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Abstract—With the reduction in device size and the increase
in cell bit-density, NAND flash memory suffers from larger
inter-cell interference (ICI) and disturbance effects. Constrained
coding can mitigate the ICI effects by avoiding problematic error-
prone patterns, but designing powerful constrained codes requires
a comprehensive understanding of the flash memory channel.
Recently, we proposed a modeling approach using conditional
generative networks to accurately capture the spatio-temporal
characteristics of the read signals produced by arrays of flash
memory cells under program/erase (P/E) cycling. In this paper,
we introduce a novel machine learning framework for extending
the generative modeling approach to the coded storage channel.
To reduce the experimental overhead associated with collecting
extensive measurements from constrained program/read data,
we train the generative models via transferring knowledge from
models pre-trained with pseudo-random data. This technique can
accelerate the training process and improve model accuracy in
reconstructing the read voltages induced by constrained input
data throughout the flash memory lifetime. We analyze the
quality of the model by comparing flash page bit error rates
(BERs) derived from the generated and measured read voltage
distributions. We envision that this machine learning framework
will serve as a valuable tool in flash memory channel modeling
to aid the design of stronger and more efficient coding schemes.

Index Terms—Data storage systems, Machine learning,
Constrained coding, Inter-cell interference.

I. INTRODUCTION

Recently, there has been great interest in the application
of machine learning in communications and networking,
including data storage. For example, robust signal detection
in magnetic recording channels using a recurrent neural
network (RNN) architecture was demonstrated in [29]. A
low-density parity-check (LDPC) decoder with flexible code
lengths and column weights exploiting RNN was proposed
in [26]. Machine learning was also applied to page failure
prediction [14], [22] and, in a limited setting, read voltage
generation [15] in NAND flash memory. The synergy between
machine learning and data storage is stimulating important
mutual progress.

Realistic models for storage and communication channels
are critical tools in the design of signal processing and coding
methods. Generative flash modeling (GFM) [28] was recently
proposed to model the complex spatio-temporal characteristics
of read voltages in flash memory channels. Although statistical
models [7], [10], [16], [19] to characterize the effects of P/E
cycling, ICI, and retention on flash memory read voltages have
been proposed, their predictions have not been validated in the

a generative adversarial network (GAN) [3] in a
conditional setting. This modeling approach was shown
to comprehensively learn both spatial and temporal properties
of the flash channel.

Constrained codes [17] have been proposed to mitigate read
errors arising from the ICI phenomenon in flash memory by
forbidding the programming of error-prone patterns. Learning
the characteristics of the input-constrained flash channel poses
a challenge, however. Statistical models have not been used
to explore the subtle characteristics of the channel associated
with the use of constrained data. GFM has the potential to
model the input-constrained channel, but a model trained from
pseudo-random data does not provide sufficient knowledge
about the constrained channel. On the other hand, acquiring
a large dataset of measurements from constrained data can
consume excessive amounts of time and hardware resources.

It has been observed that learned knowledge from models
pre-trained on a large dataset (e.g., ImageNet [2]) can
effectively be applied to other tasks, either by extracting
off-the-shelf features from trained networks [21], [27], or
by adapting learned knowledge to a new domain [18].
Moreover, transferring learning has shown success in the
context of generative models, e.g., in applications to image
generation [25]. To accurately model the input-constrained
flash channel, we therefore propose a transfer learning
approach, whereby the GFM network is first trained on a
large dataset of measurements from pseudo-random data, and
then is fine-tuned by re-training on a much smaller dataset of
measurements from constrained data. We refer to this as code-
aware GFM.

The paper has the following contributions:

1) We propose a novel framework for code-aware
generative channel modeling, where the voltage levels
of coded program levels can be precisely and rapidly
reconstructed.

2) We show how generative models trained on pseudo-
random programming data can efficiently transfer
knowledge to other coded-channel modeling tasks where
code-specific data is limited.

3) We demonstrate the quality of reconstruction in code-
aware GFM by analysis of voltage distributions and bit
error rates (BERs).

II. NAND FLASH MEMORY AND ICI MITIGATION

literature by comparing to measurements of pattern-dependent A. NAND Flash Memory Basics

errors as a function of spatial and temporal factors.

