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Abstract—In this paper, we analyze the distance properties of
two-dimensional (2-D) intersymbol interference (ISI) channels, in
particular the 2-D partial response class–1 (PR1) channel which is
an extension of the one-dimensional (1-D) PR1 channel. The min-
imum squared-Euclidean distance of this channel is proved to be �
and a complete characterization of the squared-Euclidean distance
� error events is provided. As for 1-D channels, we can construct
error-state diagrams for 2-D channels to help characterize error
events. We propose an efficient error event search algorithm op-
erating on the error-state diagram that is applicable to any 2-D
channel.

Index Terms—Error events, holographic recording, intersymbol
interference (ISI), two-dimensional (2-D) channels.

I. INTRODUCTION

D ETECTION and coding for two–dimensional (2-D) chan-
nels have been the subject of much research recently be-

cause of advances in holographic storage technology. Signal
processing and coding aspects of holographic storage systems
have been studied by several authors [1], [2]. A generaliza-
tion of one–dimensional (1-D) detection and coding methods to
2-D channels is not trivial due to the lack of convenient graph-
based descriptions of such channels. In particular, there is no
simple trellis-based maximum-likelihood (ML) detection algo-
rithm analogous to the 1-D Viterbi algorithm. Ordentlich and
Roth proved that the ML sequence detection problem on 2-D
intersymbol interference (ISI) channels is NP-complete [3].

However, there are suboptimal detection techniques such as
the iterative multistrip (IMS) algorithm for 2-D channels that
demonstrate very good error-rate performance and appear to ap-
proximate the performance of an ML detector [4]. The IMS al-
gorithm is a message-passing algorithm operating on soft-input
soft-output detectors, such as a posteriori probability (APP) de-
tectors. It is therefore of interest to identify the dominant 2-D
error events, where we define an error event as the difference
between the recorded and the decoded data arrays. Empirical
evidence has shown that data arrays forming dominant error
events for the IMS algorithm generate channel outputs with
small squared-Euclidean distance. Therefore, it is important to
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characterize the 2-D error events with small squared-Euclidean
distance, so that 2-D distance-enhancing constrained codes can
be designed to improve system performance [2].

Chugg investigated the performance of an ML page detector
in the presence of ISI and additive white Gaussian noise
(AWGN) [5]. If the channel impulse response has finite support
size, then the channel output can be characterized as a Markov
random field. The bit error rate performance of an ML page
detector can be bounded from above by a union bound, which
is computed by using the fundamental error patterns in the
channel input arrays.

Karabed et al. introduced an analytic method to characterize
the distance properties of some 1-D partial-response channels
[6]. In this paper, we extend this method to characterize the
closed error events of some 2-D channels. In particular, we study
the 2-D partial response class–1 (PR1) channel whose impulse
response is given by

(1)

This impulse response can be a good ISI model for holographic
storage systems when there is a half-period sampling shift be-
tween the read-back signal and the detector sampling points.

The analytic method used for characterizing error events for
the 2-D PR1 channel is tedious to apply for most 2-D channels,
particularly for the channels whose impulse responses span
arrays where . For 1-D channels, efficient search algo-
rithms working on error-state diagrams have been developed to
characterize error events for high-order partial response chan-
nels [7]. Error-state diagrams for 2-D channels can be generated
by fixing the size of the error event in the horizontal or vertical
direction. In this paper, we propose a bounded-depth search al-
gorithm for finding closed and connected error events for any
2-D channel. The complexity of the algorithm depends solely
on the underlying ISI pattern of the channel.

This paper is organized as follows. In Section II, the descrip-
tion of the 2-D channel model and related definitions and nota-
tions are introduced. In Section III, the characterization of min-
imum distance error events of the 2-D PR1 channel is investi-
gated by studying the channel impulse response in the spectral
domain. By generalizing this concept, some distance properties
of channels other than the 2-D PR1 channel can be found (see
Section IV). The method of precoding is commonly used in 1-D
recording systems to invert the ISI effect of the channel. In Sec-
tion III-B, we discuss the effect of a precoding scheme on error
events for the 2-D PR1 channel. For 1-D channels, the proba-
bility of error event and bit error can be bounded from above
by the union bound. In Section V, we generalize this concept to
2-D channels. Error-state diagrams and a bounded-depth search
algorithm are introduced in Section VI. Section VII gives our
conclusions.
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II. THE 2-D CHANNEL MODEL

Consider a 2-D channel with bipolar input array , channel
impulse response , and output . AWGN with zero
mean and variance is added to the channel output array to
obtain the received array .

