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Abstract—Switch codes, first proposed by Wang et al., are
codes that are designed to increase the parallelism of data writing
and reading processes in network switches. A network switch
consists of n input ports, k output ports, and m banks which
store new arriving packets from the input ports in each time
slot, called a generation. The objective is to store the packets in
the banks such that every request of k packets by the output
ports, which can be from previous generations, can be handled
by reading at most one packet from every bank.

In this paper we study a new type of switch codes that can
simultaneously deliver large symbol requests and good coding
rate. These attractive features are achieved by relaxing the
request model to a natural sub-class we call consecutive requests.
For this new request model we define a new type of codes
called consecutive switch codes. These codes are studied in both
the computational and combinatorial models, corresponding to
whether the data can be encoded or not. We present several
code constructions and prove the optimality of one family of
these codes by providing the corresponding lower bound. Lastly,
we introduce a construction of switch codes for the case n = k,
which improves upon the best known results for this case.

I. INTRODUCTION

Switch codes were first studied a few years ago by Wang
et al. in [14] for networking applications. A network switch
is a device used to connect between a computer network
and external devices. The main task of the network switch
is to process and forward packets from the input ports to
their designated output ports. Assume that in each time slot,
called a generation, each input port writes one data packet
and each output port can read one packet. Upon arrival, the
packets from the input ports are stored in a switch fabric
comprising multiple memory banks. Then, the output ports
read packets from these banks, while each bank can serve
exactly one output port. Since the output ports can request
packets from previous generations it is common to increase
the number of banks in the network switch in order to increase
the parallelism in the data writing and reading processes.

Switch codes are a coding scheme which enables one to
encode the input packets into the banks such that the packet
requests by the output ports can be answered efficiently. Since
the requests of the output ports are arbitrary, it is intuitively
required that each packet, after encoded to the banks, will have
multiple options to be read from the banks. Mathematically
speaking, a switch code is required to satisfy the following
property. Assume there are n input ports, k output ports, and
m banks. In each generation the n packets from the input ports
are encoded into m packets which are stored in the banks.
Then, in each generation, every request from the output ports
for k packets, which may come from previous generations,

has to be answered by reading at most one packet from each
bank.

Switch codes are associated with the family of codes called
batch codes. Batch codes were first studied in the previous
decade by Ishai et al. [8] and recently in [10], [11]. A batch
code encodes n information symbols into m buckets such
that any request for k information symbols can be answered
by reading at most one, and more generally t, symbols from
each bucket. If the set of k symbols can have repetitions and
each bucket stores a single symbol, then the batch code is
called a multi-set primitive batch code.

In the original definition of batch codes the packet requests
from the output ports are not constrained and can be from any
previous generation. However, from a practical point of view it
is reasonable to assume that packet requests in each generation
are restricted to some ` previous consecutive generations. This
motivates us to study a new family of switch codes, called
consecutive switch codes, which follow this restriction on
the packet requests. A related family of codes was studied
in [4]. We study two classes of these codes, namely, combi-
natorial and computational consecutive switch codes. In the
combinatorial class, it is assumed that the packets stored in
the banks are simply copies of the input packets (that is, they
are not coded), while in the computational class the packets
can be encoded. We note that the combinatorial model follows
the corresponding one for batch codes which was extensively
studied in the literature, see e.g [1], [2], [3], [12], as well as
the combinatorial model of switch codes which was explored
when switch codes were first proposed in [14].

The rest of the paper is organized as follows. In Section II,
we formally define switch codes and batch codes and show
the equivalence between switch codes and multi-set primitive
batch codes. In Section III, we formally define consecutive
switch codes and report on constructions of computational
consecutive switch codes. In Section IV, we give constructions
and a bound for combinatorial consecutive switch codes.
Lastly, in Section V we give a construction of switch codes
(and hence also of batch codes) for the case n = k, which
improves upon the state of the art results for this case. Due
to the lack of space, some of the proofs of the results in the
paper are omitted.