NAND flash memory stores data as voltages in floating gate

GFM uses a conditional VAE-GAN [9] architecture, transistors, called cells. In a flash chip, cells are organized
combining a variational auto-encoder (VAE) [8] and in two-dimensional (2-D) arrays, called blocks, consisting
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TABLE I
NUMERICAL VALUES OF PATTERN-DEPENDENT ERROR RATES FOR THE MOST SEVERE ICI PATTERNS
7 7 6 7 7 7
Error rate [7 0 7] [7 0 6} [6 0 7} 0 0 0 7 0 7 7 0 6 7 0 7

7 6 7 7 7 6
4000 P/E 2.45% 10.97% 7.42% 7.36% 15.42% 10.76%  8.78% 48.06% 35.64% 36.59%
7000 P/E 4.06% 14.45% 10.35% 10.15% 20.48% 15.01% 12.81% 50.34% 42.15% 37.39%
10000 P/E 5.84% 18.42% 13.31% 13.46% 2573% 1935% 17.11% 54.22% 44.42% 44.67%

PLO PL1 PL2 PL3 PL4 PL5 PL6 PL7

Probability Density

VL
Fig. 1. Voltage distributions and a recursive alternate Gray mapping (RAGM)
between cell program levels and binary logic values of a TLC NAND flash
memory.

of horizontal wordlines (WLs) and vertical bitlines (BLs).
Multilevel flash memories store multiple bits per cell. For
example, a triple-level cell (TLC) memory stores three bits
using 23=8 possible voltage levels. Within each block, the
three bits stored in cells along a WL are logically grouped
into three pages, called the lower, middle, and upper page,
respectively.

There are three basic operations on a flash device: program
(write), read, and erase. We denote the program level as
PL and the read voltage level as VL. Fig. 1 illustrates the
the conditional probability density functions (PDFs) of read
voltages for 8 program levels, each corresponding to a 3-
bit string of lower, middle, and upper bits. The dash-dotted
vertical lines represent the read thresholds used to recover
the stored data. Level errors and bit errors occur when, for
example, PL=0 induces a read voltage VL lying above the
first threshold and below the second threshold, causing the
level to be mistakenly detected as 1 and the the upper bit to
be mistakenly detected as 0.

B. ICI Mitigation via Constrained Coding

ICI effects, caused by parasitic capacitive coupling between
flash cells, is one of the major obstacles to accurate
programming and reading of a flash device [1]. Severe ICI
arises when three consecutive cells in WL or BL directions
are programmed to high-low-high levels.

Error rates for the most severe ICI patterns in a commercial
TLC flash device are shown in Table I. Using (¢, j) to denote
the (WL,BL) position of a cell in the block and Vi 1) to
denote the threshold between PL=0 and PL=1, the table gives
the overall level error rate for PL=0, and the error rates for
worst-case WL, BL, and 2-D patterns, or, mathematically,

P(VL(; 5y > Vin(on)|PL(,5=0);
P(VL(i,j) > Vin(on[PLi,j-1), PL(;,j =0, PLs j+1) )3
P(VLi.5) > Vin(on) [PL(i-1,): PLi.j)=0, PL(it1,5));
P(VL(:.j) > VingonPLiit1), PLi.j =0, PL(; j11))-

We make two observations from Table 1. First, ICI

significantly increases error rates. At 4000 P/E cycles, the error
rate of 707 pattern in WL (resp., BL) direction is a factor of

4.5 (resp., 6.3) larger than the average error rate. If we program
707 in both directions, the error rate is a factor of 19.6 larger
than the average error rate. Second, P/E cycling causes error
rates to increase. Specifically, the average error rate increases
by a factor of 2.38 from 4000 P/E cycles to 10000 P/E cycles.
For dominant 707 error patterns in WLs (resp., BLs), the error
rate increases by a factor of 1.68 (resp., 1.67) from 4000 P/E
cycles to 10000 P/E cycles.

Solid-state drives (SSDs) employ powerful error-correction
codes (ECCs) [6] within their controllers to cope with such
errors. Constrained codes to further reduce ICI-induced errors
have been proposed and some have been experimentally
validated [4], [5], [20], [24]. In particular, read-and-run (RR)
constrained coding techniques [5] efficiently eliminate selected
detrimental patterns by coding on only one page per WL.
They allow random page access and are compatible with page-
based ECCs. A generative model that accurately learns input-
constrained channels will be a valuable tool in optimizing the
combination of constrained coding and ECC.

