda| : \lambda \text{ is an eigenvalue of } A_G \}$ , i.e., the spectral radius of the matrix  $A_G$ .

• Assigning "transition probabilities" to the edges of G, the constrained system S becomes a Markov source x, with entropy H(x). Shannon proved that

$$C = max \ H(x)$$

and expressed the maximizing probabilities in terms of the spectral radius and corresponding eigenvector of  $A_G$ .

## Maxentropic Measure

- Let  $\lambda$  denote the largest real eigenvalue of  $A_G$ , with corresponding eigenvector  $\underline{B} = [B_1, \dots, B_M]$
- Then the maxentropic (capacity-achieving) transition probabilities are given by

$$P_{ij} = \frac{B_j}{B_i} \cdot \frac{A_{ij}}{\lambda}$$

• The stationary state distribution is expressed in terms of corresponding left and right eigenvectors.

# Computing Capacity (cont.)

• Example:  $(d,k) = (1,\infty)$ 

$$C = \log \frac{1 + \sqrt{5}}{2} \approx 0.6942$$

• More generally,  $C_{d,k} = log \ \lambda_{d,k}$ , where  $\lambda_{d,k}$  is the largest real root of the polynomial

$$f_{d,k}(x) = x^{k+1} - x^{k-d} - \dots - x - 1$$
, for  $k < \infty$ 

and

$$C_{d,\infty} = C_{d-1,2d-1}$$
, for  $d \ge 1$ .

## Constrained Coding Theorems

• Stronger coding theorems were motivated by the problem of constrained code design for magnetic recording.

#### Theorem[Adler-Coppersmith-Hassner, 1983]

Let S be a finite-type constrained system. If  $m/n \le C$ , then there exists a rate m:n sliding-block decodable, finite-state encoder.

(Proof is constructive: state-splitting algorithm.)

Theorem[Karabed-Marcus, 1988]

Ditto if *S* is almost-finite-type.

(Proof not so constructive...)

## Two-Dimensional Constrained Systems

- Band-recording and page-oriented recording technologies require 2-dimensional constraints, for example:
- Two-Dimensional Optical Storage (TwoDOS) Philips
- Holographic Storage InPhaseTechnologies
- Patterned Magnetic Media Hitachi, Toshiba, ...
- Thermo-Mechanical Probe Array IBM

#### **TwoDOS**



#### Courtesy of Wim Coene, Philips Research

## Constraints on the Integer Lattice Z<sup>2</sup>

•  $S_{sq}^{1,\infty}$ :  $(d,k)=(1,\infty)$  constraint in x-y directions:

| 1 |   |   |   | 1 |   |   |
|---|---|---|---|---|---|---|
|   |   |   | 1 |   | 1 |   |
|   | 1 |   |   | 1 |   |   |
| 1 |   | 1 |   |   |   | 1 |
|   | 1 |   | 1 |   | 1 |   |
|   |   | 1 |   | 1 |   |   |
| 1 |   |   | 1 |   |   |   |

$$F = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \end{bmatrix} \right\}$$

Independent Sets

Hard-Square Model

## (d,k) Constraints on the Integer Lattice Z<sup>2</sup>

• For 2-dimensional (d,k) constraints  $S_{sq}^{d,k}$ , the capacity is given by:

$$C^{d,k} = \lim_{m,n\to\infty} \frac{N_{m,n}^{d,k}}{mn}$$

• The only nontrivial (d,k) pairs for which  $C^{d,k}$  is known precisely are those with zero capacity, namely [Kato-Zeger, 1999]:

$$C^{d,d+1} = 0$$
 ,  $d > 0$ 

$$C^{d,k} > 0, k \ge d + 2$$

## (d,k) Constraints on $\mathbb{Z}^2$ – Capacity Bounds

• Transfer matrix methods provide numerical bounds on  $C^{1,\infty}$  [Calkin-Wilf, 1998], [Nagy-Zeger, 2000]

$$0.587891161775 \le C^{1,\infty} \le 0.587891161868$$

• Variable-rate "bit-stuffing" encoders for  $S_{sq}^{d,\infty}$  yield best known lower bounds on  $C^{d,\infty}$  for d > 1 [Halevy, et al., 2004]:

$$C^{d,\infty} \ge \lim_{m,n\to\infty} \max_{0< p<1} \frac{h(p)}{1+2dp-p^2(1-p^{2d-1})} - o_{(\min\{m,n\})/d}(1)$$

| d | Lower bound | d | Lower bound |
|---|-------------|---|-------------|
| 2 | 0.4267      | 4 | 0.2858      |
| 3 | 0.3402      | 5 | 0.2464      |