II. PRELIMINARIES

In this section we present some of the definitions and
notation used throughout this paper. In particular, we formally
define switch codes and describe their connection to batch
codes [8].
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For a positive integer n, denote by [n] the set of n integers
{1, 2, . . . , n}. For two integers a, b, where a < b, denote by
[a, b] the set of b−a+1 integers {a, a+1, . . . , b}. A multi-set
M = 〈i1, i2, . . . , ik〉 over [n] of size k is a collection of k
elements of [n] with repetition, i.e., an element can appear in
M multiple times.

An (m,n)(m,n)(m,n)-code, C, over Fq is a subset of Fmq of size qn. An
encoder for C is an injection from Fnq to C. Throughout this
paper, we assume that a code C is equipped with an encoder,
which will be denoted by EC . For a string x ∈ Fnq and for
an integer d, let Rd : Fnq → Fdnq be the encoder of the d-
repetition code which encodes x to the concatenation of d
copies of x.

Definition 1. An (n, k,m, t)q(n, k,m, t)q(n, k,m, t)q-switch code is an infinite
sequence {CT }T≥1 of (m,n)-codes over Fq such that the
following hold.

1) For every T ≥ 1, a string x(T ) ∈ Fnq is encoded by ECT
to a string c(T ) ∈ Fmq .

2) For every set of k pairs I =
{(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [k] × N, there
exists a multi-set of indices

J =

〈 j1,1, j1,2, . . . , j1,d1 ,
j2,1, j2,2, . . . , j2,d2 ,

...
jk,1, jk,2, . . . , jk,dk

〉

over [m], depending only on I , such that for every
1 ≤ r ≤ k, the symbol x(Tr)

ir
can be recovered from

c
(Tr)
jr,1

, c
(Tr)
jr,2

, . . . , c
(Tr)
jr,dr

, and every 1 ≤ j ≤ m appears at
most t times in J .

The set I is called the request set, whereas the multi-set J is
called the recovery set for the request set I .

Concretely, a switch code encodes row-vector inputs into
rows of a semi-infinite matrix and is able to recover any k
symbols from all inputs by accessing at most t symbols from
each of the columns {c(T )

j }T≥1, 1 ≤ j ≤ m. The rate of the
switch code is defined by R = n/m. By definition, a switch
code is specified by an infinite sequence of codes and hence
it might be very complicated to construct good codes, i.e.,
codes with high rate. Fortunately, as the next lemma states, it
is enough to consider only switch codes that are obtained by
repeating the same code, for every time instance T ≥ 1. More
precisely, for any set of parameters for which a switch code
exists, there also exists a switch code of the same parameters,
{CT }T≥1, such that CT = C, for all T ≥ 1.

Lemma 1. If there exists an (n, k,m, t)q-switch code
{CT }T≥1 then there exists an (m,n)-code C over Fq such
that the infinite sequence of codes {C̃T }T≥1, where C̃T = C,
for all T ≥ 1, forms an (n, k,m, t)q-switch code.

Two subsequences u = wi1wi2 . . . wir and v =
wj1wj2 . . . wjs of a string w ∈ Fmq are called disjoint if
{i1, i2, . . . , ir} ∩ {j1, j2, . . . , js} = ∅. In [8], Ishai et al.
proposed multi-set batch codes.

Definition 2. An (n,N, k,m, t)q(n,N, k,m, t)q(n,N, k,m, t)q-multi-set batch code en-
codes a string x ∈ Fnq into the concatenation of some m-
strings y = y1y2 . . . ym, yi ∈ F∗q , for all 1 ≤ i ≤ m, of total

x
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1 x

(1)
2 x

(1)
k

· · · y
(1)
1 y

(1)
2 y

(1)
m−k· · ·

x
(2)
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(2)
2 x

(2)
k

· · · y
(2)
1 y

(2)
2 y

(2)
m−k· · ·

x
(T )
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(T )
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(T )
k

· · · y
(T )
1 y

(T )
2 y

(T )
m−k· · ·

Systematic Part Parity Part
Fig. 1: Systematic (k,m)q-switch code. For every k pairs
(i1, T1), (i2, T2), . . . , (ik, Tk), the entries x

(T1)
i1

, x
(T2)
i2

, . . . , x
(Tk)
ik

can be recovered by accessing at most one symbol from each column.

length N , such that for every multi-set M = 〈i1, i2, . . . , ik〉
over [n] of size k, the k symbols xi1 , xi2 , . . . , xik can be
recovered from y, where the following conditions hold.