III. CODE-AWARE STORAGE CHANNEL MODELING

The GFM scheme in [28] learns an approximation to
the intractable likelihood P(VL|PL,P/E) from a dataset of
measured voltage arrays VL produced by pseudo-random
(unconstrained) program arrays PL. The goal of code-
aware channel modeling is to infer the intractable likelihood
P(VLS|PLS,P/E), where VLY is the voltage array produced
by the code-constrained program array PLS. In this section,
we describe our transfer learning approach to achieving this
goal.

A. Review of Generative Flash Modeling

The conditional VAE-GAN architecture underlying the GFM
scheme consists of three modules: encoder (Enc), generator
(Gen), and discriminator (Dsis).

During the training process, the encoder Enc produces latent
vectors z from VL based on the VAE technique [8]. The
generator GGen reconstructs an array of read voltages, VL,
based on PL, P/E, and z. The P/E vectors are concatenated with
the output features of Gen for spatio-temporal combination.
The discriminator Dis is trained to distinguish real VL from
fake VL.

After optimization, the learned Gen serves as a realistic flash
channel simulator which accepts program level array PL, P/E
cycle count, and latent vector z as inputs. The latent vector is
sampled from a standard multivariate Gaussian distribution. We
express the reconstruction of VL in the training and evaluation
processes, respectively, as

(Train) VL = Gen(PL, P/E, Enc(VL))
(Evaluation) VL = Gen(PL, P/E, z).
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Source Dataset: random PL

B ::Vf:f Real / Fake

Target Dataset: constrained PL

Fig. 2. Pipeline of code-aware generative flash modeling.

Full details about the training, evaluation, and experimental
results are given in [28].

The GFM approach was demonstrated to accurately
reconstruct cell voltage levels by capturing spatial ICI effects
and temporal distortions from P/E cycling, as validated by
comparing predicted time-dependent and pattern-dependent
errors to error measurements.

B. Code-aware Generative Flash Modeling

The GFM framework is capable of learning the
likelihood P(VLS[PLS,P/E) from a sufficiently large
dataset {(PL®,VL® P/E)} of code-constrained programming
measurements at each P/E cycle. To avoid the expense
of producing such a large dataset, we propose to use a
transfer learning approach. We pre-train the GFM network
on a large-scale source dataset {(PL,VL,P/E)} of VL
measurements from pseudo-random (unconstrained) program
arrays PL, then fine-tune it using a much smaller target dataset
{(PLS, VL% P/E)} of code-constrained measurements.

We now formulate the pipeline of code-aware GFM. As
shown in Fig. 2, at the beginning of training, three network
modules in GFM (Enc, Gen, and Dis) are initialized with
pre-trained weights learned from source dataset. Using the
target dataset, the code-aware GFM follows the framework of
GFM to finish the training process. After training, the network
parameters in Gen represent the simulator to produce voltage
levels from code-constrained PL arrays.

We note that the relation between source and target datasets
can impact the transfer learning results. In our case, because
random programming arrays very likely include constrained
sub-arrays, sharing the pre-trained network weights during the
fine-tuning step enables the transfer of relevant knowledge.

C. Transfer Learning Configuration

It has been observed that pre-training for all network
modules can provide better results than pre-training for one
individual module [25]. Therefore, in our transfer learning
configuration, we share the parameters of all three modules
of the pre-trained network.

In our experiments, we consider two read-and-run (RR)
constrained codes [5]. The corresponding target datasets
{(PL®, VLS P/E)} consist of pairs of 64 x 64 PL and VL
arrays, collected from a commercial TLC flash device at
selected P/E cycles, as in the original GFM setup in [28].

This framework is also applicable to data shaping codes for
flash memory [11]-[13]. These codes minimize the average

TABLE II
SI1ZES OF TRAINING AND EVALUATION DATASETS
Training Evaluation
[{(PL, VL, P/E)}| 1.5 x 10° | 2.1 x 10%
[{(PLSwL, VLSwL P/E)}| | 1.5 x 104 | 1.5 x 10*
[{(PLS20, VLS20 P/E)}| | 1.5 x 10* | 1.5 x 10*

cell wear due to programming by optimally “shaping” the
probability distribution of the programmed cell levels.

