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Consecutive Switch Codes
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and Eitan Yaakobi, Senior Member, IEEE

Abstract— Switch codes, first proposed by Wang et al., are
codes that are designed to increase the parallelism of data writing
and reading processes in network switches. A network switch is
required to write n incoming packets and read k outgoing packets
while using m memory banks, each able to write and read one
packet per time unit. Each set of n packets written to the switch
simultaneously is called a generation. The objective is to store the
packets in the banks such that every request of k packets, which
can belong to previous generations, can be handled by reading
at most one packet from every bank. In this paper, we study a
new type of switch codes that can simultaneously deliver large
packet request and good coding rate. These attractive features are
achieved by relaxing the request model to a natural sub-class we
call consecutive requests. For this new request model, we define
a new type of codes called consecutive switch codes. These codes
are studied in both the computational and combinatorial models,
corresponding to whether the data can be encoded or not. For
binary codes, we also study an intermediate model in which a
coded packet is formed by the XOR operations of at most two
input packets. We present several code constructions and prove
the optimality of one family of these codes by providing the
corresponding lower bound. Finally, we introduce a construction
of conventional switch codes, which improves upon the best
known results for the case n = k.

Index Terms—Batch codes, network switch, switch codes.

I. INTRODUCTION

WITCH codes were first suggested a few years ago by
Wang et al. in [20] for networking applications and were
further studied in [4]-[7], [19], and [21]. A network switch
is a device used to connect between a computer network

Manuscript received September 19, 2016; revised April 3, 2017; accepted
July 3, 2017. Date of publication July 19, 2017; date of current version
March 15, 2018. This work was supported by NSF under Grant 1405119.
S. Buzaglo was supported in part by the Weizmann Institute of Science
through the National Postdoctoral Award Program for Advancing Women in
Science, in part by the Center for Memory and Recording Research, University
of California at San Diego, and in part by the ISEF Foundation. Y. Cassuto
was supported by the Israel Science Foundation. E. Yaakobi was supported in
part by the Israel Science Foundation under Grant 1624/14 and the Binational
Science Foundation under Grant 2015816. This paper was presented in part
at the 2016 IEEE International Symposium on Information Theory.

S. Buzaglo is with the Center for Memory and Recording Research,
University of California, San Diego, La Jolla, CA 92093-0401 USA
(e-mail: sbuzaglo@ucsd.edu).

Y. Cassuto is with the Viterbi
Technion—Israel Institute of Technology,
ycassuto@ee.technion.ac.il).

P. H. Siegel is with the Electrical and Computer Engineering Department
and the Center for Memory and Recording Research, University of California,
San Diego, La Jolla, CA 92093-0407 USA (e-mail: psiegel @ucsd.edu).

E. Yaakobi was with the Center for Memory and Recording Research,
University of California, San Diego, La Jolla, CA 92093-0407 USA. He is
now with the Computer Science Department, Technion—Israel Institute of
Technology, Haifa 32000, Israel (e-mail: yaakobi@cs.technion.ac.il).

Communicated by C. Xing, Associate Editor for Coding Theory.

Digital Object Identifier 10.1109/TIT.2017.2728791

Electrical Engineering Department,
Haifa 32000, Israel (e-mail:

and external devices. The main task of the network switch
is to process and forward packets from the input ports to
their designated output ports. Upon arrival, the packets from
the input ports are processed and stored in a switch fabric
comprising multiple memory banks. In each time unit, called
a generation, at most one packet can be written to or read
from each bank. The main problem facing a network switch
is that it needs to fulfill an arbitrary request for packets stored
in its memory, subject to the limitation of physically reading
at most one packet from each bank per time unit.

To address this problem, switch codes form a coding scheme
in which incoming packets are encoded before their write to
the memory, such that it is guaranteed that an arbitrary set
of packets can be decoded while reading at most one physical
packet from each bank. Since the packet requests are arbitrary,
it is intuitively clear that each packet, after being encoded to
the banks, should have multiple options to be read and decoded
from the banks, in order to avoid contention between multiple
requested packets stored in the same bank. Given the current
trend of scaling switches by adding more parallel banks (other
scaling methods have become more challenging and/or costly),
switch codes are likely to become a useful tool to provide
efficient rate scaling by overcoming bank contention between
requested packets. For switch codes to succeed within the
network-switch application, they should be made efficient in
terms of both redundancy and various measures of complexity,
which is the exact aim of this paper. Mathematically speaking,
a switch code is required to satisfy the following property.
Assume there are n input packets, k output packets, and m
banks. In each generation the n input packets are encoded
into m packets which are stored in the banks. Then, in each
generation, the code can fulfill every request for k& packets,
which is specified by the write-generation number and the
packet index in the generation for each of the k packets.

Switch codes are associated with the family of codes called
batch codes. Batch codes were first studied in the previous
decade by Ishai et al. [11] and recently in [13], [15],
[16], [18], and [22]. A batch code encodes n information
symbols into m buckets such that any request for k information
symbols can be answered by reading at most one, and more
generally at most ¢, symbols from each bucket. If the set of
k requested symbols can have repetitions and each bucket
stores a single symbol, then the batch code is called a multi-
set primitive batch code and it is equivalent to a switch
code of the same parameters. For completeness, we prove
this relationship between batch codes and switch codes in
Appendix A. (See also the discussion about this connection
in [21].) Despite this equivalence, there are two distinctions
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between switch codes and the more general batch codes. One
distinction is that switch codes are commonly designed with
k = n, which balances the output and input switching rates.
Correspondingly, all the constructions we propose in this paper
apply to this important case. Another distinction is that they
introduce a time dimension, which inspires us to define and
study a new type of switch codes called consecutive switch
codes. This refinement of the model is shown herein to allow
significant reduction in redundancy over the standard non-
consecutive model.

In the original definition of batch and switch codes the
packet requests are not constrained and can be taken from any
previous generation. However, from a practical point of view it
is reasonable to assume that packet requests in each generation
are restricted to some ¢ previous consecutive generations. This
motivates us to study consecutive switch codes, which follow
this restriction on the packet requests. Another motivation to
study consecutive switch codes is that this model also takes
into account the number of packets that each bank can store.
(A related and stronger type of codes, but closer to the original
model, where for every 1 < r < n, the rth input packet
can be requested from at most ¢ generations, was studied
in [5].) We study two main classes of these codes, namely,
combinatorial and computational consecutive switch codes.
In the combinatorial class, it is assumed that the packets stored
in the banks are simply copies of the input packets (that is,
they are not encoded), while in the computational class the
packets can be encoded. We note that the combinatorial model
of consecutive switch codes extends the corresponding one for
batch codes which was extensively studied in the literature,
see e.g [1]-[3], [17], as well as the combinatorial model
of (non-consecutive) switch codes which was explored when
switch codes were first proposed in [20]. In many scenarios in
practice, the coding schemes are very restricted in the encoding
and decoding complexities they can afford. One such scenario
when the encoder and decoder can only use plain XOR
operations was considered in [19] and [20]. In these papers
the degree of a switch code was defined to be the maximum
number of input packets that participate in the encoding of
each parity packet (using only XOR operations) and limited
degree switch codes were considered. We adapt the concept of
the degree to consecutive switch codes and study such codes
where the degree is two. Note that if the degree is limited to
one then the consecutive switch code is combinatorial and if
the degree is limited to n then the combinatorial switch code
is computational (with no limitation on the degree). Thus, the
limited degree case can be viewed as an intermediate model
between the combinatorial and computational models.

The rest of the paper is organized as follows. In Section II,
we formally define switch codes and batch codes and note
the equivalence between switch codes and multi-set primitive
batch codes. We also present in this section a construction
of switch codes (and hence also of batch codes) for the case
n = k, which improves upon the state-of-the-art results for
this case. In Section III, we formally define consecutive switch
codes. In Section IV, we give constructions and a bound for
combinatorial consecutive switch codes and in Section V we
give a construction of consecutive switch codes in which £ = 2
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and the degree is 2. In Section VI, we construct consecutive
switch codes for the computational class. Finally, Section VII
concludes the paper and lists several open problems.

II. PRELIMINARIES

In this section we present some of the definitions and
notation used throughout this paper. In particular, we formally
define switch codes and describe their connection to batch

codes [11].
For a positive integer n, denote by [n] the set of n integers
{1,2,...,n}. For two integers a, b, where a < b, denote by

[a, D] the set of b —a + 1 integers {a,a+ 1, ..., b}. A multi-
set M = {i1,i2,...,ix} over [n] of size k is a collection of k
elements of [n] with repetitions, i.e., an element can appear in
M multiple times. The set of all natural numbers is denoted
by N and a g element field is denoted by F,.