1) For every 1 ≤ j ≤ m, at most t symbols from each of
the strings yi are accessed.

2) For every 1 ≤ r < s ≤ k, the two subsequences of
y = y1y2 . . . ym that are used to recover xir and xis ,
respectively, are disjoint.

3) The the k position sets of the subsequences of y that are
accessed depend only on M.

In [8] the authors defined the general concept of batch
codes, which are by default not multi-set batch codes. How-
ever, we will only consider multi-set batch codes, and hence-
forth we refer to multi-set batch codes as batch codes for
short. In [8] the authors also consider the concept of primitive
batch code, in which each of the m strings to which the input
is encoded is of length one, i.e. yi ∈ Fq , for all 1 ≤ i ≤ m,
and hence, N = m. Even though the following connection
between batch codes and switch codes is somewhat known,
we state it here for the completeness of the results in the paper.

Lemma 2. A code C is an (n,N = m, k,m, t = 1)q-primitive
batch code if and only if it is an (n, k,m, t = 1)q-switch code.

In this paper we will consider only switch codes for which
n = k and t = 1, and we denote these codes by (k,m)q-
switch codes. This case was also studied in [8], [13], [14],
however most of the constructions in [8] (and also all the
constructions in [11]) apply to cases in which k is much
smaller than n. The case n = k is motivated by the need
to equate the switch write and read rates, and t = 1 models
a simple memory delivering one data packet per time unit.
Note that in this case the recovery sets become sets rather
than multi-sets. By Lemma 1, we can restrict our discussion to
switch codes that are formed by only one code C. Henceforth,
an (m, k)-code over Fq will be called a (k,m)q-switch code
if the infinite sequence of codes {CT = C}T≥1 is a (k,m)q-
switch code. Furthermore, we mostly consider systematic
switch codes, i.e. we assume that for all x ∈ Fkq , EC(x) = xy,
for some y ∈ Fm−kq (see Figure 1).

III. CONSECUTIVE SWITCH CODES

Primitive batch codes and switch codes are equivalent con-
cepts as Lemma 2 states, yet there is a significant difference
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between these two concepts. Unlike batch codes, switch codes
introduce a time-dimension which motivates us to define a
variation of switch codes, which we refer to as consecutive
switch codes. Consecutive switch codes are designed for
a natural sub-class of the request set I in Definition 1.
As for switch codes, these codes are capable of retrieving
k information symbols, from different time instances, by
accessing at most t symbols from each column. However, for
`-consecutive switch codes the k information symbols must
belong to `-consecutive time instances. The motivation for this
variation of switch codes is that in practice two input vectors
that were encoded in a short time interval store correlated
data, and therefore are likely to be of interest to the same
user. Restricting the switch codes to this natural sub-class of
requests allows us to increase the rate dramatically, and thus
to design practical-rate codes that behave like switch codes
for the more common queries of information symbols.

Definition 3. An (n, k,m, t)q(n, k,m, t)q(n, k,m, t)q-`̀̀-consecutive switch code is an
infinite sequence of codes {CT }T≥1 of (m,n)-codes over Fq
such that the following hold.

1) For every T ≥ 1, a string x(T ) ∈ Fnq is encoded by ECT
to a string c(T ) ∈ Fmq .

2) For every set of k pairs I =
{(i1, T1), (i2, T2), . . . , (ik, Tk)}, if there exists T̃
such that {T1, T2, . . . , Tk} ⊆ {T̃ , T̃ + 1, . . . , T̃ + `− 1},
then there exists a recovery set

J =

〈 j1,1, j1,2, . . . , j1,d1 ,
j2,1, j2,2, . . . , j2,d2 ,

...
jk,1, jk,2, . . . , jk,dk

〉

over [m], depending only on I , such that for every
1 ≤ r ≤ k, the symbol x(Tr)

ir
can be recovered from

c
(Tr)
jr,1

, c
(Tr)
jr,2

, . . . , c
(Tr)
jr,dr

, and every 1 ≤ j ≤ m appears at
most t times in J .