For a channel output array and its estimated array , the
normalized squared-Euclidean distance is defined as

which is taken to be if the sum is unbounded. Normalized
squared-Euclidean distances will be referred to as squared dis-
tances. The quantity can be expressed in terms of the
corresponding input arrays and , respectively

where is an error event, whose elements are
commonly represented by the symbols . The input ar-
rays and are called the supporting arrays of . The distance
of is defined as .

As in the case of 1-D channels, the error events for 2-D
channels are classified as either open or closed. An error
event is closed if the area of the smallest square region con-
taining nonzero differences is bounded. Error events which
are not closed are called open. Let ������ be the set of
closed error events, ���� be the set of open error events, and

������ ���� be their union. We define the minimum
closed event distance

������

and the minimum event distance

Here represents the all-zero array.
1-D sequences are often represented in the -transform

domain. Likewise, a 2-D array can be represented in the
-transform domain as

In this representation, the impulse response of the 2-D PR1
channel is given by and
the channel input–output relationship becomes

. The minimum closed event distance of a 2-D
channel can be expressed as

������

III. ERROR EVENT CHARACTERIZATION ON THE

2-D PR1 CHANNEL

The minimum and near-minimum distance error events play
an important role in determining the performance of an ML de-
tector. Table I shows some error events along with their per-
centage of bit errors for the 2-D PR1 channel and AWGN. The
detector used in this simulation is the IMS algorithm working on

codewords at 12-dB signal-to-noise ratio (SNR) with

TABLE I
ERROR EVENTS FOR THE 2-D PR1 CHANNEL

bit error rate . It is clear that the error events with
squared distance dominate the performance. This simulation
suggests that the minimum squared distance of this channel is

. In fact, we will prove in the following subsection that this is
indeed the case.

The minimum and near-minimum distance error events can
be characterized by studying spectral properties of the channel
transfer function and the corresponding limitations on error co-
efficients [6, Sec. III-A]. Using this method, the minimum dis-
tance error events for the 2-D PR1 channel can be completely
characterized.

A. Minimum Distance Error Events

Proposition 1: The minimum closed event distance of the
2-D PR1 channel is . All distance- closed error events are of
the form

...
...

and their negatives. Here (resp., )
if (resp., ) is odd; otherwise , (resp.,

). The bottom right entry is determined as
.

Before giving the proof of Proposition 1, we present a few
relevant results. Since the proposition is valid for all and ,
it is sufficient to consider error events with span , i.e., all
four edges of error events contain at least one nonzero element.
For and/or , the proof is trivial and will not be
discussed here. For , can be expanded as
follows:

where contains the terms with a single error coeffi-
cient, which correspond to the corners of the error event

(2)
Each of the terms in the second group, , has two

error coefficients corresponding to the edges of the error event
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Each of the terms in the third group, , has four error
coefficients corresponding to the middle of the error event

Considering the terms in and , one can prove
the following result.

Lemma 1:

Proof: If all corners of an error event are nonzero,
then If any of the corners is zero, then

decreases by while increases by
. To understand this, let . Let be the index

of the first nonzero entry of the first row, i.e., and
for . Similarly, we can define as

the index of the first nonzero entry on the first column. The first
term in disappears, whereas introduces two
new terms with single coefficients which are not zero:
and . A similar proof holds for the other corners.
Therefore, if all corners are zero, then but

Proof of Proposition 1: Lemma 1 states that the distance of
a closed error event is at least . This lower bound can be at-
tained when all the corners of the error event are nonzero, and
all other terms in and are zero. Assuming
that , the condition implies that all edges
of the error event have to be in alternating form. The other corner
coefficients of the error event are not free and are determined as
stated in the proposition. The condition implies
that all internal coefficients have to be in alternating form. This
concludes the proof of the proposition.

B. Effect of Precoding

Consider the channel model described in Section II. Let
be a binary user array at the input to the precoder. A precoder
complementing the effect of the 2-D PR1 channel is given by

The channel input array is obtained by using bipolar modulation,
i.e., .

A threshold detector provides an estimate of the channel
output array, , by using the received array . Using , can
be estimated by

.

If the threshold detector makes an error, i.e., , then it is
directly reflected as an error in user arrays.

On the other hand, an APP detector provides soft information
about the channel input . After hard decisions are made on the

soft information, an estimate of the channel input array is
obtained. By the inverse precoder relation, an estimate of the
user array can be obtained as

(3)

where In this case, the user error event
is defined as . In general, and
may have different sizes and they are related to each other in the
following manner.

Proposition 2: The user error event can be expressed as
, where the multiplication between

and is element-wise and .
Proof: The estimated user array given in (3) can be ex-

pressed as a convolution The
same applies to the user array
Therefore, the user error event is given by

A squared distance error event of size corresponds
to the following user error event of size :

...
...

The Hamming weight of is always due to the one-to-one
relationship between and .