A (v, p)-code, C, over [F, is a subset of IF; of size g*. An
encoder for C is an injection from F}; to C. Throughout this
paper, we assume that a code C is equipped with an encoder,
which will be denoted by &c. If C is a linear subspace of
]F; (over IF;) then C is called linear and is referred to as a
[v, u]-code.

For a string x € IE‘f; and for a positive integer d, let Ry :
F; — ]FZ” be the encoder of the d-repetition code, which
encodes x to the concatenation of d copies of x.

Definition 1: An (n,k,m,t)g-switch code is an infinite
sequence {Crlr=1 of (v = m, u = n)-codes over Fy, such
that the following hold.

1) For every T > 1, a string xT) ¢ [y is encoded by Ec,
to a string ¢T) Fg-
2) For every set of k different pairs

I ={(i1, 1), (i2, T2), ..., (ix, T)} C [n] x N,

there exists a set J C [m] x N, which depends upon only
the set I, such that:

i. for everyr € [k], the symbol xi(rT’) can be recovered
from {c(,T’)}(- el
j 5, Tred
ii. for every j € [m], J contains at most t pairs of the
form (j, T), for some T > 1.
The set I is called the request set, whereas the set J is called
the recovery set for the request set I.

Concretely, a switch code encodes strings of input packets
into rows of a semi-infinite array and is able to recover any
k packets from all the input strings by accessing at most ¢
packets from each of the columns {C;T)}Tzl, j € [m]. The
rate of the switch code is defined by R = n/m.

Example 1: The following semi-infinite array forms an
(n=2,k=2,m=3,t = 1)-switch code.

If for example I = {(1,1),(1,2)} then J = {(1,1),
(2,2),(3,2)} is a recovery set for I, since x;’ can be recov-
ered from cgl) and xfz) can be recovered from céz) and ng)_

Moreover, J consists of at most one element of the form (j, T),
for each j € [3].

Remark 1: In our definition of switch codes we only
required that the number of symbols read from each column
is at most t, and all read symbols can be used to decode
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each of the requested symbols. An alternative definition, see
e.g. [20], requires that each symbol has a disjoint recovery
set of symbols (in the case of t = 1). However, these two
definitions are equivalent since the requested symbols may

belong to different rows, in which case a requested symbol xl-(T)
can be recovered only by symbols that are read from the Tth
row. Thus, the recovery sets of the different requested symbols
are required to be disjoint as well. We chose the formulation
as in Definition 1 since from the application point of view
every output port can access any of the read symbols. We will
later see that even though the distinction between these two
definitions does not make a difference for switch codes, it does
for consecutive switch codes.

By definition, a switch code is specified by an infinite
sequence of codes and hence it might be very complicated to
construct good codes, i.e., codes with high rate. Fortunately,
as the next lemma states, it is enough to consider only switch
codes that are obtained by repeating the same code for every
generation. More precisely, for any set of parameters for
which a switch code exists, there also exists a switch code
of the same parameters, {C7}7>1, such that Cr = C, for all
T>1.

Lemma 1: If there exists an (n,k,m,t),-switch code
{Cr}r=>1 then there exists an (m, n)-code C over ¥y such that
the infinite sequence of codes {Cr}r=1, where Cr = C, for all
T > 1, forms an (n, k, m, t),-switch code.

Proof: Since there are only finite number of (m, n)-codes
over I, there exists a code C that appears in the sequence
{Cr}r>1 an infinite number of times. The lemma now follows
from the simple observation that any infinite subsequence of
{Cr}T>1 is again an (n, k, m, t),-switch code. [ |

By Lemma 1, we can restrict our discussion to switch
codes that are formed by only one code C. Henceforth, an
(m, n)-code over F, will be called an (n, k,m, t),-switch
code if the infinite sequence of codes {C7 = C}r>1 is an
(n,k, m,t),-switch code.

Two subsequences u = w,w;...w;, and v =
wjiwj, ... wj; of a string w € F' are called disjoint if
{it,i2, ...,y N {j1, ja, ..., Js} = @. In [11], Ishai et al
proposed multi-set batch codes.

Definition 2: An (n, N, k,m,t)g-multi-set batch code
encodes a string X € Fg into the concatenation of some
m Strings Yy = Y1y2...Ym» Yj € deéf Uven Fy for all
J € [m], of total length N, such that for every multi-set M =
{i1,i2, ..., ik} over [n] of size k, the k symbols x;,, X, , . .., X,
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by accessing at most one entry from each column.

can be recovered

can be recovered from 'y, where the following conditions hold.

1) For every j € [m], at most t symbols from each of the
strings y; are accessed.

2) For every 1 < r < s < k, the two subsequences of
Y = Y1Y2...Ym that are used to recover x; and x;,,
respectively, are disjoint.

3) The k position sets of the subsequences of y that are
accessed depend only on M.

In [11] the authors defined the general concept of batch codes,
which are by default not multi-set batch codes. However, we
will only consider multi-set batch codes, and henceforth we
refer to multi-set batch codes as batch codes for short. In [11]
the authors also considered the concept of primitive batch
code, where each of the m strings into which the input is
encoded is of length one, i.e. y; € F, for all j € [m], and
hence N = m. Even though the following connection between
batch codes and switch codes is somewhat known, we state it
in the following lemma for the completeness of the results in
the paper and provide the proof in Appendix A.

Lemma 2: For k < n, a code C is an (n,N = m,k,m,
t = 1)g-primitive batch code if and only if C is an (n, k,m,
t = 1)4-switch code.

In this paper we will consider only switch codes for
which n = k and t+ = 1 and we denote these codes by
(k, m)4-switch codes. This case was also studied in [11], [19]
and [20], however most of the constructions in [11] (and also
all the constructions in [15] and [18]) apply to cases in which
k is much smaller than n. The case n = k is motivated by
the need to equate the switch write and read rates and ¢ = 1
models a simple memory delivering one data packet per time
unit. Note that in this case the recovery sets must be disjoint.
Furthermore, we mostly consider systematic switch codes, i.e.
we assume that for all x € F’;, Ec(x) = xy, for some y € F?*k
(see Figure 1). In fact, all the constructions in this paper use
linear codes, which always admit a systematic encoder [14].
An intriguing question is whether or not for all parameters for
which switch codes exist, systematic switch codes also exist.
Unfortunately, we do not have the answer to this question;
however, we remark that our state-of-the-art construction of
binary switch codes yields systematic switch codes.

A construction of  (k,m)s-switch codes, where
m = k?/log, k was given in [19]. This construction is optimal
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in the setting in which each parity check bit is restricted
to be the sum of at most log, k information bits. In [11],
a construction of (k,m)s-switch code with m = k'°%23 =
Q(k'38) was presented. Our main result in this section is
a construction of (k, m)>-switch codes with m ~ 2k'>. Our
construction significantly improves upon the results in [11]
and [19] and to the best of our knowledge, it is the best
known construction of a (k,m)>-switch code and thus also
of batch codes with the same parameters. The proof of this
result appears in Appendix B.

Theorem 1: For every sufficiently large k, there exists a
(k, m)2-switch code with m ~ 2k15,

III. CONSECUTIVE SWITCH CODES

Primitive batch codes and switch codes are equivalent, as
Lemma 2 states, yet there is a significant conceptual difference
between these two formulations. Unlike batch codes, switch
codes introduce a time dimension which motivates us to define
a variation of switch codes, which we refer to as consecutive
switch codes. Consecutive switch codes are designed for a
natural sub-class of the request set / in Definition 1. As for
switch codes, these codes are capable of retrieving k informa-
tion symbols, from different generations, by accessing at most
t entries from each column. However, for {-consecutive switch
codes the k information symbols must belong to £ consecutive
generations. One motivation for this variation of switch codes
is that in practice two input strings that were encoded in a short
time interval store correlated data, and therefore are likely to
be of interest to the same user. Restricting the switch codes
to this natural sub-class of requests allows us to increase the
rate dramatically, and thus to design practical-rate codes that
behave like switch codes for the more common queries of
information symbols. Another motivation is that consecutive
switch codes, as will be shown later, are also an adaptation of
switch codes to the practical scenario in which the number of
packets that can be stored in a bank is limited.

Definition 3: An (n, k, m, t)4-C-consecutive switch code is
an infinite sequence of codes {Crir=1 of v = m, u = n)-
codes over By such that the following hold.

1) For every T > 1, a string xT) e [y is encoded by Ec,
10 a string ¢T) IE‘Z’.
2) For every set of k pairs

I={(i1, T1), (i2, T2), - .., (ix, TR} C[n] [T, T+€—1],

for some T > 1, there exists a set J C [m] x N depending
only on I, such that for every r € [k], the symbol xirT’) can
be recovered from {C;T)}(j’T)EJ and for every j € [m],
J contains at most t pairs of the form (j, T), for some
T >1.