As for general switch codes, we will consider only (n =
k, k,m, t = 1)q-`-consecutive switch codes and we denote
these codes by (k,m)q-`-consecutive switch codes. Notice
that for general switch codes, Lemma 1 states that instead
of considering an infinite sequence of codes, it is enough
to consider only one code. Unfortunately, the arguments that
prove Lemma 1 do not apply to `-consecutive switch codes,
since the fact that an infinite sequence of codes {CT }T≥1 is an
(n, k,m, t)q-`-consecutive switch code does not imply that a
subsequence of {CT }T≥1 is also an (n, k,m, t)q-`-consecutive
switch code. However, for simplicity we will consider only
(k,m)q-`-consecutive switch codes that are defined by their
first ` codes, C1, C2, . . . , C`, which are extended periodically,
i.e., for every T̂ ≥ 1, CT̂ = CT , where T̂ ≡ T (mod `) and
1 ≤ T ≤ `. Therefore, throughout this paper, an `-consecutive
switch code is a sequence of ` codes {CT }T∈[`]. Figure 2
(a) illustrates a (4, 6)2-2-consecutive switch code in which
C1 6= C2. We remark that this code is optimal, i.e. there does
not exist a (4, 5)2-2-consecutive code. Moreover, there does
not exist a (4, 6)2-2-consecutive switch code in which C1 = C2
and C1 is a linear code.

A (k,m)q-`-consecutive switch code, {CT }T∈[`], is called
combinatorial if there exists a matrix F = (FT,j)T∈[`], j∈[m]

x
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3
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4

F =

(
1 2 3 4 1 2 3
1 2 3 4 4 4 4

)

(a)

(b)

Fig. 2: Examples of 2-consecutive switch codes. (a) A (4, 6)2-2-
consecutive switch code. (b) A combinatorial (4, 7)-2-consecutive
switch code and its index matrix F ∈ [4]2×7.

that takes values in [k], such that for every T ∈ [`],
c(T ) = ECT (x(T )) = x

(T )
FT,1

x
(T )
FT,2

. . . x
(T )
FT,m

. The matrix F
is called the index matrix of the switch code. Note, that
{CT }T∈[`] is completely determined by its index matrix F .
Intuitively, a combinatorial `-consecutive switch code does
not use any coding to encode a string x, only copies of the
entries of x in some order. Therefore, the alphabet size q
does not play an important role in the combinatorial case
and, henceforth, we omit the subscript q from the notation
of such codes and assume that the symbols are taken from
some alphabet Σ. A consecutive switch code in which the
symbols can be encoded, as opposed to only repeated, is called
computational; in particular, a combinatorial switch code is
by definition also a computational switch code. By default, a
consecutive switch code is not combinatorial. For two positive
integers k and `, ` ≤ k, let A(k, `) be the smallest integer m
for which a combinatorial (k,m)-`-consecutive switch code
exists. A combinatorial (k,m)-`-consecutive switch code is
called optimal if m = A(k, `). The simplest combinatorial
(k,m)-`-consecutive switch code is the `̀̀-repetition switch
code in which every code C(T ) encodes a string x ∈ Σk

into R`(x), and thus A(k, `) ≤ `k. In Section IV we present
a construction of combinatorial consecutive switch codes for
every 2 ≤ ` ≤ k. In particular, we show that A(k, 2) = 2k−1,
while A(k, `) is much smaller than k` for ` ≥ 3. Figure 2 (b)
shows a combinatorial (4, 7)-2-consecutive switch code for
which m = 7 < 8 = `k and its index matrix. This code is
also optimal. Lastly, for computational 2-consecutive switch
codes we have the following theorem.

Theorem 1. There exists a (k,m)q-2-consecutive switch code,
where m = 1.5k and m < q = O(m). Moreover, there exists a
(k,m)2-2-consecutive switch code, where m = 2k−blog2 kc.

