
Two-Dimensional Bit-Stuffing Schemes with
Multiple Transformers
Sharon Aviran, Paul H. Siegel, and Jack K. Wolf
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, CA 92093, USA

Emails: {saviran, psiegel, jwolf}@ucsd.edu

Abstract— We present bit-stuffing schemes which encode ar-
bitrary data sequences into two-dimensional (2-D) constrained
arrays. We consider the class of 2-D runlength-limited (RLL)
(d,∞) constraints as well as the ‘no isolated bits’ (n.i.b.)
constraint, both defined on the square lattice. The bit stuffing
technique was previously introduced and applied to the class of
2-D (d,∞) constraints. Analytical lower bounds on the rate of
these encoders were derived. For d = 1, a more general scheme
was analyzed and shown to obtain improved performance. We
extend the (1,∞)-construction to (d,∞) constraints where d ≥ 2.
We then suggest a bit-stuffing scheme for the n.i.b. constraint,
based on a capacity-achieving scheme for a one-dimensional RLL
(0, 3) constraint. Simulation results demonstrate the performance
of the proposed schemes.

I. INTRODUCTION

Recent advances in high-capacity optical storage technolo-
gies have motivated the study of two-dimensional constraints.
These technologies use a two-dimensional (2-D) model of the
recorded data, as opposed to the traditional one-dimensional
(1-D) track model [1]. This approach gives rise to new types
of error patterns, constraints and encoding algorithms. Two-
dimensional constraints can be defined over different 2-D
lattices, depending on the layout of the data on the recording
medium. In this work, we consider the class of 2-D runlength-
limited (RLL) (d,∞) constraints as well as the ‘no isolated
bits’ (n.i.b.) constraint, both defined on the square lattice. A
2-D (d,∞) constraint consists of all binary arrays in which
there are at least d zeros between any two successive ones in
any row and in any column. The 2-D n.i.b. constraint requires
that every bit equals to at least one of its four adjacent bits
(i.e. the bit above, the bit below and the two bits to its sides).
In other words, it prohibits the occurrence of the patterns

0
0 1 0

0
and

1
1 0 1

1
.

Let N(m,n) be the number of distinct binary arrays of size
m×n that satisfy a given 2-D constraint. The capacity of the
2-D constraint is defined as

C = lim
m,n→∞

1
mn

log2 N(m,n).

Unlike the 1-D case, there are no known methods for comput-
ing the capacity of many 2-D constraints of interest. Instead,
several techniques for deriving upper and lower bounds on

the capacity were suggested. One particular lower bounding
technique is based on an analysis of a bit-stuffing encoding
algorithm [2]. The algorithm converts the input sequence
into another sequence having different statistical properties.
It then encodes the latter sequence into a constrained array
by inserting excess bits in a manner that guarantees that the
constraint is satisfied.

Siegel and Wolf [2] initially introduced a bit-stuffing en-
coder for 2-D (d,∞) constraints, for all d ≥ 1. They
computed a lower bound on the average rate of such a
scheme and, a fortiori, on the capacity. Roth, Siegel and
Wolf [3] then proposed and analyzed a more general bit-
stuffing scheme for the special case where d = 1. They
showed that this scheme achieves improved performance over
the original scheme. More recently, Halevy et al. [4] presented
a bit-stuffing encoder for the n.i.b. constraint. Analysis of the
encoder resulted in lower bounds on its average rate. Halevy
et al. further obtained improved lower bounds on the rates of
the (d,∞)-encoders presented in [2], for d ≥ 2. Additionally,
a modified bit-stuffing scheme was proposed and analyzed
by Forchhammer [5]. Application of this approach to the
(2,∞) constraint yielded a further improved lower bound on
its capacity.