Recall that for general switch codes, Lemma 1 states that
instead of considering an infinite sequence of codes, it is
enough to consider only one code. For ¢-consecutive switch
codes, the next lemma states that it is enough to consider only
a sequence of ¢ codes. The proof of the lemma is trivial and
thus omitted.

Lemma 3: If {Crlr=1 is an (n,k,m,t),-C-consecutive
switch code then {57}721, where ET = Cy for u € [{] such
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that T = u (mod (), is also an (n,k, m,t),-C-consecutive
switch code.

By Lemma 3 we can restrict our discussion to switch codes
that are formed by a sequence of ¢ codes, Cy,Ca,...,Cq,
which are extended periodically. Henceforth, a sequence
of ¢ codes, {Cr}rer, Will be called an (n,k,m,t),-C-
consecutive switch code if the infinite sequence of codes that
is formed by using {Cr}7¢[¢] periodically is an (n, k, m, t),-¢-
consecutive switch code. From Lemma 3 we also conclude that
{-consecutive switch codes can be considered as an adaptation
of switch codes to the more practical scenario in which the
switch code is represented by a finite two-dimensional array
with ¢ rows, rather than a semi-infinite one.

Example 2: The following ¢ x m array forms an (n = 4,
k=4,m = 6,t = 1)2-2-consecutive switch code.

:U(l‘l) xé2) ng) $(42) 731(22) & IgQ) _'652) S CEEZ)
[ [ [ [ [ [
20 [ 20 | 20 | 20 a0 g 40,0 g 0

If for example 1 = {(1,1),(2,1),(1,2),(2,2)} then
J={(,1),(5,1),(2,2), 4,?2),(6,2)} is a recovery set for I,
depending only on I, such that for all j € [6], (j, T) appears
at most once at J. We remark that this code has degree two i.e.,
each parity-check bit is the XOR of at most two information
bits, and it is a special case of the general construction given
in Section V for 2-consecutive switch codes with degree two.
Moreover, Ci # C» and this code is optimal, i.e., there does
not exist an (n = 4,k = 4,m = 5,t = 1),-2-consecutive
code. Furthermore, there does not exist an (n = 4,k = 4,
m = 6,t = 1)y-2-consecutive switch code in which C; = C»
and Cy is a linear code.

Note that in the last example we used the same symbols to
recover both xfl) and xél) and thus their recovery sets were not
disjoint. Recall that in our definition of switch codes we only
require to read at most one symbol from each column and thus
it is possible to use the same read symbols to recover different
requested symbols. If we were to use the other definition of
switch codes [20], where the recovery sets have to be disjoint,
the construction in the example would not have satisfied the
requirements of a switch code.

An (n,k,m,t),-C-consecutive switch code, {Ct}refe), is
called combinatorial if there exists a matrix F =
(F1,j)Tele], jelm) that takes values in [n], such that for every
T e[t], D = &, xM)y = xl(;T) xl(,T) ...xl(;T) . The matrix

7,17 Fr2 T,m
F is called the index matrix of the switch code. Note that
{Cr}Teqe) is completely determined by its index matrix F.
Intuitively, a combinatorial £-consecutive switch code does
not use any coding to encode a string X, only copies of
the entries of x in some order. Hence, the alphabet size g
does not play an important role in the combinatorial case
and therefore we omit the subscript ¢ from the notation
of such codes and assume that the symbols are taken from
some alphabet X. A consecutive switch code in which the
symbols can be encoded, as opposed to only repeated, is called
computational; in particular, a combinatorial switch code is
by definition also a computational switch code. By default, a
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Fig. 2. Example of a combinatorial (4, 7)-2-consecutive switch code and its
index matrix F € [4]2%7.

consecutive switch code is computational. For linear binary
consecutive switch codes we define the degree to be the
maximum number of input symbols that participate in the
encoding of each parity symbol (using only XOR operations).
In Section V we consider 2-consecutive switch codes in
which the degree is two. These codes are in some sense the
simplest computational consecutive switch codes that are not
combinatorial.

As for general switch codes, we will consider only
(n = k,k,m,t = 1)4--consecutive switch codes and we
denote these codes by (k,m),-C-consecutive switch codes
(as mentioned above, in the combinatorial case we omit
the subscript ¢). For two positive integers k and ¢, let
A(k,€) be the smallest integer m for which a combi-
natorial (k, m)-{-consecutive switch code exists. A com-
binatorial (k, m)-{-consecutive switch code is called opti-
mal if m = A(k,{). The simplest combinatorial (k,m)-
{-consecutive switch code is the £-repetition switch code
in which every code C) encodes a string x € X
into Rg(x) (the concatenation of ¢ copies of x), and thus
A(k,€) < €k. In Section IV we present a construction of
combinatorial consecutive switch codes for every ¢ € [2, k].
In particular, we show that A(k,2) = 2k — 1, while A(k, )
is much smaller than k¢ for £ > 3. Figure 2 shows an opti-
mal combinatorial 2-consecutive switch code with parameters
(k, m) = (4,7), along with its index matrix. Notice that the
codes {C(T)}Te[g] are depicted in an increasing order of the
index 7 from bottom to top, whereas the row indexing of
the index matrix F follows the conventional row indexing for
matrices, i.e., row indices increase from top to bottom.

IV. COMBINATORIAL CONSECUTIVE SWITCH CODES

In this section we construct combinatorial (k,m)-(-
consecutive switch codes, for every ¢ € [2, k] and also show
a lower bound on A(k, 2), which assures that the construction
for £ = 2 is optimal.

We start with the simplest case in which ¢ = 2.

Construction 1: Let F € [k]**?*~1 be defined by

F—(l 2 - k1 2 .- k—l)
1 2 - k k k - k '
Theorem 2: Let {Cr}Te(1,2) be the combinatorial switch
code whose index matrix is the matrix F from Construction 1.
Then {Ct}Teq1,2) is a (k,m = 2k — 1)-2-consecutive switch
code.
Proof: We have to show that for every set of k pairs
I = {(i1, T1), (i2, T2), ..., (ix, Tx)} C [k] x {1, 2} there exist

k distinct indices ji, j2, ..., jk, such that Fr, j =i, for all
r € [k].
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The indices ji, j2,...,jx are defined as follows.
If (i, T,) = (i,1) for some i € [k — 1] then j, = i + k.
If (i,7,) = (i,2) for some i € [k — 1] then j, = i.
The column index k can be used for the recovery of one pair
of the form (k, T). If both (k, 1) and (k,2) were requested
then there exists i € [k — 1] such that (i, 1) ¢ I and thus
(k,2) can be recovered from j =i + k. |

Construction 1 provides us with 2-consecutive switch codes
in which m = 2k — 1, i.e., m is only one less than the
length of the trivial 2-repetition switch code. The next theorem
states that the code from Construction 1 is optimal, namely
Ak,2) =2k — 1.

Theorem 3: If {Crlref1,2) is a combinatorial (k, m)-2-
consecutive switch code, then m > 2k — 1.

Proof: Let F be the index matrix of {Cr}rep; and
let G(L, R, E) be the bipartite graph whose left and right
vertex sets are L = [k] and R = [k], respectively, and
whose edge set E consists of all the edges of the form
ej = (F1,j, F»,j), j € [m]. (E may contain parallel edges.)
In particular, |E| = m. Since {Cr)req1,2) is a (k, m)-2-
consecutive switch code, it follows that for every set of k
pairs I = {(i1, T1), (i2, T2), ..., (ik, Tx)} C [k] x {1, 2} there
exist k distinct indices ji, j2, ..., jk such that Fy, ; =i, for
all » € [k]. This implies that for all S € L and S» C R,
where s = [S1| + |S2| < k, there exist s distinct edges of the
form (u,v), where u € Sy or v € S5.

Assume to the contrary that m < 2k — 2. We will show the
existence of S € L and S C R, where s = |S1| + |S2| <k,
such that the number of edges (u,v) for which u € S; or
v € 5 is less than s and derive a contradiction.