IV. COMBINATORIAL CONSECUTIVE SWITCH CODES

In this section we construct combinatorial (k,m)-`-
consecutive switch codes, for every 2 ≤ ` ≤ k and also show
a lower bound on A(k, 2). As mentioned above, we construct
only combinatorial `-consecutive switch codes of period `.
Hence, when constructing such codes, we only specify the first
` codes C1, C2, . . . , C`, which are used periodically, or equiva-
lently we specify the switch code’s index matrix F ∈ [k]`×m.

We start with the simplest case in which ` = 2.

Construction 1. Let F ∈ [k]2×2k−1 be defined by

F =

(
1 2 · · · k 1 2 · · · k − 1
1 2 · · · k k k · · · k

)
.

Theorem 2. Let {CT }T∈[`] be the combinatorial switch code
whose index matrix is the matrix F from Construction 1. Then
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{CT }T∈[`] is a (k,m)-2-consecutive switch code, with m =
2k − 1.

Construction 1 provides us with 2-consecutive switch codes
in which m = 2k − 1, i.e., m is only one less than the
length of the trivial 2-repetition switch code. The next theorem
states that the code from Construction 1 is optimal, namely
A(k, 2) = 2k − 1.

Theorem 3. If {CT }T≥1 is a combinatorial (k,m)-2-
consecutive switch code, then m ≥ 2k − 1.

Proof. Let F be the index matrix of {CT }T∈[2] and let
G(U, V,E) be the bipartite graph whose vertex sets are
U = [k] and V = [k] and whose edge set E consists of
all the edges of the form ej = (F1,j , F2,j), j ∈ [m]. (E
may contain parallel edges.) In particular, |E| = m. Since
{CT }T≥1 is a (k,m)-2-consecutive switch code, it follows that
for every set of k pairs I = {(i1, T1), (i2, T2), . . . , (ik, Tk)},
where ir ∈ [k] and Tr ∈ {1, 2}, for all r ∈ [k], there exist
k distinct indices j1, j2, . . . , jk such that, for all r ∈ [k],
FTr,jr = ir. This implies that for all S1 ⊆ U and S2 ⊆ V ,
where s = |S1| + |S2| ≤ k, there exist s edges (u, v), such
that u ∈ S1 or v ∈ S2.

Assume to the contrary that m ≤ 2k−2. We will show the
existence of S1 ⊆ U and S2 ⊆ V , where s = |S1|+ |S2| ≤ k,
such that the number of edges (u, v) for which u ∈ S1 or
v ∈ S2 is less than s, and from this we derive a contradiction.

Since |E| = m < |U | + |V | − 1, it follows
that G contains at least d ≥ 2 connectivity compo-
nents, G1(U1, V1, E1), G2(U2, V2, E2), . . . , Gd(Ud, Vd, Ed).
We claim that at least two of these connectivity components
are trees. Indeed, if none of these connectivity components
is a tree, then |Ei| ≥ |Ui| + |Vi| for all 1 ≤ i ≤ d and
|E| ≥ 2k. If only one connectivity component is a tree then
|E| ≥ 2k − 1. Assume w.l.o.g. that G1 and G2 are trees
and |U1| + |V1| ≤ |U2| + |V2|. Let S1 = U1 and S2 = V1.
Then s = |S1| + |S2| ≤ (|U | + |V |)/2 ≤ k. Notice, that
since G1 is a connectivity component, it follows that for
every edge (u, v) ∈ E, u ∈ S1 if and only if v ∈ S2, and
there exist exactly |E1| edges that connect an element of S1

with an element of S2. Since G1 is a tree, it follows that
|E1| = |S1|+ |S2|−1 < s and we derive a contradiction.

Given a matrix F ∈ [k]`×m we define the index graph
of F to be the bipartite graph GF (U, V,E), with vertex sets
U = [k] and V = [m], and an edge set E that consists of all
the pairs of the form (i, j) ∈ U × V , such that FT,j = i, for
some T ∈ [`]. Intuitively, the set V corresponds to the columns
of the matrix F , the set U corresponds to all possible entries
of F , and an edge (i, j) indicates that i appears in the jth
column of F . Note, that E may contain parallel edges if i
appears more than once in the jth column of F . Furthermore,
the graph GF has the property that the degree of each vertex
in V is exactly `. An example of a matrix F ∈ [6]3×4 and
its index graph are given in Figure 3. Note, also that if F
is the index matrix of a combinatorial `-consecutive switch
code with period `, then the edge (i, j) ∈ E implies that
c
(T )
j = x

(T )
i , for some T ∈ [`].