In this paper, we introduce two new bit-stuffing construc-
tions. In the first construction, we extend the idea that underlies
the improved (1,∞)-construction in [3] to (d,∞) constraints,
where d ≥ 2. The second construction is a bit-stuffing scheme
for the n.i.b. constraint that is based on a capacity-achieving
bit-stuffing scheme for a certain 1-D RLL constraint. Section II
focuses on (d,∞) constraints and Section III deals with the
n.i.b. constraint. In both sections, we begin by reviewing
previous bit-stuffing schemes and proceed to describe our
proposed scheme. We conclude each section with simulation
results demonstrating the performance of these schemes.

II. BIT-STUFFING SCHEMES FOR (d,∞) CONSTRAINTS

In this section we describe bit-stuffing schemes that encode
arbitrary data sequences into 2-D (d,∞)-constrained arrays.
We start by introducing some notations and conventions, which
will be used throughout the paper.

We encode the input sequences into rectangular arrays of
the form

Bm,n = {(i, j) ∈ Z
2 : 0 ≤ i < m, 0 ≤ j < n},



where Bm,n is shown in Fig. 1. The random constrained array
that is generated by the bit-stuffing encoder is denoted by X ,
where Xi,j stands for the random bit at location (i, j) ∈ Bm,n.
To properly define the encoding process, we assume zero
entries outside of the quadrant, i.e., for all (i, j) such that
i < 0 or j < 0.

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

1 2 j n−10

1
2

i

m−1

Fig. 1. Rectangular array Bm,n.

The bit-stuffing construction that was originally proposed by
Siegel and Wolf [2] works as follows. The encoder consists
of a distribution transformer followed by a bit stuffer. The
distribution transformer bijectively converts a sequence of i.i.d.
unbiased (Pr{1} = 1

2 ) bits into a p-biased sequence of
independent Bernoulli bits, whose probability of a 1 is some
p ∈ [0, 1], p �= 1

2 . We refer to p as the bias. The asymptotic
expected rate of such a scheme is h(p), where h(p) is the
binary entropy function. The p-biased sequence is then fed
into the bit stuffer. The bit stuffer scans Bm,n from its upper
left corner to its lower right corner, by going down successive
diagonals. It applies the following routine on each entry:

• If the current entry already contains a 0, then skip it and
go to the next entry.

• If the current entry is empty, then assign the next p-biased
bit into it. If the assigned bit is a 1, then check which
of the d locations to the right of it and which of the d
locations below it is empty. For each such empty location,
insert (or stuff ) a 0.

The 0’s that we may encounter in some of the entries are
always stuffed 0’s that were inserted to the right of or below a
previous p-biased 1. Hence, it is unnecessary to repeat stuffing
at these entries. As a result, the number of 0’s that are stuffed
following a biased 1 is sometimes strictly less than 2d.

At the decoder, we recover the p-biased sequence by ap-
plying a similar logic. We successively read the p-biased bits
down diagonals, while discarding the stuffed 0’s to the right of
each 1 and below it. The inverse distribution transformer then
recovers the unbiased input from the p-biased sequence. Now,
note that biased sequences containing fewer 1’s will generally
result in fewer stuffed bits, yielding a higher average rate in
the bit stuffing phase. On the other hand, as we decrease the
probability of a 1, the rate of the transformer, h(p), decreases
(when p < 1

2 ). Since the overall rate of the scheme is the
product of these two rates, we need to optimize p to achieve
the best rate.

The above technique was later extended by Roth, Siegel,
and Wolf [3], for the special case where d = 1. They proposed
to use two distribution transformers in order to generate two
distinct biased streams at the input to the bit stuffer. When
assigning a biased bit into location (i, j), the value of Xi−1,j+1