Since |[E| = m < |L| + |R| — 1, it follows that G
contains b > 2 connected components, Gi(Lj, Ry, Ey),
Go(L2, Ry, E2),...,Gp(Lp, Rp, Ep). We claim that at
least two of these connected components are trees. Indeed,
if none of these connected components is a tree, then
|Ei| > |L;| + |R;| for all i € [b] and hence |E| > 2k. If only
one connected component is a tree then |E| > 2k — 1. Assume
without loss of generality that G| and G, are trees and that
|[L1| + |R1| < |L2| + |R2|. Let S = Ly and S> = Rj. Then
s = |S1|4+ 1821 < (IL|+|R])/2 < k. Notice that since G is a
connected component, it follows that for every edge (u,v) €
E, u € Sy if and only if v € S, and there exist exactly |E1]
edges that connect an element of S; with an element of S.
Since G is a tree, it follows that |E{| = |S||+|S2|—1 < s, a
contradiction. [}

Given a matrix F € [k]**™ we define the index graph
of F to be the bipartite graph Gr(L, R, E), with left vertex
set L = [k], right vertex set R = [m], and an edge set E
that consists of all the pairs of the form (i, j) € L x R,
such that Fr; = i, for some T € [{]. Intuitively, the set
R corresponds to the columns of the matrix F, the set L
corresponds to all possible entries of F, and an edge (i, j)
indicates that i appears in the jth column of F. Note that E
may contain parallel edges if some symbol appears more than
once in some column of F. Furthermore, the graph G r has the
property that the degree of each vertex in R is exactly . An
example of a matrix F € [6]3*# and its index graph are given
in Figure 3.
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3456
F=[4365
1212
Fig. 3. Example of a matrix F € [6]3*4 and its index graph, where the

vertex sets L and R are represented by the circles and squares, respectively.
Note that this graph is also a (6, 4, 3, 3)-matching graph.

Given a bipartite graph G(L, R, E), for every S € L we
define N(S) C R to be the set of all vertices in R that are
connected by an edge to some vertex in S.

Definition 4: A bipartite graph G(L, R, E) is called a
(k,v, £, r)-matching graph if the following hold.

1) Its left and right vertex sets are of sizes |L| = k and

|R| = v, respectively.
2) The degree of each vertex in R is (.
3) If S C L is of size s <r then |[N(S)| > s.

By Hall’s theorem [8], condition (3) is equivalent to the
condition that for every § € L of size s < r there exists
a matching, i.e., there exists s disjoint edges from § to R.
Figure 3 illustrates a (6,4, 3, 3)-matching graph. Matching
graphs are, in a sense, a special type of expander graphs [9].
However, we are not aware of any result on expander graphs
that fits this description of matching graphs. The study of
bipartite expander graphs focuses on the setting in which the
degree restriction in item (2) is either omitted or imposed on
the vertex set L. Moreover, the neighborhood of § C L is
required to “expand” S, i.e. to be much larger than the set S,
and not only to be at least of the same size as S, as required
in item (3).

We will show how matching graphs can be useful to
construct combinatorial {-consecutive switch codes, but first
we need one more definition. The row cyclic shift mapping
RS : [k]&™ = [k]E*™ is deﬁned by (RS(F))i; CF 1.
for i € [2,¢], and (RS(F))1,; —Fg], for all j € [m]. Define

RSO(F)defF and for i € [¢ — 1], define the ith row cyclic

shift of a matrix F by

RS (F)X RSoRSo-

i times

<o RS(F).

Construction 2: Let D € [k]**¥ be a matrix whose index
graph is a (k,v,{, k/2)-matching graph and let m = k +
(¢ — 1)v. Define the matrix F(Sc)déf(Fl |Fs| - |Fr) € [k]7™,
where Fy € [k17* is the matrix

Fldef 1 2 e k
12 ek
and for all b € [2, €], Fy =X RSP=2(D).

Theorem 4: Let {Ct}Tc[] be the combinatorial switch code
whose index matrix is the matrix FS€) from Construction 2.
Then {Ct}1ele) is a (k, m)-C-consecutive switch code.

Proof: We have to show that for every set of k pairs
I = {(i1, Th), (i2, T2), ..., (ix, Tx)} C [k] x [€] there exist k
distinct indices ji, j2, ..., jk, such that FT,S,?,) = i,. Note that
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Fig. 4. The matrix M(w, ¢) and its index graph G, 5 for @ =5 and ¢ = 3.
Again, the circle nodes represent the left vertex set L, while the square nodes
represent the right vertex set R.

FPO = (F)r =1, for all (i, T) € [k] x [£]. For all r € [k],
if there is no s € [k]\ {r} such that iy = i, then we set
Jr = ir. Hence, we can assume without loss of generality that
for every r € [k], there exists s € [k]\ {r}, such that i, = i;.
Let S$ = {i Ir € [k], i, = i}. Then |S| < k/2. Since the
index graph of the matrix D, Gp(L, R, E), is a (k,v, {, k/2)-
matching graph, it follows that there exists a matching for
S C L in the graph Gp(L, R, E). This implies that there
exist | S| distinct integers jl,fz, . ..,f‘5| € [v] such that for
all 1 <r < S|, i, appears in the jrth column of D. Since,
F, = RSV—2 (D), for all 2 < b < ¢, it follows that i, appears
in £ — 1 distinct rows of the columns of F (S€) indexed by
]r—i—k ],—i—k—i—v L, fr—i—k—}—(f 2)v. Iffor some b € [0, {—2],

Tr jr+k+b = i, then we set j» = j, + k + bv. Otherwise,

we set j, = i, and we have that F(Sf) = i,. In this case, for
every s # r, if iy = i, then there exists a unique b € [0, { —2]

such that F( = = iy. |
Ty, jg+k+bv

Notice that the last k — 1 columns of the matrix F from
Construction 1 define a matrix whose index graph is a
(k,k — 1,2, k/2)-matching graph. Therefore, Construction 1
is a special case of Construction 2 and Theorem 4 is a gener-
alization of Theorem 2. Next, an example of a 3-consecutive
switch code is given.

Example 3: Let

D=

— s~ W

4
3
2

— O\

6
5
2
be the matrix from Figure 3, whose index graph is a

(6, 4, 3, 3)-matching graph. Then

123456(3456(1212
123456(4365|3456
123456|1212(4365

FGO —

is the index matrix of a combinatorial (6,4)-3-consecutive
switch code.

In order to apply Theorem 4 we must construct a
(k,v, €, k/2)-matching graph. To this end, for every pair of
positive integers ¢ and w, 0 < w, we define the bipartite graph
Gu.s(L, R, E) where L = [w], R = [w] and E = {(u,0) €
LxR :3dreld]l, u=v+r—1 (mod w)}.

The graph G, s is the index graph of the matrix M (w, J) €
[w]?*® defined by

(M(w,9))i,j =i+ j—1 (mod w).
Figure 4 shows the matrix M(w, d) and the graph G, s for
=75 and d=3.
For a bipartite graph G(L, R, E) and for X C R we denote
by G(L, R, E)\ X the subgraph of G(L, R, E) that is obtained
from G by removing from R all the vertices of X and all
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the edges of the form (u,v) € L x X. The next lemma
states a property of the graph G, ¢ that will be useful for
our construction of a (k, v, £, k/2)-matching graph.

Lemma 4: Let 6 € [w] and consider the graph
Gus(L,R,E). If X C R is of size 0 — 1 then the graph
Gps\X isan (w,w — 9+ 1,0, w — 0+ 1)-matching graph.

Proof: We prove the lemma by induction on J and w. For
the basis of induction we need to verify that the lemma holds
for 6 = 1 and for every @ > 1. This case is trivial, since X can
only be the empty set and G, is an (w, w, 1, w)-matching
graph.

For the induction hypothesis we assume that we can remove
any 0 — 2 vertices from the right vertex set of G,—1,5—1 and
obtain an (w—1,w—Jd+ 1,5 — 1, w — 4 1)-matching graph.

For the induction step, let S € L and X C R have sizes
@ — 0+ 1 and J — 1, respectively. By symmetry, we assume
without loss of generality that w & S. Let b = max{o : v €
X\[w—0+2,0w—1]}. Since | X| =0 —1 and |[w — Jd + 2,
w—1]| = d—2, it follows that b is well defined. We claim that
G5\ {0} (the subgraph of G, s that is obtained by removing
the vertex b from R) contains a subgraph, G, that is isomorphic
to the graph G,—1,6—1 by a relabeling of its right vertex set
(and using the identity mapping on the left vertex set). If we
can prove this claim then by the induction hypothesis G \ (X
{b})isan (w—1,w—0+1,0— 1, w — Jd+ 1)-matching graph
with left vertex set [w— 1]. Since w € S and |S| =w—0+1,
it follows that there exists a matching for S in G \ (X \ {b})
and therefore also in G, 5 \ X, as desired.

Hence, to conclude the proof of the lemma we prove the
existence of the subgraph G. We distinguish between two cases
according to whether or not b = w.

Case 1: b # w. For the relabeling of the vertex set R\ {b},
let ¢ : [w] \ {b} — [w — 1] be the bijection defined by

v+1, ifvoelb-—1]
¢() = 4o, ifoelb+1,w—1]
1, if v = w.

