
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016 1541

Constructions and Decoding of Cyclic Codes
Over b-Symbol Read Channels

Eitan Yaakobi, Member, IEEE, Jehoshua Bruck, Fellow, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract— Symbol-pair read channels, in which the outputs
of the read process are pairs of consecutive symbols, were
recently studied by Cassuto and Blaum. This new paradigm
is motivated by the limitations of the reading process in high
density data storage systems. They studied error correction in
this new paradigm, specifically, the relationship between the
minimum Hamming distance of an error correcting code and
the minimum pair distance, which is the minimum Hamming
distance between symbol-pair vectors derived from codewords
of the code. It was proved that for a linear cyclic code with
minimum Hamming distance dH , the corresponding minimum
pair distance is at least dH +3. In this paper, we show that, for a
given linear cyclic code with a minimum Hamming distance dH ,
the minimum pair distance is at least dH + �dH/2� . We then
describe a decoding algorithm, based upon a bounded distance
decoder for the cyclic code, whose symbol-pair error correcting
capabilities reflect the larger minimum pair distance. Finally,
we consider the case where the read channel output is a larger
number, b � 3, of consecutive symbols, and we provide extensions
of several concepts, results, and code constructions to this setting.

Index Terms— Coding theory, codes for storage media, cyclic
codes, symbol pairs.

I. INTRODUCTION

THE TRADITIONAL approach in information theory to
analyzing noisy channels involves parsing a message into

individual information units, called symbols. Even though in
many works the error correlation and interference between
the symbols is studied, the process of writing and reading
is usually assumed to be performed on individual symbols.

Manuscript received April 8, 2015; revised September 29, 2015; accepted
January 13, 2016. Date of publication January 27, 2016; date of current version
March 16, 2016. This work was supported was supported in part by the
ISEF Foundation, the Lester Deutsch Fellowship, the University of California
Laboratory Fees Research Program, under Award 09-LR-06-118620-SIEP,
in part by the National Science Foundation under Grant CCF-1116739
and Grant CCF-1405119, in part by the Center for Magnetic Recording
Research, University of California at San Diego, and in part by the NSF
Expeditions in Computing Program under Grant CCF-0832824. E. Yaakobi
was supported by the Electrical Engineering Department, California Institute
of Technology, Pasadena, CA, USA. P. H. Siegel was supported by Technion,
within the Fellowship from the Lady Davis Foundation and by a Viterbi
Research Fellowship. This paper was presented at the 2012 IEEE International
Symposium on Information Theory, [19].

E. Yaakobi is with the Department of Computer Science,
Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
yaakobi@cs.technion.ac.il).

J. Bruck is with the Department of Electrical Engineering,
California Institute of Technology, Pasadena, CA 91125 USA (e-mail:
bruck@caltech.edu).

P. H. Siegel is with the Center for Magnetic Recording Research, Depart-
ment of Electrical and Computer Engineering, University of California at
San Diego, La Jolla, CA 92093 USA (e-mail: psiegel@ucsd.edu).

Communicated by Y. Mao, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2016.2522434

However, in some of today’s emerging storage technologies,
as well as in some proposed for the future, this is no longer
an accurate assumption and symbols can only be written and
read in possibly overlapping groups. This brings us to study
a model, recently proposed by Cassuto and Blaum [1], for
channels whose outputs are overlapping pairs of symbols.

The rapid progress in high density data storage technolo-
gies paved the way for high capacity storage with reduced
price. However, since the bit size at high densities is small,
it is a challenge to successfully read the individual bits
recorded on the storage medium; for more details, see [1]. The
symbol-pair read channel model studied in [1], and later by
Cassuto and Litsyn in [2], mimics the reading process of such
storage technologies. In that model, the outputs produced by a
sequence of read operations are (possibly corrupted) overlap-
ping pairs of adjacent symbols, called pair-read symbols. For
example, if the recorded sequence is (010), then in the absence
of any noise the output of the symbol-pair read channel would
be [(01), (10), (00)]. In this new paradigm, the errors are
no longer individual symbol errors, but, rather, symbol-pair
errors, where in a symbol-pair error at least one of the symbols
is erroneous. The main task now becomes combating these
symbol-pair errors by designing codes with large minimum
symbol-pair distance.

The results in [1] and [2] addressed several fundamental
questions regarding the pair-metric, as well as construction and
decoding of codes with pair-error correction capability. Finite-
length and asymptotic bounds on code sizes were also derived.
These were extended in [3] and [4], where construction
of maximum distance separable codes for the symbol-pair
metric was considered, and in [5], where the authors studied
syndrome decoding of symbol-pair codes. The paradigm of
the symbol-pair channel studied in these prior works can
be generalized to b-symbol read channels, where the result
of a read operation is a consecutive sequence of b > 2
symbols. In essence, we receive b estimates of the same stored
sequence. This insight connects the symbol-pair problem to
the sequence reconstruction problem, which was first intro-
duced by Levenshtein [8]–[10]. In the sequence reconstruction
scenario, the same codeword is transmitted over multiple
channels. Then, a decoder receives all channel outputs, which
are assumed to be different from each other, and outputs an
estimate of the transmitted codeword. The original motivation
did not come from data storage but rather from other domains,
such as molecular biology and chemistry, where the amount
of redundancy in the information is too low and thus the
only way to combat errors is by repeatedly transmitting the

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1542 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

same message. However, this model is very relevant for the
advanced storage technologies mentioned above as well as
in any other context where the stored information is read
multiple times. Furthermore, we note that the model proposed
by Levenshtein was recently studied and generalized, with
applications to associative memories [18].