The two constrained datasets are collected from a single
commercial 1X-nm TLC chip belonging to the same family
of chips used for the GFM experiments in [28]. Due to the
variation of mappings between manufacturers and product
generations, we describe the disallowed patterns of the code-
constrained data in terms of the mapping in Fig. 1. The
first target dataset uses a code constraint Sy that forbids
{000,010} in the lower page of each WL. This eliminates
error-prone patterns containing 707, 706, and 607 in the WL
direction, as well as other high-low-high error-prone patterns.

The second target dataset uses a code constraint Syp that
forbids {000,010} in lower bits along both WL and BL
directions. This eliminates error-prone patterns containing 707,
706, and 607 in both WLs and BLs, including all patterns
shown in Table I, as well as other patterns.

We implement the WL-based constraint Syy with an
interleaved, rate 12:18 run-length limited (RLL) (d, k) = (0,1)
code of overall block length 36 on the lower page, yielding
an effective rate of 0.89 [5], [23]. The 2D-constraint is
implemented with the 2D RR scheme in [5], [23], which has
an effective rate of 0.83.

We collect equal numbers of measured voltages at three

P/E cycle counts: 4000, 7000, and 10000. The training and
evaluation dataset sizes used in our modeling experiments,
described in the next section, are shown in Table II. Note that
the size of the target datasets is only 10% of the size of the
source dataset.
Remark 1. In all transfer learning experiments, we use the
same settings as were used to train the GFM, namely, batch
size 2 and learning rate 2 x 1074 We settled upon these
training parameters after several experiments.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate our code-aware GFM framework
and present results of its application to the two RR constrained
codes described in the previous section. We use two evaluation
criteria, one to measure the accuracy of the reconstructed
results, and the other to measure the training efficiency of the
transfer learning procedure. The former is based on probability
density functions (PDFs) of the reconstructed voltages, and the
latter is based on the number of training iterations required
to achieve accurate reconstruction. The evaluation metrics are
defined in more detail below.

1) Probability density functions (PDFs): The read voltage
PDFs are useful in optimizing read thresholds, gauging
cell wear, and estimating bit error rates (BERs). For
each P/E cycle, we estimate the conditional PDFs by
the frequency of occurrence of measured voltage levels
for each given program level. In addition to visually
comparing the measured PDFs and reconstructed PDFs,
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TABLE III

MODELING EXPERIMENTS AND TRAINING ITERATIONS
Initialization (I) ~ Training (T)  Evaluation (E) Igf;‘l‘lg‘ri
Random PR PR,WL,2D 5.25 x 10°

WL WL 6 x 10*
2D 2D 6.75 x 10*
Pre-trained WL WL 7.5 x 103
2D 2D 7.5 x 103

we compute the total variation distance between the two
PDFs and compare the associated bit error rates (BERS)
on the lower, middle, and upper pages.

2) Training iterations: The number of training iterations
needed to achieve satisfactory results can be used as a
metric to evaluate the “speed” of the transfer learning
process. A training iteration is defined as a single update
of the model weights during training. For example,
in [28], training the GFM network takes 7 epochs with a
batch size of 2 using random programming arrays. With
the training dataset size in Table II, the total number of
training iterations is 5.25 x 10°.

A. Experimental Settings

We conducted a matrix of experiments to evaluate the
effectiveness of transfer learning in code-aware GFM, as
summarized in Table III. (See discussion below for an
explanation of the abbreviations in the table.) The training
iterations are shown in the last column of the table. For
convenience, we use a shorthand notation to distinguish the
experiments according to the training dataset ("T"), the network
initialization ("I"), and the evaluation dataset ("E").

The training dataset corresponded to program arrays based
on either pseudo-random data ("T-PR"), Sy -constrained data
("T-WL"), or Syp-constrained data ("T-2D"). Regarding the
training mode, training started either from randomly initialized
network weights ("I-Rnd") or pre-trained weights ("I-Pre")
from T-PR training.