It is sufficient to show that the set of edges E = {(u,v) €
[ — 1] x [w] \ {b} Ired—1], u=¢@) +r—1
(mod w—1)} is contained in the edge set of G4, 5\ {b}. Assume
that (u,v) € E. If v € [b— 1], then since b < w—0J+ 1 it
follows that u = v + r for some r € [0 — 1] and therefore
u=vov+r—1 (mod w) for some r € [2,d]. Hence, (u,v) is
an edge of G, 5\ {b}. If v € [b+ 1,0 — 1] or v = » then
eitheru =v+r—1oru=0-+r —w, for some r € [ — 1],
depending on whether or not v +r — 1 < w. In any case, it is
an edge of G5\ {b}.

Case 2: b = w. In this case we define the relabeling of the
vertex set R \ {w} to be the identity function. It is sufficient
to show that the set of edges E = {(u,v) € [w— 1] x
[w—1] : 3r € [6—1], u = v+r—1 (mod @—1)} is contained
in the edge set of G, 5 \ {w}. Assume that (u,v) € E. Then
eitheru =v+r—1loru=0v+r — w, for some r € [0 — 1],
depending on whether or not v +r — 1 < w. In any case, it is
an edge of G5 \ {0} [ |

Given a matrix M = (M;;) € [@]°*® and a positive
integer o, define the matrix M +a € [l + a,®w + a]ox®,
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where (M +a); j = M; j +a, forall i € [¢] and j € [w].

Construction 3: Let k = (€ =2) f(f 4+ 1), for some positive
integer f, w = ({ —2)f, and 6 = € — 1. Define the matrix
D e [k]™<E20 py

Dd;f(Ml M, ...Mf)’

where x = (k—w+1,k—w+2,...,k) and for all j € [f],
Mj =M@, +(j—Doel(j— Do+ 1, jw)®*.

Theorem 5: The index graph of the matrix D from Con-
struction 3 is a (k,k — w, €, k/2)-matching graph.

Proof: By the definition of the index graph of D,
Gp(L,R,E), we have that L = [k], R = [k — w],
and every vertex v € R has degree {. Since the
index graph of M;, j € [f], is equivalent to G,
it follows that Gp contains f disjoint subgraphs
Gi(L1, Ry, E1),G2(L2, Ry, En),...,Gy(Ly, Ry, Ey),
Li=[(j—Dow+1,jw]and R; = [(j — Dw + 1, jw], for
all j € [f], where each subgraph is equivalent to G, s.

Let S € L = [k] of size |s| < k/2. We need to show that
IN(S)| = s. Forall jel[f+1],letS; =SNLj;,s; =[Sl
and let d; = min{w —s;,{ —2}. By Lemma 4, for all j € [f],
we can choose any set of d; vertices of R;, X;, and find
a matching for S; in G; \ X;. Therefore, by the definition
of D, we have the flexibility to choose the sets X;, so we
will have a matching for the set (UleS /) U B, where B is

any subset of [k — @ + 1, k] of size Zle dj. In particular, if

Spy1 < zjle dj, then we have a matching for S. Otherwise,
letr =|{j€l[f] : dj =w—s; <{—2}|. Notice that since
Sf41 > zjle dj we have that

S+ f
s = Zsj > Zsj +dj=ro+ Z sj+d;j
Jj=1 Jj=1 JELfT:
dj=t-2
>ro+(f —r)—2)
and hence
k 1
ro+(f=n(=2) <3 = %

which implies that r < ;1. Hence,

_ =

f
spet > Do di = (E=2)(f —1) 5

j=1
By the definition of Gp, it follows that |[N(u#1)| = f and
Nu)NN(@up) =0, for all uy, uy € [k—w+ 1, k]. Therefore,

INOI = INSr+D)l =sp41f
- (5—2)(2f+1)f — k2> s

|

Combining Theorems 4 and 5 we conclude the following.

Corollary 1: If k = (£ —2)f(f + 1), for some positive
integer f, then

Ak, €) <tk — (L — 1)(€ = 2) f ~ tk — (L — D)/ (€ — 2)k.
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V. 2-CONSECUTIVE SWITCH CODE OF DEGREE 2

In this section we show a construction of a linear binary
(k,m = 2k — 2)-2-consecutive switch code of degree two,
i.e., each parity symbol is formed by the XOR operations
of at most two input symbols. This construction reduces the
redundancy by one over the optimal combinatorial (degree-1)
2-consecutive switch code.

Construction 4: leen an even integer k, let u = k/2
and let £ IF” — IE‘” 2 be the encoder that maps
X = (nLx,...xe1) € FElo Ex) = EX),
EX)2, ..., E(X)y—2), where E£(X); = x; ® xjy1, for all i €
[ — 2]. Let Cy and Cy be the two [m = 2k — 2, k]-codes
defined as follows.

e For T € {1,2}, decompose the Tth input string x7)

as x1) = (x(T) (T) xl(ﬂ)l, ;QZ) where X(T) (x(T),
T T T T T
(),. xﬂ))andx(lz—(x:lgz, /(4+)3""’ ())

o The string x\T) is systematically encoded to ¢T) as shown
in the following array.

‘ x@ H ) P ® ’iz+) o @
I I I I

‘ x H e ) @)

Ex

(

I

1
x|

1 1
lel ® ﬁle &(

Theorem 6: Let {Crlreq1,2) be the code specified by
Construction 4 for some even k. Then {Crlre(1,2) is a
(k, m = 2k — 2)-2-consecutive switch code of degree two.

Proof: First, notice that, for all T e {1,2}, xg ) , XLTJr)z
IFg ~! and hence & (xéT)) and & (x ,) are correctly defined
vectors of length u — 2, given by £ (X(T))l = xl(ﬂ EBxl(B
E(x (T) )i = x/(li)ﬂrl @xﬂ+l+2, for all i € [ — 2]. Therefore,
the code €D is indeed of length m = k+2(u—2)+2 = 2k—2
and degree two.

Given a request set I = {(i1, T1), (i2, ), ..., (ix, Tx)} C
k] x {1, 2} we need to show the existence of a recovery set
for 1. To this end we distinguish between 6 cases.

Case 1: There exist 7 € [3, u], s € [ + 3, k], and Tr, T, €
{1,2}, such that (r, T) (s, T) ¢ I. We assume that T, =
T, = 1, however it will be clear from the proof that different
choices of fr and T; can be handled similarly.

Since I C T = ([k] x {1,2P \ {(r, 1), (s, 1)}, it suffices to
show a recovery set for 1. We will first show how to recover
[2, u] x {1,2}\ {(r, 1)} by reading systematically at most one
of the symbols xj(l), 1(2), j €12, u], and from 45'()(52 ). In the
first step, the symbol x( ) is read systematically from x®. We
then continue in a sequential manner. For every i € [r+1, u],

assume that x(z)1 was already recovered. Then the symbol
(1) @ .

and

is read systematically and the symbol x;™ is recovered
from x( ) and E(X( ))l 2 = x(2) @ x( ) Slmllarly, for every
e[2,r —
the symbol x;
recovered from x(z) and £ (ng) )i-1 = xl.(z) @ xl.(i)l.
From symmetry we have that [ + 2, k] x {1,2} \ {(s, 1)}
can be recovered by reading systematically at most one of the
symbols x(l) ]( ), j €lu+2,k], and from £(x

1], assume that x; 2)1 was already recovered. Then

(O @

is read systematically and the symbol x; is

ﬂ+2)
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It remains to show how to recover x{T)
T € {1,2}. The symbolsx

Since we already recovered x,

(1)
PERE
and x' +1 are read systematically.
(0 M
,u+2
M and X,

and x

and x (regardless of the

(1)

values of T and T, §), We can recover x,; | from the

parities x(l) <) x(l) and x(l)l <) xlglJ)rz, respectrvely.

Thus, we have a recovery set for T in which at most one
entry from each column of the array is read. Such a recovery
set for 1, where k = 8, is given in Example 4.

Case 2: I =[1, u] x {1, 2}. In this case the symbol x( )

read systematically and we use the parity symbol x( ) @ x(2)

and the systematic symbol x; 2 (o recover x{ ). We then use the
parity symbol xll) @xél) together with xl(

in case 1, for every i €[3,u],if x( ) was already recovered

) to recover x( ) As

then the symbol x ) can be read systematically and the symbol
(1) can be recovered from x(l) and 8(X(1)) 2 = x(l) xl.(l).