In the channel model described by Levenshtein, all channels
are (almost) independent from each other, as it is only guaran-
teed that the channel outputs are all different. Assuming that
the transmitted message c belongs to a code with minimum
Hamming distance dH and the number of errors in every chan-
nel can be strictly greater than � dH−1

2 �, Levenshtein studied the
minimum number of channels that are necessary to construct a
successful decoder. The corresponding value for the Hamming
metric (as well as other distance metrics) was studied in [9];
extensions to distance metrics over permutations, e.g. [6], [7],
and error graphs [11] have also been considered. Recently,
the analogous problem has been addressed for the Grassmann
graph and for permutations under Kendall’s τ distance [20],
and an information-theoretic study motivated by applications
related to DNA sequencing was carried out for a special case
of a channel with deletions [12], [13].

More specifically, for the Hamming distance, the following
result was proved in [9]. Assume the transmitted word belongs
to a code with minimum Hamming distance dH and the
number of errors, t , in every channel is greater than � dH −1

2 �.
Then, in order to construct a successful decoder, the number
of channels has to be greater than

t−�dH /2�∑

i=0

(
n − dH

i

) t−i∑

k=i+dH −t

(
dH

k

)
.

For example, if t = � dH −1
2 � + 1, i.e., only one more than the

error correction capability, then the number of channels has
to be at least

(2t
t

) + 1. Note that if t > � dH −1
2 � + 1 then this

number is at least on the order of the message length n. This
disappointing result is a consequence of the arbitrary errors
that may occur in every channel. In practice, especially for
storage systems, we can take advantage of the fact that the
errors are more constrained in number in order to improve the
error correction capability.

In the symbol-pair read channel, there are in fact two
channels. If the stored information is x = (x0, . . . , xn−1), then
the corresponding pair-read vector of x is

π(x) = [(x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)],

and the goal is to correct a large number of the so-called
symbol-pair errors. With symbol alphabet �, the pair distance,
dp(x, y), between two pair-read vectors x and y is the
Hamming distance over the symbol-pair alphabet (� × �)
between their respective pair-read vectors, that is, dp(x, y) =
dH (π(x), π(y)). Accordingly, the minimum pair distance of
a code C is defined as dp(C) = minx,y∈C,x �=y{dp(x, y)}.

In [1], it was shown that for a linear cyclic code with min-
imum Hamming distance dH , the minimum pair distance, dp,
satisfies dp � dH + 3. Our main contribution is the stronger

result that

dp � dH +
⌈

dH

2

⌉
.

According to [1], this permits the correction of
⌊

dp−1
2

⌋

symbol-pair errors. Thus, in contrast to Levenshtein’s results
on independent channels, on the symbol-pair read channel we
can correct a large number of symbol-pair errors. In order
to exploit this potentially much larger minimum pair distance
guarantee, we explicitly construct a decoder, based upon a
bounded distance decoder of the given linear cyclic code, that
can correct a number of symbol-pair errors up to the decoding
radius corresponding to this bound.

We then address the general paradigm of channels that sense
some prescribed number, b > 2, of consecutive symbols on
each read. First, some of the results of the symbol-pair read
channel are generalized. Next, we study properties of codes for
the b-symbol read channel that are constructed by interleaving
b component codes. Finally, we examine the b-distance of two
specific families of codes, namely the codebooks �n and the
linear cyclic Hamming codes.

The rest of the paper is organized as follows. In Section II,
we formally review the symbol-pair read channel and some of
its basic properties. In Section III, we show that linear cyclic
codes can correct a large number of symbol-pair errors and
in Section IV, a decoding algorithm for such codes is given.
Section V generalizes some of the results on the symbol-pair
read channel to b-symbol read channels, where b > 2. Finally,
Section VI concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

In this section, we review the symbol-pair read channel
model introduced in [1]. If a length-n vector is stored in the
memory then its pair-read vector is also a length-n vector in
which every entry is a pair of cyclically consecutive symbols in
the stored vector. More formally, if x = (x0, . . . , xn−1) ∈ �n

is a length-n vector over some alphabet �, then the symbol-
pair read vector of x, denoted by π(x), is defined to be

π(x) = [(x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)].
Note that π(x) ∈ (� × �)n , and for x, y ∈ �,

π(x + y) = π(x) + π(y).

We will focus on binary vectors, so � = {0, 1} and unless
stated otherwise, all indices are taken modulo n. The all-
zeros, all-ones vector is denoted by 0, 1, respectively. The
Hamming distance between two vectors x and y is denoted
by dH (x, y). Similarly, the Hamming weight of a vector x
is denoted by wH (x). The pair distance between x and y is
denoted by dp(x, y) and is defined to be

dp(x, y) = dH (π(x), π(y)).

