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Outline 
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How Jack Did It 

• 6 casts of the statue 
• Spoken for: 

1. Shannon Park, Gaylord, Michigan 
2. The University of Michigan 
3. Lucent Technologies – Bell Labs 
4. AT&T Research Labs 
5. MIT 

• Jack’s idea:  “6.  CMRR” 
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The Inscription 
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Data Storage and Transmission 

 

• A data transmission system communicates  
 information through space, i.e., 

“from here to there.”   
 

• A data storage system communicates information 
through time, i.e. ,  

“from now to then.” 
 

[Berlekamp, 1980] 
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Figure 1  
(for Magnetic Recording) 

 
• Binary-input 
• Inter-Symbol Interference (ISI)  
• Additive Gaussian Noise 
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A  Miraculous Technology 

• Areal Density Perspective – 45 Years of Progress 
• Average Price of Storage 
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Areal Density Perspective 
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Average Price of Storage 
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The Formula on the “Paper” 

Capacity of a discrete channel with noise [Shannon, 1948] 
 

 
 
    
For noiseless channel, Hy(x)=0,  so: 
 
 

  
       
 
 
       

Gaylord, MI:  C = W log (P+N)/N 
Bell Labs:  no formula on paper 
(“H = – p log p – q log q” on plaque)                              

  

(x))H – (H(x)Max   C y=

 H(x)Max   C =
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Discrete Noiseless Channels 
(Constrained Systems) 

• A constrained system S is the set of sequences generated   
by walks on a labeled, directed graph G. 

  
 Telegraph channel constraints [Shannon, 1948] 
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Magnetic Recording Constraints 

 Runlength constraints  Spectral null constraints  
  (“finite-type”: determined by       (“almost-finite-type”) 
  finite list F of forbidden words)   
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Practical Constrained Codes 

         Finite-state encoder               Sliding-block decoder 
            (from binary data into S)              (inverse mapping from S to data) 

m data bits n code bits 

Encoder Logic 

   Rate m:n 

      (states) 

  Decoder 
     Logic 

n bits 

m bits 
We want: high rate R=m/n 
                low complexity  



Shannon Symposium 10/15/01 16 

Codes and Capacity 

• How high can the code rate be? 
• Shannon defined the capacity of the constrained system S: 

 
 
 where N(S,n) is the number of sequences in S of length n. 
 

 Theorem [Shannon,1948] : If there exists a decodable code at 
rate R= m/n from binary data to S, then R W C. 

 Theorem [Shannon,1948] : For any rate R=m/n < C there 
exists a block code from binary data to S with rate km:kn, 
for some integer k D 1. 
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Computing Capacity: 
Adjacency Matrices 

• Let          be the adjacency matrix of the graph G 
representing S.   
 
 
 
 
 
 
 

• The entries in            correspond to paths in G of length n.   
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Computing Capacity  
(cont.) 

• Shannon showed that, for suitable representing graphs G , 
 
  
 where                                                                           , i.e., 
 the spectral radius of the matrix       . 

 

• Assigning “transition probabilities” to the edges of G, the 
constrained system S becomes a Markov source x, with  
entropy H(x).  Shannon proved that  
 

 and expressed the maximizing probabilities in terms of the 
spectral radius and corresponding eigenvector of        . 
 
  
     

  

( )GA ρlogC =

( ) { }GG lue of Aan eigenva is: λ λ maxAρ =
GA

( )x HmaxC =

GA
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Constrained Coding Theorems 

• Stronger coding theorems were motivated by the problem 
of constrained code design for magnetic recording. 
 

 Theorem[Adler-Coppersmith-Hassner, 1983]  
 Let S be a finite-type constrained system.  If m/n ≤ C,  then  

there exists a rate m:n sliding-block decodable, finite-state 
encoder.   

 (Proof is constructive: state-splitting algorithm.) 
 
 Theorem[Karabed-Marcus, 1988] 
 Ditto if S is almost-finite-type. 
 (Proof not so constructive…)         
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Distance-Enhancing Codes  
for Partial Response Channels 

• Beginning in 1990,  disk drives have used a technique 
called partial-response equalization with maximum-
likelihood detection, or PRML.  In the late 1990’s, 
extensions of PRML, denoted EPRML and EEPRML  
were introduced. 
 

• The performance of such PRML systems can be improved 
by using codes with “distance-enhancing” constraints. 
 