Case 3: There exist two 1nd1ces r,s € [k]\ [2 ,u] and
T,,T, € {1,2} such that T = (]2, ,u]X{l,Z})U{(r, 7)), (s, Ty)}.
It is easy to see that the only non-trivial sub-case is when
(1,2) € I. In all other cases, xél) can be recovered by x(l)
and x(l) @x(l) from which point the remaining symbols can be
recovered in a sequential manner as in case 2. Now assuming
(1,2) € I, if (k,1) ¢ I, then xl(z) can be recovered from
x,£2) and x,£2) <) x(z) and x( ) is read systematically for the
recovery of the remaining symbols in a sequential manner as
in case 2. If (k, 1) € I, then x,ﬁl) can be recovered by reading
x,E )1 systematically and from £ (x;}j_z) ©—2 = x(l) @x( ), from
which point the remaining symbols can be recovered as if
(k, 1) & 1.

Case 4: There exist two indices r,s € [2,k] \ [3, u]
and 7,,T, € {1,2} such that I = ([3,u] x {1,2}) U
{a,1),,2), T;), (s, i)}. It is easy to see that the only
non-trivial sub-case is when (2,2), (k,1) € I. In all other
cases one of the symbols x;’ or x£ can be recovered by
either xél) and x(l) fa5) x(l) or by x( ) and x,£2) fa5) xl(z), after
which the remaining requests can be recovered in a sequential
manner as m case 2. Now assuming (2, 2), (k, 1) € I, we can

recover xk by readrng the systematic symbol x,ﬁl) , and the
parity symbol £ (xﬂ +2)ﬂ 2 = x(l) &) x(l) and then recover
x? by reading the systematic symbol x ) and parity symbol
b@x ) The remaining requests in ([3, ] x {1, 2}H)U{(2, 2)}
can now be recovered in both generations similarly to case 2.

Case 5: All indices [3, u] are requested from both gen-
erations and neither of index 1 or 2 is requested from both
generations. This case is trivially easier than case 4.

Case 1 covers the scenario in which there exist r € [3, u]
and s € [u + 3, k] that were both requested from at most one
generation. Cases 2—5 cover the scenario in which all indices
[3, u] are requested from both generations. The sixth case,
where all indices from [¢ + 3, k] are requested from both
generations, is symmetric to the union of cases 2-5. [ ]

Example 4: The following array forms a binary (k = 8,
m = 14)-2-consecutive switch code of degree 2.

If for example

1 = {(2’ l)’ (2’ 2)’ (4’ l)’ (4’ 2)’ (6’ l)’ (6’ 2)’ (8’ l)’ (8’ 2)}
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D 2@ 6 2@ |2? © 22 2@ 22|22 6 22|22 & 2@ |22 @ 22
I I I I I I I

x® Ha® @ 20 |o® @ 20 |20 @ 20| 200 @ o0 |20 @ 2 |20 @ 200

then we read x; o from the systematic part and use the parity

O ¢ x? and xY @ x? @) @

(1)

to recover x,~ and x,

symbols x,
1)

respectively. The symbols x,” and x,’ are read systemancally.

Similarly, we can recover the symbols xél),xéz),xél), éz) by
reading xél),xéz),xél) systematically and from the parity

symbols xé ) @xéz), gz)@xéz) . Thus, we recovered the set I. As

shown in case 1 of the proof of Theorem 6, it is also possible
(1) (2),x(1) (2) by reading x? and

Y and

to recover the symbols x|
( ) systematlcally and from the parity symbols x( )EBx
(1)
(&) x

VI. COMPUTATIONAL CONSECUTIVE SWITCH CODES

In this section we study computational consecutive switch
codes, i.e., consecutive switch codes that are not necessarily
combinatorial, and show constructions of £-consecutive switch
codes for arbitrary k and ¢.

Before we present our constructions, we review a few more
fundamental concepts in coding theory. Let C be a (v, u)-code
over [F;. The minimum distance of the code C is defined by

def

d(C)=min{dg(u,v) : uvel, u#yvj

where dy(u,v) is the Hamming distance between u =
(ur,un,...,uy) and v= (vy,v2,...,0,) defined by

dy,VE|G el 1 u; #vj).

It is well known that if the minimum distance of C is d then C
can correct any d —1 erasures. More formally, given an encoder
& Iﬁ‘g — F;, there exists a decoder D¢ : (F, U {?})” — Iﬁ‘g
such that if z € (F, U {?})” is obtained from £¢(x) by at most
d — 1 erasures, where an erasure is indicated by the symbol ?,
then D¢ (z) = x. Another interpretation of this property, which
we will repeatedly use in the rest of the section, is that x is
recoverable from any v —d + 1 entries of £(x). In this section
we will use only linear codes and refer to a [v, u]-code with
minimum distance d as a [v, u, d]-code.

Next, we present our constructions. Let us first start with
the case of £ = 2.

Construction 5: Let C be a [k, u, d]-code C over F,, where
d>|k/2] 4+ 1 and let £ : IFg — F’; be a systematic encoder
for C. Let Cy and Cy be the two [m = 2k — u, k]-codes defined
as follows.

o For the first generation, V) = (x(l) (1)) e F* is
encoded to
DD @» M @ M (1
c()—(x1 Xl X s X VY s Vo u)
where
(1) My _ (D 1 M 1)
5(xk7ﬂ+1,...,xk )_(xkﬁurl"' N R, 'u)

2) 2 2 2
le(g SPREEEE yf) .7:56) EC—)/L+1 x}(ﬂ)“ l,(12)
[ [ [ [ [ [ [
1) |« 1 a
Igl) SCL# k—);,Hrl x,ﬁ,) Z/il) eyt )#

Fig. 5. Description of the (k, m = 2k — u)4-2-consecutive switch code from
Construction 5.

o For the second generation, x@ = (xl(z), R XIEZ)) is
encoded to
2 2 2 2 2 2 2
¢! )=(y,§_)ﬂ,...,yf ) ) Xy ) ... xlg )ﬂ+1,x,§ )ﬂ,..., ( )),
where
2 (2 (2 2 ,@ 2
E(xk_ﬂH,...,xk )=(xk—/l+1”' Xy ).

The resulting code sequence {Cy, Ca} is illustrated in Figure 5.
Theorem 7: The code sequence {Ci,Ca} from Construc-
tion 5 forms a (k,m = 2k — u)y-2-consecutive switch code.
Proof: Since C is a [k, u, d]-code over [, it follows that
eachx € IE‘f; can be recovered from any [k/2] entries of £(x).
We next prove that {C;,C>} satisfies the requirement of a
(k, 2k — p)4-2-consecutive switch code. Given a request set
I ={(1,Th), (i2, 1»), ..., >k, Tx)} C [k] x {1,2}, let k1 and
k> be the number of elements in / of the form (i, 1) and (i, 2),
respectively, i € [k]. In particular, k1+ky = k. Assume without
loss of generality that ky < k. The k; symbols from the
first generation are read systematically from the first k entries
of ¢, Hence, no symbol is read from the last k — x4 columns
of the first (bottom) row of the array (see Figure 5). As for the
requested symbols from the second generation, every symbol
from the first k — u entries of x® is read systematically from
the last k — u entries of ¢, since no symbol was read from
these columns for the first generation. In order to read (if
necessary) the symbols from the last ,u entries of x?) it suffices
to read any [k/2] entries of 5(xk PURTRRE ,x,ﬁz)), which is
stored in the first k columns of the array. This is possible,
since the number of available columns (from which no symbol
was read) is k — k1 > [k/2]. |
Corollary 2: There exists a (k,m = 1.5k)4-2-consecutive
switch code over a field of size q + 1 > k and a binary
(k, m)2-2-consecutive switch code, where m = 2k — |log, k|.
Proof: This corollary follows immediately from
Theorem 7. One simply has to note that for ¢ > k, there
exists a [k, u = [k/2],d = |k/2] + 1]-code C over Fy, e.g.,
a Reed-Solomon code (if kK = g or k = g + 1, one might use
extended or doubly-extended Reed-Solomon codes), and that
there exists a binary [k =2° — 1, u = 5,d = |k/2] + 1]-code,
e.g., a shortened Reed-Muller code with s variables and total
degree one. (See [14] for more information on Reed-Solomon
and Reed-Muller codes.) |
The next Theorem provides a lower bound on the length of
a systematic 2-consecutive switch code.
Theorem 8: If {C(T)}Te{ljz} is a systematic (k,m)qy-2-
consecutive switch code, then m > 1.5k.
Proof: If the first k/2 entries from each of the strings
x® and x@ are requested then at most k/2 requested entries
can be recovered from the systematic part. Hence, in order to
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recover the remaining symbols, the length of the parity part
must be at least k/2. [ |

Notice that although the 2-consecutive switch code from
Construction 5 is not systematic, if ¢ + 1 > k, a systematic
(k, 1.5k),-2-consecutive switch code can be constructed by
taking C(V = C® = ¢, where C is a systematic MDS code
of length 1.5k and dimension k. Hence, in the systematic case
the lower bound on m from Theorem 8 is tight.

We can generalize Construction 5 for an arbitrary number
of rows.