Given a bipartite graph G(U, V,E), for every S ⊆ U we
define N(S) ⊆ V to be the set of all vertices in V that are
connected by an edge to some vertex in S.

F =

 3 4 5 2
2 3 4 5
1 1 6 6

 1 2 3 4 5 6

1 2 3 4

Fig. 3: Example of a matrix F ∈ [6]3×4 and its index graph, where
the vertex sets U and V are represented by the circles and squares,
respectively. Note, that this graph is also a (6, 4, 3, 3)-matching
graph.

Definition 4. A bipartite graph G(U, V,E) is called a
(k, ν, `, r)(k, ν, `, r)(k, ν, `, r)-matching graph if the following hold.

1) Its vertex sets are of sizes |U | = k and |V | = ν.
2) The degree of each vertex in V is `.
3) If S ⊆ U is of size s ≤ r then |N(S)| ≥ s.

By Hall’s theorem [5], condition (3) is equivalent to the
condition that for every S ⊆ U of size s ≤ r there exists a
matching, i.e., there exists s disjoint edges from S to V .
Figure 3 illustrates a (6, 4, 3, 3)-matching graph. Matching
graphs are, in a sense, a special type of expander graphs [6].
However, we are not aware of any result on expander graphs
that fits this description of matching graphs. The study of
bipartite expander graphs focuses on the setting in which the
degree restriction in item (2) is either omitted or imposed on
the vertex set U . Moreover, the neighborhood of S ⊆ U is
required to “expand” S, i.e. to be much larger than the set S,
and not only to be at least of the same size as S, as required
in item (3).

We will show how matching graphs can be useful to
construct combinatorial `-consecutive switch codes, but first
we need one more definition. The row cyclic shift mapping
RS : [k]`×m → [k]`×m is defined by (RS(F ))i,j

def
=Fi−1,j ,

for i ∈ [2, `], and (RS(F ))1,j
def
=F`,j , for all j ∈ [m]. Define

RS0(F )
def
=F and for 1 ≤ i ≤ `−1, define the iiith row cyclic

shift of a matrix F by

RSi(F )
def
= RS ◦RS ◦ · · · ◦RS︸ ︷︷ ︸

i times

(F ).

Construction 2. Let D ∈ [k]`×ν be a matrix whose index
graph is a (k, ν, `, k/2)-matching graph and let m = k +

(`−1)ν. Define the matrix F (SC)def= (F1|F2| . . . |F`) ∈ [k]`×m,
where F1 ∈ [k]`×k is the matrix

F1
def
=


1 2 . . . k
1 2 . . . k
...

...
...

...
1 2 . . . k


and for all 2 ≤ b ≤ `, Fb

def
=RSb−2(D).

Theorem 4. Let {CT }T∈[`] be the combinatorial switch code
whose index matrix is the matrix F (SC) from Construction 2.
Then {CT }T∈[`] is a (k,m)-`-consecutive switch code.

Example 1. Let

D =

 3 4 5 2
2 3 4 5
1 1 6 6
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be the matrix from Figure 3, whose index graph is a
(6, 4, 3, 3)-matching graph. Then

F =

 1 2 3 4 5 6 3 4 5 2 2 3 4 5
1 2 3 4 5 6 2 3 4 5 1 1 6 6
1 2 3 4 5 6 1 1 6 6 3 4 5 2


is the index matrix of a combinatorial (6, 4)-3-consecutive
switch code.

In order to apply Theorem 4 we must construct a
(k, ν, `, k/2)-matching graph. To this end we use the matrix
M(ω, δ) ∈ [ω]δ×ω , δ ≤ ω, defined by

1 2 · · · δ δ + 1 · · · ω − 1 ω
2 3 · · · δ + 1 δ + 2 · · · ω 1
...

...
...

...
...

...
...