The evaluation mode examined reconstructed voltages
generated by pseudo-random data ("E-PR"), Swy-constrained
data ("E-WL"), or Spp-constrained data ("E-2D").
Comparisons are made to measurements ("M") from the
TLC chip, derived from the pseudo-random dataset ("M-PR"),
the Sy -constrained dataset ("M-WL"), or the S;p-constrained
dataset ("M-2D").

We present results for the following experiments,

1) M-PR, M-WL, M-2D: These represent baseline
experimental measurements from several 1X-nm
flash blocks programmed with pseudo-random, WL-
constrained, or 2D-constrained data.

2) I-Rnd / T-PR / E-(PR,WL,2D): We train GFM with
random initial network weights using the pseudo-random
training dataset and evaluate with pseudo-random data,
WL-constrained data, and 2D-constrained data.

3) I-Pre / T-WL / E-WL: We initialize GFM with pre-
trained weights from the previous training experiment (I-
Rnd/T-PR), fine-tune the network using WL-constrained
data, and evaluate the model with WL-constrained data.

4) I-Rnd / T-WL / E-WL: We train GFM with random
initial network weights using the WL-constrained
training dataset and evaluate with WL-constrained data.

TABLE IV
TOTAL VARIATION DISTANCE

P/E Cycle Count 4000 7000 10000

drv (Pupr, ProdmprREPR)  0.0688  0.0650  0.0687
drv (PuwL, Ppemwiewr)  0.0696  0.0535  0.0505
dry (Pm-wL, Prrogmwiewe) — 0.1421 0.1300  0.1020
drv (Puwr, PiragrrprEwL)  0.1068  0.1116  0.1181
drv (Pv-2p, Pi-pre/m-2p/E-2D) 0.1007  0.0771 0.0908
drv (Pvi-2D, PiRnd/T-PR/E-2D) 0.1470  0.1330 0.1364

— 0 —_— 2 — 4 _ —— Modeling

Measured

Probability Density

)

5
10

Normalized Voltage Level

Fig. 3. PDF plots in logarithmic scale for measured and regenerated voltage
levels (experiment I-Pre/T-WL/E-WL) at 7000 P/E cycles. The visualization
is based on dataset {(PLSWL, VLSWL P/E)}.

5) I-Pre/ T-2D / E-2D: We initialize GFM with pre-trained
weights from the first training experiment (I-Rnd/T-PR),
fine-tune the network using the 2D-constrained dataset,
and evaluate the model with 2D-constrained data.

6) I-Rnd / T-2D / E-2D: We train GFM with random
initial network weights using the 2D-constrained training
dataset and evaluate with 2D-constrained data.

B. PDF Analysis

We now qualitatively and quantitatively analyze the
reconstructed voltages from code-aware GFM. First, we
visualize the PDFs of the measured and reconstructed read
voltages. Fig. 3 shows the normalized conditional PDFs of
the eight TLC program levels in the reconstructed data for
experiment I-Pre/T-WL/E-WL at 7000 P/E cycles. (The plots of
voltage PDFs for this experiment at 4000 and 10000 P/E cycles
yield qualitatively similar results.) In this log-linear plot, the y-
axis represents the probability density and the x-axis represents
the read voltages using an arbitrary scale.

Note that the Sy code constraint on lower pages induces
a smaller probability of occurrence for PLs 5, 6,7, which is
approximately % of that of PLs 1,2,3,4. Qualitatively, the
PDFs generated by code-aware GFM (solid curves) closely
match the measured PDFs (triangle markers). Similarly, in
experiment I-Pre/T-2D/E-2D, the visualization of the model-
generated PDFs accurately reflects the measured PDFs and
their dependence on P/E cycles.

Next, we evaluate the PDF results of the code-aware GFM
experiments quantitatively using total variation (TV) distance,
dry. This distance provides a measure of the difference
between the real (measured) distributions P,.,; and the fake
(reconstructed) distributions Prgre,

1
dTV(Preala Pfake) = 5 Z |Preal (VL) - Pfake (VL)|
VL
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Fig. 4. BER comparisons: the leftmost (resp., rightmost) three sub-figures show lower, middle, and upper page BERs for Swy-coded (resp., Szp-coded) data.