Construction 6: For ¢ > 2, 0 < a, integers u ok,
v = ({ — DA — a)k + ak, and q > v, let C be a
[v,u,d =v — pu + 1] -code over F, (e.g., a Reed-Solomon
code) and let & : IE‘f; — IF; be a systematic encoder for C.
Let m = {(1 — a)k + ak and let {C1}rc[e) be a sequence of
[m, k]-codes defined as follows.

e For T € [(], the Tth generation input strin§ xD s
partitioned into two parts, xT) = (xiT),ng ), where
XgT) € FU=Dk consists of the first (1 —a)k entries of xT)

(T) c Fak

and X consists of the last ak entries of xT).

e The string x\T) is encoded to ¢'T) which consists of two
parts which we refer to as the left and right parts of ¢T).
The left part consists of the first {(1 — o)k entries, where
we treat these entries as { blocks, each of length (1 —a)k.
The right part consists of the last ak entries.

e The first part of the input string, i.e. XET), is stored
systematically in the (1 — a)k entries of the Tth block
of the left part of ¢7).

e The second part of the input string, i.e. xéT), is stored
systematically in the ak entries of the right part of ¢T).

o Let y\) e F""# be the string for which E(XET)) =
(XET),y(T)). The string y\I) is stored in the remaining
blocks of ¢T) (with no specific order). Note that this step
is possible since the number of available entries is

-1 —-a)k=v—pu.

Fig. 6 shows the structure of {Ct}te(e)-
_

2
3y the sequence of codes

Theorem 9: For o 6(62;1_)
{CT)Tere) from Construction 6 is a (k, m)g-switch code with

{ 1—-3¢/4
m:f(l—a)k+ak:(§+ — / )k

3
4 20(€-3)2)

Proof: Since C is a [v,u = ak,d = v — u + 1]-code
over [y, it follows that each x € F; can be recovered from
any u = ak entries of £(x).

We next prove that {Crlrer from Construction 6
satisfies the requirement of a (k,m = {(1 — a)k + ak),-
{-consecutive  switch code. Given a request set
I = {(i1,T), (2, T2), ..., Gk, Tx)} C [k] x [£], let kr,
T € [¢], be the number of elements in I of the form (i, T),
i € [k]. In particular, Zszl kr = k. Assume for now that
ki < ky < --- < ke, while it will be clear from the proof
that different orders can be handled similarly. The requested
symbols are recovered by the following steps.
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£ blocks of length (1 — «)k ak entries

Fig. 6. Description of the (k,m = £(1 — a)k + ak)y-(-consecutive switch
code from Construction 6. For all T € [¢], the empty blocks in the T'th row
store y@, where €(xg)) = (xg), y@).

1) The requested symbols from the first generation are read
systematically from the k; entries where they are stored
in the left and right parts of ¢(!),

The requested symbols from the second generation are
read in two steps. All requested symbols from ng) are
read systematically from the second block in the left part
of ¢@. If symbols from x*) are requested and cannot
be read systematically, then we read any ak entries from
¢ which belong to either the first block of its left part
or its right part. For the success of this step we need to
require that

2)

(1 —a)k+ak —k; > ak
and since k; < k/¢, it is enough to require that

-1 (€ —1)?
> o =
t - 2t -3)’
which holds for ¢ > 2. Note that the number of columns
used in this part is at most k> + ak.
The requested symbols from the 7th generation,
T € [3,(], are also read in two steps. All requested
symbols from ng) are read systematically from the 7'th
block in the left part of ¢(7). If symbols from ng) are
requested, which again cannot be read systematically,
then we read any ak symbols from available entries
in ¢¥), which belong to either blocks 1,2,..., 7 — 1
from its left part or its right part. For the success of this
step we need to require that

(T-D(A—-a)k+ak — (k1 +---+kr—1)
— (T —2)ak > ak

3)

and since k1 +ky+- - -+kr—1 < (T —1)k/¢, it is enough
to require that
(T-D(—-1
l
which holds for all T € [3, ¢].

(¢ —1)?

]

Note that, for £ = 2, we get from Theorem 9 the same
result as in Corollary 2 of m = 1.5k. Indeed, Constructions 5
and 6 coincide for £ = 2 up to changing the order of blocks
in the array. In general, according to Theorem 9, we get a
reduction of almost a half of the number of columns over a
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trivial construction, which uses £k columns, or Construction 2,
which uses about (1 — o(1))¢k when ¢ is fixed. For £ = 3,
we get that the number of columns is %k ~ 2.11k. We show
in the next construction how to improve this result to only
2k columns.

Construction 7: For an integer u = k/3 and for g+1 > k,
let C be a |k, u,d = 2k/3 + 1]-code over F, (e.g., a doubly
extended Reed-Solomon code) and let £ : Fk/ 3 F’; be a
systematic encoder for C such that & (X) (X &1(x), £2(x)),
for 51,52 k/3 — IFk/3 Let & IE‘ — %3 be defined
by Ez(u v) = &) + &(), for all u,v e F, kI3, Define
a sequence of three [m = 2k, k]-codes {CT}Te[3], by the
following steps.

o For T € [3], the Tth input string xT) is partitioned into

three parts of length k/3, xT) = (XET), X;T), x(T)).
o The string x'T) is encoded to ¢T) which consists of six
blocks of length k/3.

e The structure of the codewords D Te [3] is shown in

the following array.

‘ (3 ‘ & (xgi)) gz( (5) & (x(3) ‘ ( ‘ ) ‘
\
st | & | 5 | &[]
\
\ \ \ \ sl<x§"> Ex(x". %) a<x$> \
Theorem 10: The sequence of codes {Cr}rep3) from Con-

struction 7 forms a (k, m = 2k),-3-consecutive swnch code.

Proof: For all T € [3], assume that k7 symbols are
requested from the input string X(T), where k1 +ky + k3 =k,
and assume without loss of generality that k1 < k» < k3.
Furthermore, let k7 1, k72, and kr 3 be the number of symbols
requested from the strings xg ) ng) , and x3 ), respectively.
The requested symbols are recovered according to the follow-
ing steps.

1) For T = 1, the k; requested symbols of x(1) are read
systematically from the kj entries in which they are
stored in the first, second, and third block of c(l)

2) For T =2, the kp > + k2 3 requested symbols of x2 ) and

() are read systematically from the fourth and fifth
blocks of ¢®. Since C is a [k, k/3,2k/3 + 1] code, it
follows that any k/3 entries from the string (xgz), E1(x1))
are sufficient to recover Xg ). We read

2k

k
A=min{= —k 3 =
mll‘l[3 1,3

—kyp —ko3—k
3 2,2 — K23 1,3]

entries from the third block of ¢® and k/3 — A entries
from the second block of ¢. To show this is possible,
we need to show that 0 < A <k/3—kj3andk/3—A <
k/3 — ki 5. Clearly, A < k/3 — k1 3. From 0 < kj 3 < k
and 0 < koo + ko3 + k13 < T we have that A > 0
If A=k/3—kizthenk/3—A =k 3<k/3—kip
If A=2k/3—kypo—ky3—kizthenk/3—A=kyr+
kr3+k13—k/3 and since ky 2 +k1 3+ko2+ko 3 < 2k/3,
it again follows that k/3 — A < k/3 — k2. This proves
the correctness of this step.
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3) For T = 3, the k3> requested symbols of xd are read
systematically from the sixth block of ¢®. In order

to recover the string xg3), read % entries from the first
and second blocks, which are sufficient to successfully
recover the string xg3). It is possible to read % entries
from the first two blocks since the number of entries
already read from these blocks is ki1 + k12 + % — A,
and

k
kig+kio+ 3 —A

k [k 2k
= k1,1+k1,2+§—mln g—kl,% ?—kz,z—km—kl,a

k k 2k
= k1,1 +k1,2+§+max k13— 3 kyp+ko3+kiz— 3

k k
= max [k],k2,2+k2,3+k1 - 5] < 3

In order to recover the string XEB), read k/3 entries

from blocks three, four, and five of ¢, First note
that, since x?) was already recovered, the value of
& (x(3)) is known and thus we can assume that the string
stored in the third block is & (xg )) Hence, reading k/3
entries from these three blocks is sufficient to decode
the message x§3). It is possible to read this number of
entries since the number of entries read so far from these
three blocks is

kiz+A+ko+k3
2k 2k
<kiz+ 3~ kop —ka3 —kiz+kao+ky3= 3
[ |

VII. CONCLUSION AND OPEN PROBLEMS

In this paper the concept of {-consecutive switch codes,
in which the request sets are restricted to ¢ consecutive
generations, was studied. This natural variation of switch codes
allows better coding rates than those achieved by conventional
switch codes and yet admits a large collection of common
request sets. Consecutive switch codes were studied mainly
for the combinatorial case and the computational case, but also
when the degree is limited by two. For the combinatorial case,
we constructed (k, m)-{-consecutive switch codes for every
€ > 2, where m ~ €k — (£ — 1)s/(€ — 2)k, and found a tight
lower bound on m when ¢ = 2. When the degree is limited by
two, we showed a construction that reduces the redundancy by
one over the optimal combinatorial 2-consecutive switch code.
For the computational case, constructions of a (k, m = 1.5k)-
2-consecutive switch code and a (k, m = 2k)-3-consecutive
switch code were given, along with a construction of a (k, m)-
{-consecutive switch code, for every ¢ > 2, in which m ~ %fk
when ¢ is large. We also studied conventional switch codes and
presented the best known construction of binary (k, m)-switch
codes. Table I provides a summary of all the constructions in
the paper. For constructions of consecutive switch codes the
table shows the value of ¢ and for constructions of computa-
tional switch codes the table shows the size of the field, g.
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TABLE I
SUMMARY OF CONSTRUCTIONS