Accordingly, the pair weight of x is wp(x) = wH (π(x)).
A symbol-pair error in the i -th symbol of π(x) changes at
least one of the two symbols (xi , xi+1). Note that the following
connection between the pair distance and pair weight holds.

Proposition 1: For all x, y ∈ �n, dp(x, y) = wp(x + y).

YAAKOBI et al.: CONSTRUCTIONS AND DECODING OF CYCLIC CODES OVER b-SYMBOL READ CHANNELS 1543

Proof: Note that for x, y ∈ �n ,

dp(x, y) = dH (π(x), π(y)) = wH (π(x) + π(y))

= wH (π(x + y)) = wp(x + y).

A first observation on the connection between the Hamming
distance and pair distance was proved in [1].

Proposition 2 [1]: Let x, y ∈ �n be such that 0 <
dH (x, y) < n. Then,

dH (x, y) + 1 � dp(x, y) � 2dH (x, y).

For a code C, we denote its minimum Hamming distance
by dH (C). The symbol-pair code of C is the code

π(C) = {π(c) : c ∈ C}.
Similarly, the minimum pair distance of C, dp(C), is the
minimum Hamming distance of π(C), i.e.,

dp(C) = dH (π(C)).

From Proposition 2, if 0 < dH (C) < n then the following
connection between dH (C) and dp(C) is established [1]:

dH (C) + 1 � dp(C) � 2dH (C).

Example 1: In this example we choose the code C to be the
single parity-check code of length three, that is,

C = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
Thus, the symbol-pair code of C is

π(C) = {(00, 00, 00), (11, 10, 01), (10, 01, 11), (01, 11, 10)}.
The minimum Hamming distance of C is dH (C) = 2, while
the minimum pair distance of C is dp(C) = 3.

It was proved in [1] that if a code has minimum pair distance
dp(C) then it can correct

⌊
dp(C)−1

2

⌋
symbol-pair errors. There-

fore, the goal in constructing codes for the pair-read channel is
to achieve high minimum pair distance with respect to the min-
imum Hamming distance. It was shown in [1] that interleaving
two codes with minimum Hamming distance dH generates
a code with the same minimum Hamming distance dH but
with minimum pair distance 2dH . This construction generates
codes with the largest possible minimum pair distance with
respect to the minimum Hamming distance of the component
codes. However, it is not particularly attractive as, in general,
interleaving produces codes that suffer from a poor Hamming
distance relative to their codeword length. In [3] and [4],
maximum distance separable codes for the symbol-pair read
channel were proposed, and in [5], the decoding of symbol-
pair codes by syndrome decoding was studied.

Yet another interesting family of codes analyzed in [1] is the
class of linear cyclic codes. For such a code, C, with minimum
Hamming distance dH , it was proved that the minimum pair
distance is at least dH + 2. Using the Hartmann-Tzeng bound,
this lower bound was improved to dH + 3 when the code
length is a prime number. Our main goal in the next section
is to derive an improved lower bound on the minimum pair
distance of linear cyclic codes.

III. THE PAIR DISTANCE OF CYCLIC CODES

The goal of this section is to show that linear cyclic codes
provide large minimum pair distance. In order to do so, we first
give a method to determine the pair weight of a vector x.
A similar characterization of the pair weight was proved in [1]
(Theorem 2).

The key observation is that if xi = 1, then two symbol-
pairs in π(x), the (i − 1)-st and i -th symbol-pairs must be
non-zero. Of course, the condition xi−1 = 1 also causes the
(i −1)-st symbol-pair to be non-zero. Hence, as we increment
the index i , we can think of the condition (xi−1, xi) =
(0, 1) as contributing two new non-zero symbols to π(x),
whereas the condition (xi−1, xi) = (1, 1) contributes only
one. Therefore, in order to determine the weight of π(x), one
needs to determine the number of occurrences of the sequence
(xi−1, xi) = (0, 1) in the vector x, which we next show how
to do.

For x = (x0, x1, . . . , xn−1), we define

x′ = (x0 + x1, x1 + x2, . . . , xn−1 + x0). (1)

The next lemma provides a characterization of the pair weight
of a vector x.

Lemma 1: For any x ∈ �n, wp(x) = wH (x) + wH (x′)/2.
Proof: Let

S0 = {i : (xi , xi+1) �= (0, 0) and xi = 1},
S1 = {i : (xi , xi+1) �= (0, 0) and xi = 0}.

Hence, |S0| = wH (x), S0 ∩ S1 = ∅, and wp(x) = |S0| + |S1|.
For all 0 � i � n − 1, i ∈ S1 if and only if xi = 0 and
xi+1 = 1. In this case, x ′

i = xi + xi+1 = 1. Thus, we get

|S1| = ∣∣{i : xi = 0 and x ′
i = 1}∣∣.

Note that for any x ∈ �n ,
∣∣{i : xi = 0 and x ′

i = 1}∣∣ = ∣∣{i : xi = 1 and x ′
i = 1}∣∣,

and the sum of the cardinalities of these two sets is wH (x′).
Therefore, |S1| = wH (x′)

2 and

wp(x) = |S0| + |S1| = wH (x) + wH (x′)
2

.