determines the biased stream from which to take the bit.
Specifically, a pk-biased bit is assigned when Xi−1,j+1 = k,
for k ∈ {0, 1}. At the decoder, the same reasoning is applied to
recover the two biased sequences. An analysis of the scheme
showed that it achieves improved performance over the single-
transformer scheme [3]. In addition, the optimal biases, p∗0
and p∗1, were found to satisfy p∗0 < p∗1 < 0.5. To interpret
this result, suppose that the current biased bit equals 1. If
Xi−1,j+1 = 0 then the assigned bit incurs the stuffing of two
0’s. On the other hand, when Xi−1,j+1 = 1, position (i, j+1)
is already occupied by a stuffed 0. Thus, only a single 0 is
stuffed in this case. Now, recall that biasing the data serves the
purpose of reducing the average penalty from stuffing. Hence,
it is reasonable to use a smaller bias for a pattern which incurs
a higher penalty, as was found in this case. Motivated by the
improved performance of this scheme and by the suggested
interpretation, we now generalize it for d ≥ 2.

A. Multiple-transformer schemes for d ≥ 2

Consider the case where d = 2, and assume that the bit
stuffer has just assigned a biased 1 into location (i, j). Fig. 2
depicts examples of possible patterns that give rise to stuffing
of 1, 2, 3 and 4 0’s, where the stuffed bits appear in bold.
It can be seen that the number of stuffed bits depends on
the occurrence of 1’s in certain previously-filled neighboring
locations. In this example, there are four such locations, all
highlighted in Fig. 2. Different combinations of 0’s and 1’s in
these locations result in 1 to 4 stuffed bits. In the general case,
it can be shown that the number of stuffed bits is determined
by the patterns arising in a certain subset of d2 previously-
filled locations. These locations are characterized by the set

Γ(i, j) =
{

(s, t) ∈ Z
2 i−d ≤ s < i and j < t ≤ j+d

and s+t ≤ i+j
}

⋃ {
(s, t) ∈ Z

2 : i < s ≤ i+d−1

and j−d ≤ t < j−1 and s+t ≤ i+j−1
}

.

By accounting for the different patterns, we can show that
they yield any number between 1 to 2d stuffed bits. The only
location that is guaranteed to be empty, and therefore always
stuffed with a 0, is location (i + d, j). Following the same
reasoning as in the (1,∞) case, we would like to minimize the
expected number of stuffed bits by using smaller biases when
encountering patterns that lead to more stuffed bits. Hence,
we would generate 2d distinct biased streams with biases
p1, p2, . . . p2d, each one to be used when the corresponding
patterns arise. We then need to optimize for the 2d biases.

The performance of the scheme was studied for d = 2
and d = 3 by simulations. The biased streams were encoded
into a rectangular array of size 400 × 400 and the rate
was averaged over a number of iterations. To optimize the
rate, we performed a brute force search over all possible
combinations of the 2d biases (without restricting them to
satisfy 0.5 > p1 > p2 > . . . > p2d). Due to computational



j

0 0 1 0
0 0 0 1 0 0

i 0 0 1 0 0
1 0 0 0
0 0

(a)

j

0 0 1 0
0 0 1 0 0

i 0 0 1 0 0
0 0 0

0

(b)

j

0 0 0
0 0 1 0 0

i 0 0 1 0 0
0 0 0

0

(c)

j

0 0 0
0 0

i 0 0 1 0 0
0 0 0

0

(d)

Fig. 2. Bit stuffing for the (2,∞) constraint. Examples of four patterns that
give rise to different numbers of stuffed bit when assigning a biased 1.

Multiple- Single- Analytical
d Transformers Transformer Bounds

Avg. Rate Avg. Rate From [4]

2 0.4447 0.4420 0.4267
3 0.3674 0.3647 0.3402

TABLE I

EMPIRICAL ESTIMATES AND ANALYTICAL BOUNDS ON THE RATE OF

BIT-STUFFING ENCODERS FOR (d,∞) CONSTRAINTS.