IV. EXTENSION TO OTHER 2-D CHANNELS

In the previous section, the distance properties of the 2-D PR1
channel are investigated by using the spectral representations of
the signals. This method can be extended to other 2-D channels.

Proposition 3: A 2-D channel with impulse response

achieves the matched-filter-bound, i.e.,

The proof of this proposition is similar to that of Proposi-
tion 1.

Proposition 4: For a general 2-D channel with impulse re-
sponse , the minimum closed event distance
can be bounded from below by

In this case, the matched-filter-bound may not be achieved for
some channels, as illustrated in the following example.
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Example 1: Consider a 2-D channel with impulse response

The squared distance of is , but the matched-
filter-bound of this channel is .

V. BOUNDS ON THE PROBABILITY OF BIT ERROR

Chugg [5] proved that if the entries of input array (or
for the precoded case) are equally probable and independent,
the bit error probability under ML detection and AWGN can be
bounded from above by the union bound

Here is the complementary distribution function of a zero-
mean and uni-variance Gaussian random variable, and is the
average multiplicity of bit errors of distance , given by

where is the Hamming weight of . The error events
counted in this upper bound have to be connected, as defined
below, and only one of the different shifts of should be taken
into account.

Definition 1: An error event is connected if the error event
cannot be divided into two separate error events and such
that . The error events which are not
connected are called disconnected.

Connected error events are referred to as fundamental error
patterns in [5]. A sufficient condition for an error events to be
connected is also given in that paper. An easier way to determine
whether the error event is connected or disconnected is based
upon the notion of connected entries which we now define.

Definition 2: Let be the impulse response
of a 2-D channel. Let be a indicator matrix whose entries
are defined as

if
otherwise.

For an error event of size , two nonzero entries
and are said to be connected to each other if the fol-
lowing condition is true:

where is an matrix such that , ,
and other entries of are zero. If , then the
entries and are called disconnected. The entries

and cannot be connected if or
.

Definition 3: A set of nonzero entries in an error event is
called a connected component of if every two nonzero entries
of are connected directly or via other nonzero entries in .

Definitions 1–3 directly imply the following result.

Lemma 2: An error event is connected if and only if it has
one connected component.

For a precoded system, becomes

where is the user error event corresponding to .
The bit error multiplicity generating function is defined as

where is the set of all distances, and and take nonneg-
ative values.

VI. A BOUNDED-DEPTH SEARCH ALGORITHM

Error-state diagrams for 1-D channels cannot be directly gen-
eralized to 2-D channels since there are no convenient graph-
based descriptions of such channels. However, when the size of
the error event is fixed in either of the dimensions, error-state
diagrams can be described as 1-D systems using a higher order
alphabet. In this section, we propose a bounded-depth search al-
gorithm for determining closed error events of size for
2-D channels with impulse response of size . In order to
avoid redundant repetitions of error events, the following condi-
tions are imposed on error events: 1) the edges of an error event
contain at least one nonzero element and 2) error events are re-
quired to be connected.

An error state diagram for a 2-D channel with impulse re-
sponse can be represented as a labeled
graph. A state in this graph is a sequence of symbols

from the alphabet , which is the set of all
row vectors of length with entries . Alternatively,
the state can be represented as a array

...

Therefore, there are states in the error-state diagram. An
edge has the initial state , the terminal
state , and the label . A path in
the error-state diagram is a finite sequence of edges
such that for . A closed error event

of size corresponds to a path in
the error-state diagram that starts and ends at the all-zero state

without an intermediate visit to that state, where
is the all-zero row vector of length . The sequence of edge

labels for the edges of is given by

If represents , the sequence of edge labels
should give the error event, i.e., for all .
There are appended edges with label for the termination
of the error event. Therefore, the relationship between paths and
error events is one-to-one. The error event corresponding to the
path is denoted as . The distance of a path is defined
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as the distance of the corresponding error event . Note
that the error-state diagrams defined in this way are equivalent
to 1-D error-state diagrams with memory and alphabet
size .

The bounded-depth search algorithm searches for the closed
and connected error events of size whose distances are
not larger than a specified limit . Let be a path of
length for . If an edge with label

is appended to this path, the algorithm checks the following
conditions on the extended path .

• .
• When , the error event contains at least one

nonzero entry along its edges.
• The error event is connected.
If any of these checks fails, then the path is called invalid

and the algorithm will not extend the path . If all of these
checks are satisfied, then the path is called a valid path.

Let and be the sets of candidate and valid paths at
level for , respectively. All candidate paths
at level are obtained by extending the valid paths at level
as follows.

• For level , the set of candidate paths is

Excluding the all-zero state guarantees that the first row of
the error event contains at least one nonzero entry.