Using Lemma 1, we now derive an improved lower bound
on the minimum pair distance of linear cyclic codes.

Theorem 1: Let C be a linear, cyclic code of dimension
greater than one. Then,

dp(C) � dH (C) +
⌈

dH (C)

2

⌉
.

Proof: Let x = (x0, . . . , xn−1) be a codeword in C.
Assume first that x �= 1. Since the code is cyclic,
(x1, . . . , xn−1, x0) ∈ C and thus

x′ = (x0, . . . , xn−1) + (x1, . . . , xn−1, x0) ∈ C.

Note that the weight of x′ is even and since x �= 1,
we have x′ �= 0. Hence wH (x′) � 2 �dH (C)/2�. Furthermore,
wH (x) � dH (C). It follows that

wp(x) = wH (x) + wH (x′)/2 � dH (C) +
⌈

dH (C)

2

⌉
.

1544 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

Next, assume that x = 1 is a codeword in C, in which case
wp(x) = n. We now show that if the dimension of C is greater
than one, then dH (C) � �2n/3�. This will imply that

dH (C) +
⌈

dH (C)

2

⌉
� �2n/3� + �n/3� = n = wp(x)

from which the theorem will follow.
Since the dimension of C exceeds one, it contains at

least three distinct non-zero codewords. Choose two of them,
x1 and x2. If it were true that dH (C) > �2n/3�, then it would
follow that wH (x1),wH (x2) � �2n/3� + 1, implying that

wH (x1 + x2) � 2n − (2 · �2n/3� + 1) � �2n/3�,
which is a contradiction. Therefore, we conclude that
dH (C) � �2n/3�, completing the proof.

IV. DECODING

From Theorem 1 we conclude that linear cyclic codes
have large minimum pair distance, thereby permitting the
correction of a large number of symbol-pair errors. It is
therefore of interest to construct efficient decoders for these
codes, which is the topic of this next section. First note that
since these codes are linear, it was shown in [5] how a modified
version of syndrome decoding can be used in order to correct
symbol-pair errors within the error correction capability of the
codes. However, since syndrome decoding suffers exponential
complexity, our goal is to provide more efficient decoders
whose complexity is of the same order as classical decoders
for cyclic codes.

Let C be a linear cyclic code with minimum distance
dH (C) = 2t + 1. Assume there is a decoder for C that can
correct up to t errors. We will show how to use this decoder
in the design of a decoder for the code π(C) which corrects
up to t0 = � 3t+1

2 � symbol-pair errors.
We assume that the dimension of C is greater than one. This

condition implies, according to the proof of Theorem 1, that
dH (C) � �2n/3�; that is, 2t + 1 � �2n/3�, or

t �
⌊�2n/3� − 1

2

⌋
< n/3.

It is straightforward to verify that t0 < n/2.
We define the decoder as a mapping DC : �n → C ∪ {F},

where F denotes a decoder failure. For a received word
y ∈ �n we write DC(y) = ĉ ∈ C ∪ {F}. If c ∈ C is the
transmitted word and dH (c, y) � t , then it is guaranteed that
ĉ = c. However, if dH (c, y) > t , then either ĉ is a codeword
different from c, whose Hamming distance from the received
word y is at most t , i.e., dH (̂c, y) � t , or ĉ = F , indicating
that no such codeword exists.

We now introduce another code that will play a role in the
symbol-pair decoder design. The double-repetition code of C is
the code defined by

C2 = {(c, c) : c ∈ C}.
Note that its length is 2n and its minimum Hamming distance
satisfies dH (C2) = 2dH (C). The code C2 can correct up to 2t
errors and we assume that it has a decoder DC2 : �n ×�n →
�n ∪ {F}. Every codeword in C2 consists of two identical

codewords from C and thus, for simplicity of notation, we
have assumed that when (̂c, ĉ) is a codeword at distance no
more than 2t from a received word (y1, y2), the decoder DC2

returns ĉ ∈ C. We defer the explicit design of the decoder DC2

to the end of the section.
Consider a codeword c ∈ C and let π(c) ∈ π(C) be its

corresponding symbol-pair vector. Let y = π(c) + e be a
received word, where e ∈ (� × �)n is the error vector with
weight wH (e) � t0 = � 3t+1

2 �. We will describe a decoder
Dπ : (� × �)n → {0, 1}n that can correct the error e.

The received vector has the form

y = (
(y0,0, y0,1), (y1,0, y1,1), . . . , (yn−1,0, yn−1,1)

)
.

We define three related vectors:

yL = (y0,0, . . . , yn−1,0),

yR = (y0,1, . . . , yn−1,1),

yS = yL + yR

= (
y0,0 + y0,1, . . . , yn−1,0 + yn−1,1

)
.