limitations, a coarse search was initially conducted. A more
refined search on a narrower range of probabilities followed
it. The finer search resolution consisted of increments of size
0.01 for each bias. The number of iterations was 500 for
d = 2 and 25 for d = 3. For comparison, we simulated the
single-transformer scheme. In this case, optimization used a
brute force search with a resolution of 0.005. Table I shows
the empirical rate estimates of the single-transformer and 2d-
transformers schemes for d = 2, 3. Also shown are analytical
bounds on the single-transformer scheme that were derived
in [4]. We would like to point out that for both d = 2, 3,
the optimal biases indeed satisfied the expected relations, i.e.,
0.5 > p∗1 > p∗2 > . . . > p∗2d. In addition, we note that
the improved analytical bound on the capacity of the (2,∞)
constraint reported by Forchhammer [5] equals 0.44149. It
can be seen from the table that the extension to multiple
transformers results in minor improvements for d = 2, 3.
Unfortunately, computational limitations prevented us from
optimizing the scheme for larger values of d, where it may
in fact prove to be more useful. Analysis of this approach
may also produce improved bounds on capacity, as the current
single-transformer analytical bounds are not tight.

III. BIT-STUFFING SCHEMES FOR THE ‘NO ISOLATED BITS’
(N.I.B.) CONSTRAINT

A bit-stuffing encoder for the ‘no isolated bits’ (n.i.b.)
constraint was proposed by Halevy et al. [4]. The bit stuffer
utilizes two distinct inputs - an unbiased stream, denoted
by {Un}∞n=0, and a 2

3 -biased stream, denoted by {Bn}∞n=0.
Progressing down successive diagonals, the bit stuffer applies
the following rules to determine the value of each entry, Xi,j :

• If (Xi−1,j−1 = Xi−2,j = Xi−1,j+1 �= Xi−1,j), then set
Xi,j to equal Xi−1,j .

• If (Xi,j−2 = Xi−1,j−1 �= Xi,j−1) and either
(Xi−1,j−1 �= Xi−2,j) or (Xi−1,j−1 = Xi−1,j), then read
the next biased bit, Bn. If (Bn = 1) then set Xi,j to
equal Xi,j−1. Else, set Xi,j to equal the complement of
Xi,j−1.

• Otherwise, set Xi,j to equal the next unbiased bit, Un.

The above procedure checks if the bit at location (i− 1, j) is
currently isolated by the bits to its sides and by the bit above
it. If so, then a stuffing of an identical value at location (i, j)
prevents a possible violation of the constraint. If this is not
the case, then a specific pattern is searched for. In this pattern,
the bit to the left (i.e. Xi,j−1) is isolated by its neighbors to
the left and above, while the bit above (i.e. Xi−1,j) is not
isolated by its neighbors to the left and above. When this
pattern occurs, we bias Xi,j towards the value of Xi,j−1. For
all other patterns, Xi,j will assume equally likely values. One
can verify that this process is invertible, hence we can recover
the two streams at the decoder.

A. Schemes based on one-dimensional maxentropic probabil-
ities

In this section we construct a bit-stuffing scheme for
the n.i.b. constraint by drawing a connection to a capacity-
achieving scheme for the one-dimensional (0, 3) constraint.
The latter scheme is based on a multiple-transformer bit-
stuffing method, which was recently proposed by Wolf [7].
Before we present our construction, we provide some back-
ground on coding for 1-D (d, k) constraints.

A binary sequence satisfies a runlength-limited (RLL) (d, k)
constraint if any run of consecutive zeros is of length at most
k and any two successive ones are separated by a run of
consecutive zeros of length at least d. When studying 1-D
(d, k) constraints, it is useful to consider the labeled directed
constraint graph, shown in Fig. 4 (for k < ∞). One can
generate all possible (d, k)-sequences by reading off the labels
along paths in the graph. The state labels represent the number
of consecutive zeros seen so far in the sequence. By assigning
probabilities to the edges, we induce a probability measure on
the constrained sequences. It is well known that there exists a
set of maxentropic edge probabilities, for which the resulting
sequences have maximum entropy [6]. It is further known that
an encoder achieves capacity if and only if it produces such
maxentropic sequences [6].