• These constraints are described by a finite set D of 
“forbidden differences,” corresponding to differences of 
channel input sequences whose corresponding outputs are 
most likely to produce detection errors. 
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Codes that Avoid Specified Differences 

 

• The difference between length-n  binary words u and v is  
 
 
 

• A length-n code avoids D if no difference of codewords 
contains any string in D.  
 

• Example:   
   
Length-2 code:  
     
 
 
  

( ) { }nnn  , ,vu,,vuvu 10111 −∈−−=− 

{ }- ,D +++=

{ } { }10002 ,v,uC ==

( )0−=− vu
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Capacity of Difference Set D 
 [Moision-Orlitsky-Siegel] 

• How high can the rate be for a code avoiding D? 
• Define the capacity of the difference set D: 

 
 
 
 where              is the maximum number of codewords in a 

(block) code of length n that avoids D. 
 
• Problem: Determine cap(D) and find codes that achieve it. 
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Computing cap(D): 
Adjacency Matrices 

• Associate to D a set of graphs and corresponding set         
of adjacency matrices reflecting  disallowed pairs of code 
patterns:  

       
  
• Consider the set  of n-fold products of matrices in      :  

 
 
 

• Each product corresponds (roughly) to a code avoiding D.
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Generalized Spectral Radius ρ(Σ) 

• Define  
 

                                                                 
 the largest spectral radius of a matrix in      . 
 

• The generalized spectral radius of         is defined as: 
 
 

 

 [Daubechies-Lagarias,1992], cf. [Rota-Strang, 1960] 
 
  

( ) ( ){ }  ,A:A sup n
n Σ∈=Σ ρρ
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Computing cap(D) 
(cont.) 

 Theorem[Moision-Orlitsky-Siegel, 2001] 
 For any finite difference set D, 

 
 

 
 Recall formula for the capacity of a constrained system S 

      
 

 
• Computing cap(D) can be difficult, but a constructive 

bounding algorithm has yielded good results. 
 
 
 

( ) ( )( ) .  DlogDcap Σ= ρ

( ) .  A ρlogC G=
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A Real Example: EEPRML 

• Codes can improve EEPRML performance by avoiding  
    
• Codes satisfying the following constraints avoid D: 

 

» F={101,010}   C=0.6942… 
» F={101}  C=0.8113…       
» F={0101,1010}  C=0.8791…    MTR [Moon,1996] 

 
• What is cap(D), and are there other simple constraints 

with higher capacity that avoid D ? 

{ }00 +−+=D
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EEPRML Example 
(cont.) 

 
• For                             ,     

  

                   0.9162 ≤ cap(D) < 0.9164. 
 

• The lower bound, conjectured to be exactly cap(D), is 
achieved   by  the “time-varying MTR   (TMTR)” 
constraint, with finite periodic forbidden list: 
 
 
 

• Rate 8/9, TMTR code has been used in commercial disk 
drives [Bliss, Wood, Karabed-Siegel-Soljanin]. 

 
                      

{ }00 +−+=D

{ } .    , F oddodd 01011010=
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Periodic Finite-Type Constraints 

• The TMTR (and biphase) constraint represent a new class 
of constraints, called  “periodic finite-type,” characterized 
by a finite set of periodically forbidden words. 

  [Moision-Siegel, ISIT 2001]                      

RUNLENGTH 

FINITE-TYPE 

PERIODIC 
FINITE-TYPE 

ALMOST 
FINITE-TYPE 

BIPHASE 

TMTR 

EVEN 
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Other Storage-Related Research  

• Page-oriented storage technologies, such as holographic 
memories, require codes generating arrays of bits with     
2-dimensional constraints.  This is a very active area of 
research.  

 [Wolf, Shannon Lecture, ISIT 2001]  
 

• There has been recent progress related to computing the 
capacity of noisy magnetic recording (ISI) channels, 
 

      C = Max (H(x) – Hy(x)) . 
 
[Arnold-Loeliger, Arnold-Vontobol, Pfister-Soriaga-Siegel,  
Kavcic, 2001] 
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Conclusion 

• The work of Claude Shannon has been a key 
element in the “miraculous” progress of modern 
information storage technologies. 
 

• In return,  the ongoing demand for data storage 
devices with larger density and higher data 
transfer rates has “miraculously” continued to 
inspire new concepts and results in information 
theory.  
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