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Outline 

• Data storage trends 

• Recording channel technology  
 PRML 
 Coded PRML 
 Turbo equalization 

• Channel capacity  

• Concluding remarks 
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Areal Density Progress 
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Average Price of Storage 
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A Disk Drive (and VA) in Every Pocket 

Toshiba 1.8" drive 

40.0 Gigabytes  

(80GB on the way!) 10,000 songs   

with album covers 
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Key References and Their Impact…  
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Information Theory, vol. IT-13, no. 2, pp. 260-269, April 1967. 

[2] A.J. Viterbi, “Convolutional Codes and Their Performance in 
Communication Systems,” IEEE Transactions on Communications 
Technology, vol. COM-19, no. 5, pp. 751-772, October 1971. 

[3] A.J. Viterbi and J. K. Omura, Principles of Digital Communication and 
Coding. New York, NY: McGraw-Hill, Inc., 1979, Ch. 4.9, pp.  272-284. 

[4] A.J. Viterbi, “An Intuitive Justification and a Simplified Implementation of 
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PRML …  

[1] “Error Bounds for Convolutional Codes and an 
Asymptotically Optimum Decoding Algorithm”  

 Since the introduction of PRML technology 
in 1990, the VA has been the standard 
detection method in disk drives.  
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Coded PRML … 

[2]  “Convolutional Codes and Their Performance in 
       Communication Systems” 
[3]   Principles of Digital Communication and Coding 

 Since the mid-1990’s, error event characterization 
of partial-response channels has been used to 
bound performance and to design constrained 
modulation codes that detect and/or forbid 
dominant error events. 
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            Turbo Equalization and Channel Capacity 

[4] “An Intuitive Justification and a Simplified 
Implementation of the MAP Decoder for 
Convolutional Codes” 

 

 “Turbo-equalized” recording channels (proposed) 
use a modified “dual-max” algorithm for 
detection and a difference-metric LDPC decoder.  

 Sharp estimates of the recording channel capacity 
are calculated using a “generalized VA.”  
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• “PR” =  Partial Response  [Class-4] Equalization 
 
 

      
• “ML” =  Maximum Likelihood Sequence Detection (VA) 

 
   

   
   

  *The acronym “PRML” was coined by Andre Milewski, of  IBM  LaGaude. 

What is PRML? 
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Difference Metric VA for Dicode  
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• Used in first commercial disk drive with PRML:                   
IBM 681  (1990) 
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ŷ

Difference Metric VA for Dicode  

DM 1.6 1.6 1.2 1.2 0 0.3 

r 2.6 1 0.2 1.5 -1 1.3 

2 0 0 0 -2 ? 



2005 Viterbi Conference 3/8/05 16 

Beyond PRML  

• Extended PRML -   “ENPRML”   
 
 
– Viterbi detector has  2N+2 states. 

– EPR4 and E2PR4 have been widely used in commercial drives. 
 

• Noise-predictive PRML  (a.k.a. Generalized PRML) 
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PR4 Noise-whitening filter 
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Post-Processor EPRML Detector 

• “Turbo-PRML” (1993) 

Equalized 
PR4 signal 

Enhanced 
PR4 Viterbi 

Detector 

1+D Post-
processor 

PRML estimate and 
alternate paths 
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Trellis-coded PRML 

• Convolutional code with channel precoder 
• Combined convolutional code and channel trellis detector 
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Distance-Enhancing Constrained Codes 

• Characterize PR channel error-events using error-state 
diagram analysis. (See [2], [3].) 
 

• Determine modulation constraints that reduce and/or 
forbid dominant error events, and design code. 
 

• Incorporate channel and code constraints into detector 
trellis, or use reduced-state trellis and a post-processor. 



2005 Viterbi Conference 3/8/05 20 

Error Event Analysis – E2PR4 

• E2PR4: 
 
 

• Input “error” events:    
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Distance-Enhancing Codes 

• Matched-Spectral-Null  (MSN) codes 
DC-null and order-K Nyquist null on E2PR4:  

 
 

• Maximum-Transition-Run MTR(j,k) codes 
Limit number of consecutive 1’s  to j (k) on even (odd)  phase  
For E2PR4, the MTR(2,3) constraint yields: 

 
 

• Parity-check codes 
Detect variety of error events 
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Combined Code-Channel Trellis 

 
 

MTR(2,3) constraint graph 
(NRZI format)  

Combined MTR(2,3)     
and E2PR4 trellis       
(NRZ format)  
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State-of-the-Art Channel 

• Rate-96/104 dual-parity code with MTR(3,3) constraints 
 

 Eliminates all error events of type:  + – + – , + – + – + , + – + – 
 Eliminates half of events of type:    + – + 
 Detects error events of type:   +,  + –,  + – +,  and  +00+ 

 
• 16-state NPML detector with dual-parity post-processing 

 

 Gain of 0.75dB over rate-48/49, no parity, at Pe(sector)=10-6 
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Turbo Equalization 

LDPC 
Encoder 

LDPC 
Decoder 

GPR 
Channel 

BCJR-APP 
Detector 

extrinsic info 
extrinsic info 

• Length-4376  LDPC code                                             
• Gain ~4 dB over uncoded NPML at Pe(symbol)=10-5     
• Gap to capacity ~1.5dB                 
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Simplified BCJR:  Dual-Max Detector  

{ } { }),'()()'(max),'()()'(max 11 :,'11 :,'
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[4] 

BCJR 
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Capacity of  Magnetic Recording Channels 

• Binary input, linear ISI,  additive, i.i.d. Gaussian noise   
 
 

• Capacity C 
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Computing Entropy Rates 

• Shannon-McMillan-Breimann theorem implies 
 

     
 as             , where          is a single long sample realization of 

the channel output process. 
 
• The probability   p(y1

n)  can be computed using the forward 
recursion of the BCJR - APP algorithm. 
 

• In the log domain, this forward recursion can be interpreted as 
a “generalized Viterbi  algorithm.” (See [4].) 
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Capacity Bounds for Dicode h(D)=1-D 
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Concluding Remarks 

• The Viterbi Algorithm and related ML performance evaluation 
techniques have been vital to the advancement of data storage 
technology – magnetic and optical - since 1990. 
 

• The “Viterbi architecture” for APP computation has influenced 
the development and evaluation of capacity-approaching 
coding schemes for digital recording applications. 
 

• Future storage technologies offer interesting challenges in 
detection and decoding… 
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Holographic Recording 
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Two-Dimensional Optical Storage (TwoDOS) 

Courtesy of Wim Coene, Philips Research 
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And, finally… 

• Congratulations – and many thanks – Andy!!   
    on the occasion of your milestone birthday, and for 

your many landmark contributions to science, 
technology, and engineering education. 
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