## 2-D Bit-Stuffing $(d,\infty)$ RLL Encoder



- Source encoder converts binary data to i.i.d bit stream (biased bits) with Pr(1) = p, Pr(0) = 1 p, rate penalty h(p).
- Bit-stuffing encoder inserts redundant bits which can be identified uniquely by decoder.
- Encoder rate R(p) is a lower bound of the capacity. (For d=1, we can determine R(p) precisely.)

## 2-D Bit-Stuffing $(1,\infty)$ RLL Encoder

• Biased sequence: 1 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0

| 1 | 0 | 1 | 0 | 0 | 0 | 0 |  |  |
|---|---|---|---|---|---|---|--|--|
| 0 | 1 | 0 | 1 | 0 | 0 |   |  |  |
| 0 | 0 | 0 | 0 | 1 | 0 |   |  |  |
| 0 | 0 | 0 | 1 | 0 |   |   |  |  |
| 1 | 0 | 0 | 0 |   |   |   |  |  |
| 0 | 0 |   |   |   |   |   |  |  |
| 0 |   |   |   |   |   |   |  |  |

Optimal bias Pr(1) = p = 0.3556

R(p)=0.583056 (within 1% of capacity)

## Enhanced Bit-Stuffing Encoder

• Use 2 source encoders, with parameters  $p_0$ ,  $p_1$ .





Optimal bias

$$Pr(1) = p_0 = 0.328167$$

Optimal bias

$$Pr(1) = p_1 = 0.433068$$

 $R(p_0, p_1)=0.587277$  (within 0.1% of capacity)

## Non-Isolated Bit (n.i.b.) Constraint on Z<sup>2</sup>

• The non-isolated bit constraint  $S_{sq}^{nib}$  is defined by the forbidden set:

$$F = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

• Analysis of the coding ratio of a bit-stuffing encoder yields:

$$0.91276 \le C_{sq}^{nib} \le 0.93965$$

## Constraints on the Hexagonal Lattice A<sub>2</sub>

•  $S_{hex}^{1,\infty}$ :  $(d,k) = (1,\infty)$  constraints:



Hard-Hexagon Model

## Hard Hexagon Capacity

Capacity of hard hexagon model  $C_{hox}^{1,\infty}$  is known precisely! [Baxter, 1980]\*

$$C_{hex}^{1,\infty} = \log \kappa_h$$
, where  $\kappa = \kappa_1 \kappa_2 \kappa_3 \kappa_4$  and

$$\kappa_{1} = 4^{-1}3^{5/4}11^{-5/12}c^{-2}$$

$$\kappa_{2} = \left[1 - \sqrt{1 - c} + \sqrt{2 + c + 2\sqrt{1 + c + c^{2}}}\right]^{2}$$

$$\alpha = -\frac{124}{363}11^{1/3}$$

$$\kappa_{3} = \left[-1 - \sqrt{1 - c} + \sqrt{2 + c + 2\sqrt{1 + c + c^{2}}}\right]^{2}$$

$$b = \frac{2501}{11979}33^{1/2}$$

$$\kappa_{4} = \left[\sqrt{1 - a} + \sqrt{2 + a + 2\sqrt{1 + a + a^{2}}}\right]^{-1/2}$$

$$c = \left[\frac{1}{4} + \frac{3}{8}a\right](b + a)$$

$$a = -\frac{124}{363} 11^{1/3}$$

$$b = \frac{2501}{11979} 33^{1/2}$$

$$c = \left[ \frac{1}{4} + \frac{3}{8} a \left[ (b+1)^{1/3} - (b-1)^{1/3} \right] \right]^{1/3}$$

$$C_{hex}^{1,\infty} \approx 0.480767622$$

## Hard Hexagon Capacity

- Alternatively, the hard hexagon entropy constant K satisfies a degree-24 polynomial with (big!) integer coefficients.
- Baxter does offer this disclaimer regarding his derivation, however:

\*"It is not mathematically rigorous, in that certain analyticity properties of  $\kappa$  are assumed, and the results of Chapter 13 (which depend on assuming that various large-lattice limits can be interchanged) are used. However, I believe that these assumptions, and therefore (14.1.18)-(14.1.24), are in fact correct."

## (d,k) Constraints on $A_2$ – Capacity Bounds

- Zero capacity region partially known [Kukorelly-Zeger, 2001].
- Variable-to-fixed length "bit-stuffing" encoders for  $S_{hex}^{d,\infty}$  yield best known lower bounds on  $C_{hex}^{d,\infty}$  for d>1 [Halevy, et al., 2004]:

$$C_{hex}^{d,\infty} \ge \lim_{m,n\to\infty} \max_{0< p<1} \frac{h(p)}{1+3dp-p^2} - o_{(\min\{m,n\})/d}(1)$$

| d | Lower bound | d | Lower bound |
|---|-------------|---|-------------|
| 2 | 0.3387      | 4 | 0.2196      |
| 3 | 0.2630      | 5 | 0.1901      |

#### Practical 2-D Constrained Codes

- There is no comprehensive algorithmic theory for constructing encoders and decoders for 2-D constrained systems.
- Very efficient bit-stuffing encoders have been defined and analyzed for several 2-D constraints, but they are not suitable for practical applications [Roth et al., 2001], [Halevy et al., 2004], [Nagy-Zeger, 2004].
- Optimal block codes with  $m \times n$  rectangular code arrays have been designed for small values of m and n, and some finite-state encoders have been designed, but there is no generally applicable method [Demirkan-Wolf, 2004].

## **Concluding Remarks**

- The lack of convenient graph-based representations of 2-D constraints prevents the straightforward extension of 1-D techniques for analysis and code design.
- There are strong connections to statistical physics that may open up new approaches to understanding 2-D constrained systems (and, perhaps, vice-versa).

## Noisy Finite-State ISI Channels (1-Dim.)

- Binary input process x[i]
- Linear intersymbol interference h[i]
- Additive, i.i.d. Gaussian noise  $n[i] \sim N(0, \sigma^2)$

$$y[i] = \sum_{k=0}^{n-1} h[k]x[i-k] + n[i]$$

## Example: Partial-Response Channels

• Impulse response:

$$h(D) = \sum_{i=0}^{N} h[i]D^{i} = (1-D)(1+D)^{N-1}$$

• Example: Dicode channel h(D) = (1-D)



## Entropy Rates

Output entropy rate:

$$H(Y) = \lim_{n \to \infty} \frac{1}{n} H(Y_1^n)$$

• Noise entropy rate:

$$H(N) = \frac{1}{2}log(\pi e N_0)$$

Conditional entropy rate:

$$H(Y \mid X) = \lim_{n \to \infty} \frac{1}{n} H(Y_1^n \mid X_1^n) = H(N)$$

## Mutual Information Rates

Mutual information rate:

$$I(X;Y) = H(Y) - H(Y/X) = H(Y) - H(N)$$

- Capacity:  $C = \max_{P(X)} I(X;Y)$
- Symmetric information rate (SIR):

Inputs  $X = \{x[i]\}$  are constrained to be independent, identically distributed, and equiprobable binary digits.

## Finding the Output Entropy Rate

• For one-dimensional ISI channel model:

$$H(Y) = \lim_{n \to \infty} \frac{1}{n} H(Y_1^n)$$

and

$$H(Y_1^n) = -E[\log p(Y_1^n = y_1^n)]$$

where

$$Y_1^n = [Y[1], Y[2], ..., Y[n]]$$

## Sample Entropy Rate

• If we simulate the channel *N* times, using inputs with specified (Markovian) statistics and generating output realizations

$$y^{(k)} = [y[1]^{(k)}, y[2]^{(k)}, ..., y[n]^{(k)}], k = 1, 2, ..., N$$

then

$$-\frac{1}{N}\sum_{k=1}^{N}\log p(\underline{y}^{(k)})$$

converges to  $H(Y_1^n)$  with probability 1 as  $N \to \infty$ .