Recently, Wolf [7] proposed a bit-stuffing encoder that
produces maxentropic (d, k)-sequences for all values of d and



Fig. 3. Constraint graph for the (d, k) constraint with d > 0 and k finite.

Fig. 4. Maxentropic edge probabilities for the 1-D (0, 3) constraint.

k, where k is finite. The idea is to emulate a walk on the
graph with maxentropic probabilities, by using different biases
at different states. Denote the maxentropic probability when
moving from state i to state i+1 by µi. We first generate a µi-
biased stream for each state, i, which has a pair of emanating
edges. Since the number of such states is k − d, we need
to generate that many biased streams. Having multiple biased
streams, the bit stuffer takes a µi-biased bit when in state i.
Keeping track of the constraint graph, the random value that
each biased bit assumes determines the next state. The single
edges leaving all other d + 1 states correspond to stuffed bits.
Clearly, this method produces maxentropic (d, k)-sequences.

In the context of our work, we are interested in such
a capacity-achieving construction for the (0, 3) constraint.
Fig. 4 shows the constraint graph with the maxentropic edge
probabilities, which were computed by a method given in [6].
Looking at the scheme, we observe that the three biases (i.e.,
the probabilities of a 1) increase with increasing state labels.
This can be interpreted by observing that stuffing occurs only
when reaching state 3. Therefore, at all other states, we would
rather have a 1 and move to state 0 than have a 0 and move
to the right. Moreover, as we progress farther right, we are
more likely to incur a stuffed-bit penalty. Thus, the closer we
get to state 3, the more we wish to avoid it, which is reflected
in an increasing bias towards a 1. It is important to note that
bit stuffing with a single biased stream, i.e., with the same
bias on all edges, does not achieve capacity [7]. Hence, the
adjustment of the bias to the “foresight” or likelihood of future
stuffed bits resulted in improved performance. Unfortunately,
this technique is limited to constraints which have a finite-
state graph description. It is not directly applicable to the 2-D
n.i.b. constraint as we are unaware of such a description in
this case. However, we can adapt this approach to design a
high-rate encoder.

We now describe the bit stuffer for the n.i.b. constraint
and draw an analogy to the (0, 3) construction. First, we
maintain the stuffing strategy of the encoder that is described
in Section III. This means that stuffing occurs at location (i, j)
only if the bit at (i − 1, j) is already isolated by its 3 other

nearest neighbors. If this is not the case, then a biased bit
is assigned to location (i, j). A key observation is that the
assignment of the current biased bit can help avoid possible
isolation of several bits and hence result in fewer stuffed bits.
To illustrate this idea, recall that the n.i.b. constraint prohibits
the occurrence of two patterns, as shown in Section I. These
patterns involve 5 bits, arranged in the following configuration:

a
b c d

e
.

For each such subset of bits, the central bit, c, should not be
isolated. Now, observe that each bit we write takes any of
the positions ‘a’ to ‘e’ with respect to prohibited patterns on
different subsets of bits. Thus, it might affect the occurrence
of these patterns at the corresponding subsets.

Recall that the bit stuffer first checks if we are about to
violate the constraint. It then views location (i, j) as assuming
position ‘e’ in the configuration. At this point, the bits at
positions ‘a’, ‘b’, ‘c’ and ‘d’ determine whether or not stuffing
occurs. We denote the event that leads to stuffing by Si,j , i.e.,

Si,j = {Xi−1,j �= Xi−2,j} ∩ {Xi−1,j �= Xi−1,j−1}
∩ {Xi−1,j �= Xi−1,j+1}.