Since the vector y suffers at most t0 symbol-pair errors,
the vectors yL and yR each have at most t0 errors, as
well. One can think of yL as a noisy version of c =
(c0, c1, . . . , cn−1), and yR as a noisy version of a left-cyclic
shift of c, (c1, . . . , cn−1, c0). Therefore, yL and the right-
cyclic shift of yR , y(1)

R = (yn−1,1, y0,1, . . . , yn−2,1), can
be viewed as two noisy versions of the same codeword c.
Furthermore, the vector yS has at most t0 errors with respect
to the codeword c′ = (c0 + c1, . . . , cn−1 + c0). In general,
the codeword c′ does not uniquely determine the value of c.
However, we will now show that, in this setting, it does. This
result, which we will make use of in the development of the
decoding algorithm Dπ , is proved in the following lemma.

Lemma 2: In the symbol-pair read channel setting
described above, if the codeword c′ ∈ C is successfully
recovered, then we can uniquely determine the codeword c.

Proof: Since the word c′ is decoded successfully, we know
the value of

c′ = (c′
0, c′

1, . . . , c′
n−1) = (c0 + c1, c1 + c2, . . . , cn−1 + c0).

The codeword c satisfies ci = c0 + ∑i−1
j=0 c′

j . Hence if we
define c̃ = [̃c0, . . . , c̃n−1] by c̃0 = 0 and for 1 � i � n − 1,
c̃i = ∑i−1

j=0 c′
j , then the codeword c is either c̃ or c̃ + 1,

depending on the value of c0. The distance between yL and c
is at most t0 and dH (c, c + 1) = n. Recalling that t0 < n/2,
we have

dH (yL , c + 1) = n − t0 > t0.

Hence, if dH (yL, c̃) < dH (yL , c̃ + 1), then c = c̃; otherwise,
c = c̃ + 1. In either case, we can recover the codeword c.

For convenience, we denote the codeword c obtained from
the codeword c′ by the method of Lemma 5 as c′∗; That is,
c′∗ = c.

The number of symbol-pair errors in the vector y is at
most t0. Each symbol-pair error corresponds to one or two-bit
errors in the symbol-pair. We let E1 be the number of single-
bit symbol-pair errors and E2 be the number of double-bit

YAAKOBI et al.: CONSTRUCTIONS AND DECODING OF CYCLIC CODES OVER b-SYMBOL READ CHANNELS 1545

symbol-pair errors, where E1 + E2 � t0. Thus, the number of
errors in yS is E1 and the number of errors in (yL , y(1)

R) is
E1 + 2E2.

The following result will also play a role in the validation
of the symbol-pair error decoding algorithm.

Lemma 3: If c ∈ C, y = π(c) + e, and wH (e) � t0, then
either DC(yS) = c′ or DC2((yL , y(1)

R)) = c.
Proof: If E1 � t , then the decoder DC(yS) is successful.

Otherwise, E1 � t + 1 and E2 � t0 − (t + 1), so the number
of errors in (yL , y(1)

R) satisfies

E1 + 2E2 � t0 + t0 − (t + 1) = 2

⌊
3t + 1

2

⌋
− (t + 1) � 2t .

This implies that the decoder DC2((yL , y(1)
R)) is successful.

From Lemma 3, we know that at least one of the two
decoders, DC and DC2 , succeeds. However, it is not obvious
which one of them does, and the main task of the algorithm
underlying the decoder mapping Dπ , which we now describe,
is to identify the successful decoder.

Given a received vector y, the decoder output Dπ (y) = ĉ
is calculated as follows.
Decoder Dπ :

Step 1. c1 = DC(yS), e1 = dH (c1, yS).
Step 2. c2 = DC2

(
(yL , y(1)

R)
)
, e2 = dH ((c2, c2),

(yL , y(1)
R)).

Step 3. If c1 = F or wH (c1) is odd then ĉ = c2.
Step 4. If e1 � � t+2

2 �, then ĉ = c∗
1.

Step 5. If e1 > � t+2
2 �, let e1 = � t+2

2 �+a, (1 � a � � t
2�−1)

a) If e2 � t0 + a then ĉ = c2,
b) Otherwise, ĉ = c∗

1.

The correctness of the decoder is proved in the next
theorem.

Theorem 2: The decoder output satisfies Dπ(y) = ĉ = c.
Proof: According to Lemma 3, at least one of the

two decoders in Steps 1 and 2 succeeds. Steps 3–5 help to
determine which of the two decoders succeeds.

Step 3: Since yS is a noisy version of the codeword c′, the
decoding operation in Step 1 attempts to decode c′, which,
we recall, has even weight. If either c1 = F or the Hamming
weight of c1 is odd, then this decoding operation necessarily
fails, implying that the decoding operation in Step 2 was
successful. If we reach Steps 4 and 5 then wH (c1) must be
even.

Step 4: We now show that if e1 � � t+2
2 �, then

E1 � � t+2
2 � as well, and therefore the decoding operation

in Step 1 succeeded. In order to see this, first note that the
minimum Hamming distance of the code C is 2t +1. If there is
a miscorrection in Step 1, then the word yS is miscorrected to
some codeword of even weight. The weight of the error vector
found in Step 1, e1, is at most � t+2

2 �. Since the minimum
Hamming distance of the code C is 2t + 1, the number E1 of
actual errors in yS satisfies

E1 � 2t + 2 −
⌊

t + 2

2

⌋
=

⌈
3t

2

⌉
+ 1 > t0,

contradicting the fact that the number of errors in yS is at
most t0. Therefore, the condition on e1 implies that the

decoding operation c1 = DC(yS) = c′ succeeds, and accord-
ing to Lemma 2, we can conclude that

ĉ = c∗
1 = c′∗ = c.