...
δ − 1 δ · · · 2δ − 2 2δ − 1 · · · δ − 3 δ − 2
δ δ + 1 · · · 2δ − 1 2δ · · · δ − 2 δ − 1

 .

Given a matrix M = (Mi,j) ∈ [ω]δ×ω and a positive integer
α, define the matrix M + α ∈ [1 + α, ω + α]δ×ω , where
(M + α)i,j = Mi,j + α, for all i ∈ [δ] and j ∈ [ω].

Construction 3. Let k = (`−2)f2+(`−2)f , for some positive
integer f , ω = (`− 2)f , and δ = `− 1. Let D ∈ [k]`×(`−2)f

2

be defined by

D
def
=

(
M1 M2 · · · Mf

x x · · · x

)
,

where x = (k−ω+1, k−ω+2, . . . , k) and for all 1 ≤ j ≤ f ,
Mj = (M(ω, δ) + (j − 1)ω) ∈ [(j − 1)ω + 1, jω]δ×ω .

Theorem 5. The index graph of the matrix D from Construc-
tion 3 is a (k, k − (`− 2)f, `, k/2)-matching graph.

Combining Theorems 4 and 5 we conclude the following.

Corollary 1. If k = (`− 2)f2 + (`− 2)f , for some positive
integer f , then

A(k, `) ≤ `k − (`− 1)(`− 2)f ≈ `k − (`− 1)
√

(`− 2)k.

V. CONSTRUCTIONS OF BINARY SWITCH CODES

In this section we consider the conventional definition of
switch codes (which are equivalent to primitive batch codes).
As mentioned before, (k,m)2-switch codes were studied
in [8], [13], [14]. A construction of (k,m)2-switch codes,
where m = k2/ log2 k was given in [13]. This construction
is optimal in the setting in which each parity check bit is
restricted to be the sum of at most log2 k information bits.
In [8], a construction of (k,m)2-switch code with m = klog2 3

was presented. Our main result in this section is a construction
of (k,m)2-switch codes, where m ≈ 2k1.5. Our construction
significantly improves upon the results in [8], [13] and to
the best of our knowledge, it is the best known construction
of a (k,m)2-switch code. We achieve this result by using
the concept of one-step majority logic decodable code [9,
pp. 273–275]. The connection between this class of codes and
distributed storage was first observed in [7]. We show how
such codes can be used to construct (k,m)q-switch codes in
general and then we apply this method to a specific type of
one-step majority logic decodable code.

A (ν, k)-code C over Fq is called a (ν, k)(ν, k)(ν, k)-one-step ma-
jority logic decodable code with availability sss if for every

x ∈ Fkq , and for all i ∈ [k], there exist s disjoint subsequences
of EC(x) that can each recover the symbol xi.

Construction 4. Let s ∈ [k] and let C(s) be a (ν, k)-one-step
majority logic decodable code over Fq with availability s.
Define the (m, k)-code , C, over Fq , where m = sk+bk/sc·ν,
as follows. For every x ∈ Fkq ,

EC(x) = Rs(x)Rbk/sc(EC(s)(x)),

i.e., EC(x) is the concatenation of s copies of x followed by
bk/sc copies of EC(s)(x).

Theorem 6. The code C from Construction 4 is a (k,m)q-
switch code or equivalently C is an (n = k,N = m, k,m, 1)q-
batch code.

Note that, for a given k, Construction 4 provides the
smallest value of m when the availability s is approximately√
k. One such code is a binary cyclic difference-set code. The

proof of the following lemma can be found in [9, p. 293].

Lemma 3. The binary cyclic (ν = 22r + 2r + 1, k = 22r +
2r−3r)-difference-set code is a (ν, k)-one-step majority logic
decodable code with availability s = 2r + 1 ≈

√
k.

Combining Theorem 6 and Lemma 3 we have the following
corollary.

Corollary 2. Let C be the code that is obtained from Con-
struction 4 by setting C(s) to be the binary cyclic (ν =
22r + 2r + 1, k = 22r + 2r − 3r)-difference-set code, with
s = 2r + 1. Then C is a (k,m)2-switch code, where

m = sk +

⌊
k

s

⌋
ν ≈ 2k1.5.
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