Fig. 5(a) depicts one of the patterns that lead to stuffing, where
the configuration entries are highlighted. In case stuffing is not
required, we view (i, j) as occupying position ‘d’ in reference
to locations (i, j−1), (i, j−2), (i−1, j−1) and (i+1, j−1).
These entries are highlighted in Fig. 5(b). In this case, we
know the values at positions ‘a’, ‘b’ and ‘c’. Thus, we may
encounter the following relations: c �= b and c �= a. Let

Fi,j = {Xi,j−1 �= Xi,j−2} ∩ {Xi,j−1 �= Xi−1,j−1}
describe these relations. Then consider the case described by
the event Ai,j = Si,j ∩ Fi,j . Fig. 5(b) shows a pattern that
belongs to event Ai,j . Note that this is just one possible
pattern, whereas some other patterns will fall into this category
as well. In this case, the value assumed by Xi,j might lead
directly to stuffing at (i+1, j−1) (i.e., position ‘e’). We regard
event Ai,j as being “very close” to a future stuffing event. Still,
we can bias Xi,j towards the value at position ‘c’, to try to
avoid this future stuffing event. Thus, we set d = c or d �= c
according to the value of a p1-biased bit, for some p1. Next, we
consider the case where c = b or c = a (i.e., event Fi,j∩Si,j),
which guarantees that stuffing will not occur at (i + 1, j − 1).
We now view (i, j) as if it occupies position ‘c’, with respect to
the highlighted entries shown in Fig. 5(c). Here we distinguish
between two possible patterns: a = b and a �= b, where
‘a’ = Xi−1,j and ‘b’ = Xi,j−1. The first pattern, denoted
by Gi,j = {Xi,j−1 = Xi−1,j}, allows for possible stuffing
at ‘e’ = Xi+1,j , depending on the future values at ‘c’ and
‘d’, whereas the latter eliminates the possibility of such event.
Thus, if we encounter the first pattern, we would like to bias
Xi,j towards the value at positions ‘a’ and ‘b’ (see Fig. 5(c)
for an example). Let Bi,j denote the event that corresponds
to this case, i.e. Bi,j = Si,j ∩ Fi,j ∩ Gi,j . We now compare



events Ai,j and Bi,j according to a criterion of “severity”
or “proximity to a future stuffing event”. We note that when
Ai,j occurs, then the value of the current bit determines the
occurrence of a stuffing event. However, when Bi,j occurs,
the current bit can only increase the likelihood of such an
event. In this case, stuffing depends on an additional future bit.
Hence, we say that Bi,j is “farther away” than Ai,j . Following
the reasoning behind the 1-D maxentropic probabilities, the
closer we get to stuffing a bit, the more we try to avoid it.
Consequently, when Bi,j occurs, we would use a bias p2, such
that p2 < p1. Finally, we consider the second pattern (a �= b),
in which case we view (i, j) as ‘b’ (see Fig. 5(d)). Clearly,
biasing the current bit towards the complement of Xi−1,j+1

(‘a’) would help prevent stuffing at (i + 1, j + 1) (‘e’). This
case corresponds to the event Ci,j = Si,j∩Fi,j∩Gi,j . We rank
it as the “farthest” among the three cases, as here 3 bits need
to be assigned before stuffing is determined. We therefore use
an even smaller bias, p3, such that p3 < p2 < p1.

j

0
0 1 0

i 0 1 ?

Si,j ←→ stuffing

(a)

j

1
0 1 1

i 0 1 ?

Ai,j ←→ p1

(b)

j

0
1 1 0

i 0 1 ?

Bi,j ←→ p2

(c)

j

0
1 0 0

i 0 1 ?

Ci,j ←→ p3

(d)

Fig. 5. Bit stuffing for the n.i.b. constraint. Examples of four patterns which
correspond to stuffing and to events Ai,j , Bi,j and Ci,j .

Having classified the possible patterns into three categories,
we now search for the three biases. One approach would be
to optimize the rate by a brute force search over all allowable
triplets. However, we suggest to choose the biases based on
a similarity to the 1-D (0, 3) construction. According to this
perspective, a pattern which requires stuffing is analogous to
reaching state 3. Event Ai,j corresponds to state 2, as this is the
closest to stuffing. Hence, we set p1 to equal the maxentropic
bias at this state, i.e., p1 = 1 − µ2 = 0.6583. Similarly, Bi,j

corresponds to state 1 and so p2 = 1 − µ1 = 0.5593. Event
Ci,j corresponds to state 0, leading to p2 = 1−µ0 = 0.5188.