Step 5: We are left with the case where e1 > � t+2
2 �. Since

e1 � t , we can write e1 = � t+2
2 �+ a, where 1 � a � � t

2�− 1.
Assume the decoding in Step 2 fails. Then, according to

Lemma 3, the decoding operation c1 = DC(yS) succeeds,
implying that

E1 = e1 =
⌊

t + 2

2

⌋
+ a.

The value of E2 then satisfies

E2 � t0 −
(⌊

t+2

2

⌋
+ a

)
=

⌊
3t+1

2

⌋
−

⌊
t+2

2

⌋
−a � t−a.

The total number of errors in (yL , y(1)
R) is

E1 + 2E2 � t0 + t − a =
⌊

5t + 1

2

⌋
− a.

Since the decoder DC2((yL , y(1)
R)) fails and the minimum

distance of C2 is 4t + 2, it follows that the weight of the
error vector in Step 2, e2, must satisfy

e2 � 4t + 2 − (E1 + 2E2) � 4t + 2 −
(⌊

5t + 1

2

⌋
− a

)

�
⌊

3t + 1

2

⌋
+ a + 1 = t0 + a + 1.

Hence, we conclude that if e2 � t0 + a, then the decoder
in Step 2 must succeed.

Alternatively, assume the decoding in Step 1 fails. As in
Step 4, this means that the number of errors E1 in yS is at least

E1 � 2t + 2−
(⌊

t+2

2

⌋
+a

)
=

⌈
3t

2

⌉
−(a−1) = t0−(a−1).

Since E1+E2 � t0, it follows that E2 satisfies 0 � E2 � a−1,
and E1+2E2, the total number of errors in (yL , y(1)

R), satisfies

t0 − (a − 1) � E1 + 2E2 = (E1 + E2) + E2 � t0 + a − 1.

Thus, the decoding operation DC2((yL , y(1)
R)) succeeds, and

t0 − (a − 1) � e2 � t0 + a − 1.

Hence, if e2 > t0+a, then the decoder in Step 1 must succeed.
That completes the explanation of the assignments in a) and b)
of Step 5.

We demonstrate the decoding algorithm in the following
example.

Example 2: In this example we choose the code C to be the
cyclic binary triple-error correcting BCH code of length 15,
so dH (C) = 7, dp(C) = 7 + � 7

2� = 11, t = 3, and t0 = 5.
Thus the code can correct 5 symbol-pair errors. Assume the
stored word is the all zeros codeword 0.

Let y be the received vector

y = (00, 11, 10, 00, 00, 00, 11, 00, 10, 00, 00, 11, 00, 00, 00).

1546 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

Then,

yL = (0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0),

yR = (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0),

yS = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

and

y(1)
R = (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0).

In Step 1 of the decoding algorithm we calculate

c1 = DC(yS), e1 = dH (c1, yS).

Since yS suffered two errors and the decoder DC can decode
at most three errors, we get c1 = 0 and e1 = 2. In Step 2 we
calculate

c2 = DC2

(
(yL , y(1)

R)
)
, e2 = dH ((c2, c2), (yL , y(1)

R)).

The word (yL , y(1)
R) suffered eight errors and since the code C2

has minimum distance 14, the decoder DC2 can successfully
correct at most six errors. Hence, the output c2 is either F ,
indicating there is no codeword of distance at most six from
(yL , y(1)

R), or some codeword c2 such that e2 = 6. The
condition in Step 3 fails, but the condition in Step 4 holds
because e1 = 2 = ⌊ 3+2

2

⌋ = 2. Therefore, we conclude that the
decoder in Step 1 succeeds and we can decode the codeword
as ĉ = 0∗ = 0. Note that the operation 0∗ can result in
either 0 or 1, but we can eliminate the word 1 as its distance
from the received word is too large.

As another example, consider the received vector y given by

y = (10, 00, 01, 00, 10, 00, 00, 00, 00, 10, 00, 00, 00, 10, 00),

with associated vectors

yL = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0),

yR = (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

yS = (1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0),

y(1)
R = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The word yS suffered five errors, so in Step 1 the decoded
word c1 is either the failure symbol F or some codeword of
weight seven or eight with distance either two or three from
yS , respectively. Let us assume for this example that c1 is a
codeword of weight eight and e1 = 3.

The input word (yL, y(1)
R) suffered five errors; therefore,

in Step 2 the decoder operation DC2

(
(yL , y(1)

R)
)

succeeds,
so c2 = 0 and e2 = 5. Now the conditions in Steps 3 and 4 do
not hold, so Step 5 will determine which decoder succeeds.
First, we see that a = 1 and so e2 = 5 < 5 + 1 = t0 + a.
Hence, the condition in Step 5a) holds and we conclude that
the second decoder succeeds, i.e., ĉ = 0.