• For levels , the set of candidate paths is

• For level , the set of candidate paths is

Excluding the all-zero state guarantees that the last row of
the error event contains at least one nonzero entry.

• For levels , the valid paths are extended
by the edge with label to terminate the error event, i.e.,

The algorithm performs three updates and checks on to
obtain as discussed in the following subsections.

A. Updating and Checking Squared Distance

Let and be the distances of paths and
, respectively. We assume that all entries outside the spans

of the error events are simply zero. We can compute the channel
output by considering the augmented state , which is
padded with zeros

where is the all-zero matrix of size . The channel
output corresponding to the channel input is given by

Therefore, the squared distance of the path is updated as

If , then the distance check on fails.

B. Updating and Checking Edge Indicator Functions

Let be the left edge indicator function for the path
indicating whether the left edge of contains a nonzero
entry. The left edge indicator function can be updated as fol-
lows:

if or
otherwise

where is the first entry of the row vector . The right edge
indicator variable can be defined and updated similarly.
For a path at level , if or ,
then the check on fails.

C. Updating and Checking Connection Map

A connected component of an error event is a set of con-
nected entries in an error event. Connected components of an
error event can be distinctly numbered with positive integers.
We define the group number of a nonzero entry in a path label
sequence as the connected component number to which
that entry belongs. A connection map of a path is an
array whose entries are the group numbers of the nonzero en-
tries. Zero entries in are assumed to have group number
zero. The maximum group number of is denoted by

. Let and be the connection maps
for the paths and , respectively. For the overlapping
edges of and , the connection groups are the same,
i.e, for . For each
nonzero entry in the last row of , we need to deter-
mine which groups are connected to that entry .
Let be the set of entries in connected to the
entry and be the set of group numbers of the entries in .
For the th entry, the connection map is updated
as follows.

• If , i.e, the entry of is not connected
to any connected components, then a new group number is
assigned to this entry: and

.
• If , then and for all

nonzero entries , set . In
this way, all connected components whose numbers are in

are merged into the single connected component with
number .

There are two different types of checks associated with con-
nection maps.
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Fig. 1. The complexity of the algorithm for the 2-D PR1 channel for � � �. Checks I, II, and III refer to the squared distance, edge indicator functions, and
the connection map, respectively. Check IV refers to the modified squared distance with � � � for all � and �.

• No group can terminate without merging with another
group. That is, the rows , ,
cannot contain a group number which does not occur in
the rows , . This check is
applied for the paths at level .

• All groups have to merge into a single group at level ;
otherwise, the error event will be disconnected. That is, all
nonzero entries of should be .

If any of these checks fails, then the algorithm will not expand
the path .

D. Simulation Results

Simulation results indicate that applying all three checks dis-
cussed in previous subsections considerably reduces undesired
repetition of error events for a fixed maximum distance .

By using simulation results for the 2-D PR1 channel, the
bit error multiplicity generating function can be bounded from
below by

for the unprecoded and precoded cases, respectively. Here “ ”
signifies that the coefficient of each term on the right is less than
the corresponding one on the left. The computed values of ’s
for both cases are close to the analytical values.

E. Reduction of Complexity

A measure for the complexity of the bounded-depth search
algorithm is the number of paths that are extended and checked.
Implementing the checks for the edge indicator functions and
the connection map does not significantly reduce the complexity
of the algorithm as shown in Fig. 1 for the 2-D PR1 channel.
However, the complexity of the algorithm can be reduced by
modifying the check corresponding to the squared distance. For
some 2-D channels, such as the 2-D PR1 channel, a significant
part of the squared distance is caused by the nonzero corner

and edge coefficients of the error events. Therefore, for a path
representing an error event, the initial and final levels

contribute to its distance considerably.
For an error event of size represented by the path

, the minimum squared distance is given by

where is the extension path of with the edges
with symbol . The minimum squared distance only depends
on the size of the error event and the channel impulse response.
The minimum squared distance can be found by enumerating
all paths of length , which can start with any state but have
to be extended with the edge with symbol . In this way, the
terminal state of the path becomes the all-zero state. Therefore,
there are such paths. The check related to the squared
distance can be modified by using different maximum squared
distance for different path levels

for
for

As shown in Fig. 1, this method reduces the complexity of the
algorithm significantly for the 2-D PR1 channel. This method is
also observed to be efficient for other channels and com-
binations.

VII. CONCLUSION

In this paper, minimum distance and near-minimum distance
closed error events of the 2-D PR1 channel are characterized.
The effect of precoding on error events is also investigated for
this channel. Some distance properties valid for the 2-D PR1
channel also apply to 2-D channels with impulse response of
size . Error events for 2-D channels can be generated by
using the bounded-depth search algorithm developed here. The
results of this algorithm are observed to be consistent with the
analytical results.
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