We simulated the proposed scheme using a 600×600 array
and averaged the rate over 250 iterations. The average rate was
approximately 0.92218. For comparison, Halevy et al. reported
an empirical estimate of approximately 0.917 and an analytical
bound of 0.91276 on the rate of their scheme [4]. To estimate
the capacity, they applied the method proposed by Weeks and
Blahut [8]. This resulted in an estimate of the first ten decimal
places, namely 0.9238294367. In addition, we performed a
brute force optimization of our scheme over all possible biases.
A search with increments of 0.001 yielded an average rate
of approximately 0.9223, where the optimal biases are p1 =
0.654, p2 = 0.552 and p3 = 0.52. These optimal results are
fairly close to the maxentropic (0, 3) probabilities.

Finally, we note that this idea can be extended to an encod-
ing scheme for the n.i.b. constraint defined on the hexagonal
lattice. This constraint has been considered for use in future
optical disks [1]. In this case, we use maxentropic probabilities
from a 1-D (0, 5) constraint. Simulations suggest that the
achieved rate is very close to the optimized rate and that
the optimal probabilities are close to the maxentropic ones
as well. The average rate is approximately 0.9768. However,
when applying the method of [8], we could not generate long
enough sequences of bounds to get an estimate of the capacity.
Still, we could bound it between 0.9583 and 0.9893.

The high rates achieved by our scheme suggest that the
connection between the 1-D and the 2-D constraints may
not be coincidental. Analysis could possibly provide further
insight into this connection, as well as improved bounds on
the capacity of the constraints.

ACKNOWLEDGMENT

This research was supported in part by NSF Grant CCR-
0219582, part of the Information Technology Research Pro-
gram and by the CMRR at UCSD.

REFERENCES

[1] A. H. J. Immink, W. M. J. Coene, A. M. van der Lee, C. Busch, A. P.
Hekstra, J. W. M. Bergmans, J. Riani, S. J. L. V. Benden, and T. Conway,
“Signal processing and coding for two-dimensional optical storage,” in
Proc. IEEE Globecom 2003, San Fanscisco, CA, Dec. 2003, pp. 3904–
3908.

[2] P. H. Siegel and J. K. Wolf, “Bit-stuffing bounds on the capacity of 2-
dimensional constrained arrays,” in Proc. 1998 IEEE Int. Symp. Inform.
Theory, Cambridge, MA, Aug. 1998, p. 323.

[3] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes
for the hard-square model,” IEEE Trans. Inform. Theory, vol. 47 , pp.
1166–1176, Mar. 2001.

[4] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved
bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. Inform.
Theory, vol. 50, pp. 824–838, May 2004.

[5] S. Forchhammer, “Analysis of bit-stuffing codes and lower bounds on
capacity for 2-D constrained arrays using quasi-stationary methods,” in
Proc. 2004 IEEE Int. Symp. Inform. Theory, Chicago, IL, June-July 2004,
p. 161.

[6] C. E. Shannon, “The mathematical theory of communication,” Bell Sys.
Tech. J., vol. 27, pp. 379–423 and 623–656, July and Oct. 1948.

[7] J. K. Wolf, “An information theoretic approach to bit stuffing for network
protocols,” in Proc. 3rd Asia-Europe Workshop on Information theory,
Kamogawa, Japan, June 2003, pp. 18–21. Also presented at DIMACS
Workshop on Network Information Theory, New Jersey, USA, 2003.

[8] W. Weeks IV, R. E. Blahut, “The capacity and coding gain of certain
checkerboard codes,” IEEE Trans. Inform. Theory, vol. 44, pp. 1193–
1203, May 1998.