## Computing Sample Entropy Rate

- The forward recursion of the sum-product (BCJR) algorithm can be used to calculate the probability  $p(y_I^n)$  of a sample realization of the channel output.
- In fact, we can write

$$-\frac{1}{n}\log p(y_1^n) = -\frac{1}{n}\sum_{i=1}^n \log p(y_i/y_1^{i-1})$$

where the quantity  $p(y_i/y_1^{i-1})$  is precisely the normalization constant in the (normalized) forward recursion.

#### Computing Entropy Rates

• Shannon-McMillan-Breimann theorem implies

$$-\frac{1}{n}log \ p(y_1^n) \xrightarrow{a.s.} H(Y)$$

as  $n \to \infty$ , where  $\mathcal{Y}_1^n$  is a single long sample realization of the channel output process.

## SIR for Partial-Response Channels



### Computing the Capacity

- For Markov input process of specified order r, this technique can be used to find the mutual information rate. (Apply it to the combined source-channel.)
- For a fixed order r, [Kavicic, 2001] proposed a Generalized Blahut-Arimoto algorithm to optimize the parameters of the Markov input source.
- The stationary points of the algorithm have been shown to correspond to critical points of the information rate curve [Vontobel,2002].

## Capacity Bounds for Dicode h(D)=1-D



## Markovian Sufficiency

Remark: It can be shown that optimized Markovian processes whose states are determined by their previous r symbols can asymptotically achieve the capacity of finite-state intersymbol interference channels with AWGN as the order r of the input process approaches  $\infty$ .

(This generalizes to 2 dimensional channels.)

[Chen-Siegel, 2004]

### Capacity and SIR in Two Dimensions

- In two dimensions, we could estimate H(Y) by calculating the sample entropy rate of a very large simulated output array.
- However, there is no counterpart of the BCJR algorithm in two dimensions to simplify the calculation.
- Instead, conditional entropies can be used to derive upper and lower bounds on H(Y).

## Examples of Past{Y[i,j]}



## **Conditional Entropies**

 For a stationary two-dimensional random field Y on the integer lattice, the entropy rate satisfies:

$$H(Y) = H(Y[i,j]/Past_{k,\infty}\{Y[i,j]\})$$

(The proof uses the entropy chain rule. See [5-6])

 This extends to random fields on the hexagonal lattice, via the natural mapping to the integer lattice.

# **Upper Bound on H(Y)**

For a stationary two-dimensional random field Y,

$$H(Y) \le \min_{k} H_{k,l}^{U1}$$

where

$$H_{k,l}^{U1}(Y) = H(Y[i,j]/Past_{k,l}\{Y[i,j]\})$$

#### Two-Dimensional Boundary of Past{Y[i,j]}

• Define  $Strip_{k,l}\{Y[i,j]\}$  to be the boundary

of 
$$Past_{k,l} \{Y[i,j]\}$$
.

• The exact expression for  $Strip_{k,l}\{Y[i,j]\}$  is messy, but the geometrical concept is simple.

#### Two-Dimensional Boundary of Past{Y[i,j]}



# Lower Bound on H(Y)

For a stationary two-dimensional hidden Markov field Y,

$$H(Y) \ge \max_{k} H_{k,l}^{L1}$$

$$H_{k,l}^{L1}(Y) = H\left(Y[i,j]/Past_{k,l}\{Y[i,j]\}, X\left(St_{k,l}\{Y[i,j]\}\right)\right)$$
 and  $X\left(St_{k,l}\{Y[i,j]\}\right)$  is the "state information" for

the strip 
$$Strip_{k,l} \{Y[i,j]\}.$$

# Computing the SIR Bounds

- Estimate the two-dimensional conditional entropies H(A|B) over a small array.
- Calculate P(A,B), P(B) to get P(A|B) for many realizations of output array.
- For column-by-column ordering, treat each row  $\underline{Y}_i$  as a variable and calculate the joint probability  $P\{\underline{Y}_1,\underline{Y}_2,...,\underline{Y}_m\}$  row-by-row using the BCJR forward recursion.