The numerical results are shown in Table IV. We find that pre-
training helps code-aware GFM produce distributions with the
least TV distance in both Sy -coded and S,p-coded scenarios.

It is also important to consider the tails of the distributions,
which have a major impact on the channel error rate. As
discussed in Section II-A, cell level errors are determined by
comparing the read voltages to the read thresholds, and the
resulting bit errors on pages arise from the mapping between
cell levels and their corresponding 3-bit binary logic values.
We compared measured and reconstructed page bit error rates
(BERs) from the ten experiments described in Section IV-A.
The results are shown in Fig. 4.

The leftmost three sub-figures in Fig. 4 pertain to the
lower, middle, and upper pages in the Swr-coded case,
respectively. The six curves in each plot correspond to
the experimental measurements M-PR and M-WL, the
GFM modeling experiments I-Rnd/T-PR/E-PR and I-Rnd/T-
PR/E-WL, and the code-aware GFM experiments [-Rnd/T-
WL/E-WL and I-Pre/T-WL/E-WL using the Syp dataset,
comparing training “from scratch” and with pre-trained
network parameters.

The M-PR and M-WL curves show that Syp coding
decreases the measured BER on all three pages at all three
measured P/E cycles, confirming the observations in [5]. The
GFM experiment I-Rnd/T-PR/E-PR using random initialization
along with training and evaluation on pseudo-random data
reconstructs page BERs quite accurately at all three P/E cycles,
a finding that is consistent with [28]. However, when this
GFM network is evaluated using the Swp-coded dataset in
experiment [-Rnd/T-PR/E-WL, we see that the reconstructed
BERs are significantly higher than the measured BERs in the
M-WL curve at all three P/E cycles. This suggests that the
pseudo-random dataset does not sufficiently capture all of the
characteristics of the coded channel.

The final two curves compare the effects of random
initialization and pre-training in the code-aware GFM networks
obtained by training and evaluating on the Sy dataset. We
see that the two experiments yield very similar reconstructed
BERs, with the exception of the lower page BER at 4000
P/E cycles, where random initialization yields a noticeably
more inaccurate estimate. Overall, the reconstructed BERs
qualitatively track the measured M-WL results reasonably well,

although both models overestimate BER in lower pages at all
P/E cycles, as well as in middle pages at 4000 P/E cycles.

The rightmost three sub-figures in Fig. 4 show the
corresponding BER results for lower, middle, and upper pages
in the Sgp-coded case, respectively. (The BERs of I-Rnd/T-
PR/E-2D for lower and middle pages are at least 3 x 1072;
thus, the curves are not shown in the sub-figures.) The overall
conclusions drawn from these curves are similar to the Swr-
coded case, although we see that the GFM trained on the
pseudo-random source dataset does an even worse job of
learning the Spp-coded channel.

C. Iteration Number Analysis

The number of training iterations used in the experiments
was determined by comparing the reconstructed PDFs to the
corresponding measured PDFs using TV distance.

From Table III, we find that the number of iterations required
to fine-tune the code-aware GFM network from the pre-trained
model, 7.5 x 103, is only 12.5% (resp., 11.11%) of the number
required when training from scratch using the target Sy (resp.,
Ssp) dataset, namely 6 x 10% (resp., 6.75 x 10%).

Specifically, when training from scratch using the smaller
target dataset, we observed that in the early training iterations
the reconstructed read voltage PDFs do not accurately capture
temporal P/E cycle variations and tail behavior. On the other
hand, adaptation from a single GFM network pre-trained with
a sufficiently large source dataset of pseudo-random data
provides enough channel knowledge to significantly accelerate
the learning process from both of the smaller target datasets.

V. CONCLUSION

This paper presents an application of transfer learning
to generative modeling of read voltages in flash memory
channels. We fine-tune a generative model pre-trained with
a large source dataset of pseudo-random spatio-temporal
data using much smaller code-constrained target datasets. By
comparing measured and reconstructed read voltage probability
distribution functions and page bit error rates in a commercial
TLC flash memory, we demonstrate that pre-training can
accelerate learning for multiple generative modeling tasks even
when the amount of target training data is very limited. These
results motivate further investigation into the use of transfer
learning in applications of machine learning to data storage
and communication systems.
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