To complete the decoder presentation, we return to the
construction of the decoder DC2 . This decoder receives two
vectors, y1 = (y1,0, . . . , y1,n−1) and y2 = (y2,0, . . . , y2,n−1).
Each is a noisy version of some codeword c ∈ C, and the goal
is to correct a total of 2t errors in the two vectors. We define
the vector ỹ = (ỹ0, . . . , ỹn−1) such that for all 0 � i � n − 1,
ỹi = y1,i if y1,i = y2,i , and otherwise ỹi =? to indicate an

erasure. If the number of errors in ỹ is τ and the number of
erasures is ρ, then we have 2τ +ρ � 2t = d(C)− 1, which is
within the error and erasure correcting capability of C. We are
left only with the problem of defining a decoder that corrects
errors and erasures for cyclic codes. For that, we refer the
reader to, for example, [14], [16]. Alternatively, we can treat
the code C2 as a concatenated code where the inner code is
simply the repetition code of length two. A general technique
for decoding concatenated codes is described in [15, Ch. 12].

A symbol-pair error can change the value of either a single
bit or both bits in a pair-read symbol. However, the knowledge
on the maximum number of symbol-pair errors from each kind
may be known in advance. For example, a symbol-pair error
which corrupts only a single bit can be a result of a bit that was
written erroneously to the media, while the two bits may be in
error as a result of a reading noise. Thus, we consider codes
that distinguish between these two types of errors. Specifically,
we say that a code is a (t1, t2) symbol-pair error-correcting
code if it can correct up to t1 single-bit symbol-pair errors and
up to t2 double-bit symbol-pair errors.

Our discussion of (t1, t2) symbol-pair error-correcting codes
uses as a point of departure a given binary cyclic linear code C
with minimum Hamming distance dH (C) and a decoder DC .
The next theorem provides a condition on dH (C) that implies
the code C is a (t1, t2) symbol-pair error-correcting code.

Theorem 3: A binary linear cyclic code C of length n
and minimum distance dH (C) is a (t1, t2) symbol-pair error-
correcting code if

dH (C) � min {t1 + 2t2 + 1, 2t1 + 1} ,

and t1 + t2 < n/2.
Proof: We now examine two different approaches to

correct such errors.
1) The first approach uses the decoder DC2 of the double-

repetition code of C, as introduced earlier in this section.
This decoder will need to correct t1 + 2t2 errors and
therefore

dH (C2) = 2dH (C) � 2(t1 + 2t2) + 1,

or

dH (C) � t1 + 2t2 + 1.

2) The second approach uses the decoder DC that we
applied to the vector yS , also previously described.
This decoder is required to correct t1 errors and thus
dH (C) = 2t1 + 1. Note that according to Lemma 2, the
condition t1 + t2 < n/2 guarantees a successful recovery
of the stored codeword c based upon the decoding of c′.

We conclude that if the condition in the theorem statement
holds, we can choose either of these two approaches as the
basis for a successful decoder.

From Theorem 3, we conclude that knowing the values
of t1 and t2 significantly simplifies the decoder operation
since we know which of the two decoders to apply in order
to correct the symbol-pair errors. However, this knowledge
may also reduce the lower bound on the required minimum
Hamming distance of the code C, and thus the required

YAAKOBI et al.: CONSTRUCTIONS AND DECODING OF CYCLIC CODES OVER b-SYMBOL READ CHANNELS 1547

code redundancy. To see this, assume that we construct a
(t1, t2) symbol-pair error-correcting code using a linear cyclic
code C which corrects t1+t2 symbol-pair errors. Then, accord-
ing to Theorem 1, its minimum Hamming distance dH (C) is
required to satisfy

dH (C) +
⌈

dH (C)

2

⌉
� 2(t1 + t2) + 1. (2)

On the other hand, according to Theorem 3, dH (C) must
be greater than or equal to min {t1 + 2t2 + 1, 2t1 + 1}. It is
straightforward to verify that for any two non-negative integers
t1 and t2, this lower bound on dH (C) is no greater than the
lower bound on dH (C) implied by (2).

To conclude the discussion in this section, we note that the
presented decoder Dπ uses two decoders: the first one is DC
for the code C and the second is DC2 for the code C2. Since
there is no specific requirement for these decoders besides
their error and erasure correction capability, we can use any of
the existing decoders for cyclic codes. Hence, the complexity
of the decoder Dπ will be of the same order as that of the
best decoders for cyclic codes. This provides a significant
improvement upon the syndrome-type decoder for linear codes
which was given in [5].

Finally, we note that a decoding approach similar to the one
discussed above was presented in [17]. The goal in [17] was
to use binary linear cyclic error-correcting codes in order to
detect and correct multiple binary bursts whose total weight
is limited. The decoder design exploited the property that, in
a linear cyclic code, if c is a codeword then so is c′. Thus,
decoding of at least c and c′ has to succeed.

In the next section, we extend some of our results on
the symbol-pair read channel to b-symbol read channels,
with b � 3.