## 2x2 Impulse Response

"Worst-case" scenario - large ISI:

$$h_{1}[i,j] = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

Conditional entropies computed from 100,000 realizations.

• Upper bound: 
$$\min \left\{ H_{[2,1],[7,7,3,0]}^{U1} - \frac{1}{2} \log(\pi e N_0), 1 \right\}$$

• Lower bound: 
$$H_{[2,1],[7,7,3,0]}^{L1} - \frac{1}{2} \log(\pi e N_0)$$

(corresponds to element in middle of last column)

#### SIR Bounds for 2x2 Channel



## Computing the SIR Bounds

- The number of states for each variable increases exponentially with the number of columns in the array.
- This requires that the two-dimensional impulse response have a small support region.
- It is desirable to find other approaches to computing bounds that reduce the complexity, perhaps at the cost of weakening the resulting bounds.

## Alternative Upper Bound

- Modified BCJR approach limited to small impulse response support region.
- Introduce "auxiliary ISI channel" and bound

$$H(Y) \leq H_{k,l}^{U2}$$

where

$$H_{k,l}^{U2} = \int \cdots \int_{-\infty}^{\infty} -p \left( y[i,j], Past_{k,l} \{ y[i,j] \} \right) \log q \left( y[i,j] | Past_{k,l} \{ y[i,j] \} \right) d\underline{y}$$

and 
$$q(y[i,j]|Past_{k,l}\{y[i,j]\})$$
 is an arbitrary conditional

probability distribution.

## 3x3 Impulse Response

Two-DOS transfer function

$$h_2[i,j] = \frac{1}{\sqrt{10}} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- Auxiliary one-dimensional ISI channel with memory length 4.
- Useful upper bound up to  $E_b/N_0 = 3$  dB.

# SIR Upper Bound for 3x3 Channel



## **Concluding Remarks**

- Recent progress has been made in computing information rates and capacity of 1-dim. noisy finite-state ISI channels.
- As in the noiseless case, the extension of these results to 2-dim. channels is not evident.
- Upper and lower bounds on the SIR of two-dimensional finite-state ISI channels have been developed.
- Monte Carlo methods were used to compute the bounds for channels with small impulse response support region.
- Bounds can be extended to multi-dimensional ISI channels.
- Further work is required to develop computable, tighter bounds for general multi-dimensional ISI channels.

#### References

- D. Arnold and H.-A. Loeliger, "On the information rate of binary-input channels with memory," IEEE International Conference on Communications, Helsinki, Finland, June 2001, vol. 9, pp.2692-2695.
- 2. H.D. Pfister, J.B. Soriaga, and P.H. Siegel, "On the achievable information rate of finite state ISI channels," Proc. Globecom 2001, San Antonio, TX, November 2001, vol. 5, pp. 2992-2996.
- V. Sharma and S.K. Singh, "Entropy and channel capacity in the regenerative setup with applications to Markov channels," Proc. IEEE International Symposium on Information Theory, Washington, DC, June 2001, p. 283.
- 4. A. Kavcic, "On the capacity of Markov sources over noisy channels," Proc. Globecom 2001, San Antonio, TX, November 2001, vol. 5, pp. 2997-3001.
- 5. D. Arnold, H.-A. Loeliger, and P.O. Vontobel, "Computation of information rates from finite-state source/channel models," Proc.40<sup>th</sup> Annual Allerton Conf. Commun., Control, and Computing, Monticello, IL, October 2002, pp. 457-466.

#### References

- 6. Y. Katznelson and B. Weiss, "Commuting measure-preserving transformations," Israel J. Math., vol. 12, pp. 161-173, 1972.
- 7. D. Anastassiou and D.J. Sakrison, "Some results regarding the entropy rates of random fields," IEEE Trans. Inform. Theory, vol. 28, vol. 2, pp. 340-343, March 1982.