Const- Syste- | Consec- Combina-
raction matic utive torial
Const. 1 Yes =2 2k —1 Yes
Const. 2 Yes £>2 ~ bk — 0\ Lk Yes
Const. 4 Yes {=2 2k — 2 Yes, degree 2

- 1.5k q>k—1
Const. 5 No =2 2k — log, k 7=2
Const. 6 | No 1>2 ~ Ik/2 g2 ((—Dk/2
Const. 7 No =3 2k q>k—1
Const. 8 Yes No ~ 2k1° q=2

While the results in the paper advance the study of switch
codes, there are still several interesting problems which are
left open. Some of them are summarized as follows.

1) Find lower bounds on the length m of binary (k, m)-
switch codes.

2) Improve the constructions and find bounds for combi-
natorial consecutive switch codes for arbitrary ¢ (not
necessarily fixed).

3) Find constructions and bounds for linear binary
{-consecutive switch codes of limited degree.

4) Improve the constructions and find bounds for compu-
tational consecutive switch codes. Of particular interest
is to determine whether the construction of (k,m =
1.5k)4-2-consecutive switch codes is optimal in the
non-systematic case, either by finding a suitable lower
bound on the length or by demonstrating an improved
construction.
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APPENDIX A
PROOF OF LEMMA 2

In this appendix we prove Lemma 2 which states that for
k <n,acodeCisan (n, N =m,k,m,t = 1),-primitive batch
code if and only if it is an (n, k, m,t = 1),-switch code.
Proof of Lemma 2: Assume that C is an (n, N =
m,k,m,t = 1),-primitive batch code. Given a set of k pairs
I ={@, 1), (i2, T2), ..., (ix, Tx)} C [k] x N, let M be the
multi-set of size k, {i1,i2,...,ix}. Since k < n, it follows
that there exists z € IE‘Z such that z;, = xi(rT’), for all r € [k].
Since C is an (n, N = m, k,m,t = 1),-primitive batch code,
it follows that there exist k pairwise disjoint subsequences of
Ec(z) =y, uj,ua, ..., u, such that z; can be recovered from
u,, for all » € [k]. Moreover, the position sets which specify
these subsequences in y depend only on M and not on the
entries of z. This implies that if we denote by J, the positions

of u, in y then, for all r € [k], xl.(rT’) can be recovered from
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the subsequence of ¢ = £-(x(T)) that is specified by J,.
Hence, the set J = {(j, T;) : r € [k], j € J;} is a recovery
set for I that depends only on I, such that for all j € [m],
HT : (j,T) e J}| <1.Thus,Cisan (n,k,m,t = 1)4-switch
code.

Conversely, assume that C is an (n,k,m,t = 1),-switch
code. Given a multi-set M = {i1,i>,...,ix} and z € IFZ, let

x x@ . x® ¢ [} be such that xi(rr) = z;,, forall r € [k].
Since C is an (n,k,m,t = 1)4-switch code, it follows that
there exists a recovery set for I = {(i1, 1), (i2, 2), ..., (ik, k)},

J C [m] x N, such that for every r € [k], the symbol xi(rr)

can be recovered from {C;T) }(j,1)es and for every j € [m],
J consists of at most one element of the form (j, 7).
Moreover, J depends only on / and since the same code is
used for every generation, it depends only on M. Hence,
Ziy» Zizs - - - » Zip can be recovered from disjoint subsequences
of £c(z), whose positions are specified by the disjoint sets

J={j (j,r) € J}, r € [k], which depend only on M.
Thus, C is an (n, N = m,k,m,t = 1),-primitive batch
code. 0

APPENDIX B
PROOF OF THEOREM 1

In this appendix we prove Theorem 1, which states that for
all sufficiently large k, there exists a (k, m),-switch code with
m ~ 2k,

We achieve this result by using the family of one-step
majority logic decodable code [12, pp.273-275]. The con-
nection between this class of codes and distributed storage
was first observed in [10]. We show how such codes can be
used to construct (k, m),-switch codes in general and then we
apply this method to a specific type of one-step majority logic
decodable code.

A (v, n)-code C over IF, is called a (v, u)-one-step major-
ity logic decodable code with availability b if for every
X € Fﬁ; , and for all i € [v], there exist b disjoint subsequences
of &¢(x) that can each recover the symbol x;. Moreover, the
positions of these subsequences in E¢(x) depend only on i.

Construction 8: Let b € [k] and let C(b) be a (v, k)-one-
step majority logic decodable code over I, with availability b.
Define the (m, k)-code , C, over ¥, where m = bk+|k/b]-v,
as follows. For every X € IF’;,

Ec(x) = Rp(X)Rk/p) (Ecp) (X)),

i.e., Ec(X) is the concatenation of b copies of X followed by
Lk/b] copies of Ecp)(X).

Theorem 11: The code C from Construction 8 is a
(k, m)y-switch code or equivalently C is an (n = k,N =
m, k, m, 1)4-primitive batch code.

Proof: Let z = &Ecp)(x) and let ¢ = Ee(x) =
Ry(X)R|k/b)(z). We have to show that for any multi-set
of k indices M = {i,i2,...,ix}, the information symbols
Xiys Xy, ..., X, can be recovered from c¢, where for every
r,s € [k], r < s, the two subsequences of ¢ that are used
for the recovery of x; and x; , respectively, are disjoint.

For every i € [k], let r; be the number of appearances of i
in the multi-set M. Note that if i ¢ M then r; = 0 and hence
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ZLI r; = k. For every i € [k], let m; = min{b, r;}. Since
m; < b, we can recover m; copies of x; directly from R (x).
For i € [k] such that r; > m; = b, we recover the remaining
ri —b copies of x; from the |k/b] copies of z in ¢. Since C(b)
is a one-step majority logic decodable code, it follows that
there exist b disjoint subsequences of z that can each recover

x;. By using at most ’v‘;b_l <%

copies of each of the b
subsequences in R /5| (z) we can recover r; — b copies of x;.
To complete the proof we have to show that we have enough
copies of z in R x/»| (z) to recover r; —b copies of x;, for every
i € [k] for which m; = b < r;. For every j € [v] we use at
most 2—“ copies of j to recover x;. Hence, we use at most

HEH

> <]

i=1 b b

copies of z; and indeed Rx/p|(z) consists of enough copies
of z. [ ]

Note that, for a given k, Construction 8 provides the smallest
value of m when the availability b is approximately +/k. One
such code is a binary cyclic difference-set code. The proof
of the following lemma can be found in [12, p.293].

Lemma 5: The binary cyclic (v = 2% +2" + 1, u = 2% +
2" —3")-difference-set code is a (v, u)-one-step majority logic
decodable code with availability b =2" + 1~ /.

We are now in a position to prove Theorem 1.

Proof of Theorem I: Let r be the smallest integer for
which k < u = 2% 42" — 3" and let C be the binary cyclic
(v = 2% 427 + 1, u)-difference-set code. By Lemma 5 we
have that C is a (v, u)-one-step majority logic decodable code
with availability b=2+1~ J/#. By shortening the code C
we obtain a (v — u + k, k)-one-step majority logic decodable
code, C, with availability b, where b can take any value in [ﬂ
In particular, since b~ i and u > k, it follows that we may
choose b to be approximately v/k. By Theorem 11, the code C
that is obtained from Construction 8 by setting C(b) to be the
code C with b ~ vk is a (k, m)2-switch code, where

m:bk—i—{%J(w—,u—i—k).

Since r is the smallest integer for which k£ < 2T 42" 37 it
follows that k > 227=24.2r=1_3r=1 4nd therefore v —u+k =
3" + 1 + k ~ k. Thus, m is approximately 2k'-. (]
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