V. EXTENSIONS TO b-SYMBOL READ CHANNEL

In this section, we study the b-symbol read channel,
3 � b < n, where b symbols are sensed in each read operation.
First, we formally define the b-symbol read channel model
and introduce the b-symbol distance function. We then prove
some of their basic properties, along the lines of those of
the symbol-pair read channel model and symbol-pair distance.
Next, we turn to constructions of codes for the b-symbol
read channel. Generalizing results in [1], we analyze the
b-symbol distance properties of codes obtained by interleaving
b component codes, and then describe a decoding algorithm
that decodes up to the decoding radius. Finally, we study
b-symbol properties of two specific families of codes, namely
the codes corresponding to the entire space of codewords, �n ,
and the linear cyclic Hamming codes of length n = 2m − 1,
m � 3.

A. Basic Properties

For b � 3, the b-symbol read vector corresponding to the
vector x = (x0, x1, . . . , xn−1) ∈ �n is defined as

πb(x) = [(x0, . . . , xb−1), . . . , (xn−1, x0, . . . , xb−2)] ∈ (
�b)n

.

We refer to the elements of πb(x) as b-symbols. The b-symbol
distance between x and y, denoted by db(x, y), is defined as

db(x, y) = dH (πb(x), πb(y)).

For simplicity, we sometimes refer to this as the b-distance.
Similarly, we define the b-weight of the vector x as
wH (πb(x)). As was the case for the symbol-pair distance,
it is easy to see that db(x, y) = wb(x + y), for all x, y. For
convenience of notation, if the i -th symbol πb(x)i of πb(x) is
not the all-zero b-tuple, we will write πb(x)i �= 0.

The following proposition is a natural generalization of
Proposition 2.

Proposition 3: Let x ∈ �n be such that 0 < wH (x) �
n − (b − 1). Then,

wH (x) + b − 1 � wb(x) � b · wH (x).

Proof: Let S = {i : xi �= 0}, so |S| = wH (x). Since every
symbol xi ∈ x appears in b elements of πb(x), the number of
non-zero b-symbols in πb(x) is at most |S| · b = wH (x) · b,
implying the upper bound wb(x) � b · wH (x).

To prove the lower bound, we consider two cases. First,
assume that x has no set of b or more consecutive zeros. Then,
for every index i , we have πb(x)i �= 0, and thus wb(x) = n.
This implies that

wH (x) + b − 1 � n − (b − 1) + (b − 1) = n = wb(x).

Next, consider the case where x does contain a sequence of at
least b consecutive zeros. Since, by assumption, wH (x) > 0,
we can find an index k such that xk = xk+1 = · · · =
xk+b−1 = 0 and xk+b = 1. Therefore, for all k + 1 � i �
k + b − 1, we have πb(x)i �= 0. Furthermore, for all i such
that xi = 1, we also have πb(x)i �= 0. It follows that

wb(x) � wH (x) + b − 1.

Our next goal is to suitably generalize Lemma 1, giving a
useful characterization of wb(x) for arbitrary b � 3. In order
to do this, we introduce for every x ∈ �n an auxiliary vector
x̂ ∈ �n , obtained from x by inverting every sequence of b−2
or fewer consecutive zeros in x. More formally, we define x̂
as follows. If (xi , xi+1, . . . , xi+k , xi+k+1) = (1, 0, . . . , 0, 1)
for some 0 � i � n − 1 and k � b − 2, then x̂ j = 1 − x j = 1
for i + 1 � j � i + k. For all other values of j , x̂ j = x j .

Example 3: Assume b = 4 and let x = (0, 1, 1, 0, 0,
0, 1, 0). Then

x̂ = (1, 1, 1, 0, 0, 0, 1, 1).

Note that the sequence of consecutive zeros beginning at
position 3 has length b − 1 = 3 and therefore these zeros
remain unchanged in x̂, while the sequence of cyclically
consecutive zeros beginning at position 7 has length 2 <
b − 1 = 3 and therefore these zeros are changed to ones.

Now, we state and prove the generalization of Lemma 1
for b � 3.

Lemma 4: For any x ∈ �n and positive integer b � 3,

wb(x) = wH (̂x) + (b − 1) · wH (̂x′)
2

.

1548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

Proof: Let us first show that wb(x) = wb (̂x). The only
positions j for which πb(x) j and πb (̂x) j differ are those for
which πb(x) j = (x j , . . . , x j+b−1) contains a zero bit in a
length-(k + 2) sequence of the form

(xi , xi+1, . . . , xi+k , xi+k+1) = (1, 0, . . . , 0, 1)

where k � b − 2. The zero bits xi+1, . . . , xi+k appear in the
j -th symbol of πb(x) for i −b+2 � j � i +k. However, since
xi = xi+k+1 = 1, in this range of values of j , we see that
both πb(x) j �= 0 and πb (̂x) j �= 0. For all other positions j ,
the corresponding bits of πb(x) j and πb (̂x) j are the same and
thus πb(x) j �= 0 if and only if πb (̂x) j �= 0.

Next, we determine the value of wb (̂x), making use of the
fact that any sequence of consecutive zeros in x̂ has length at
least b − 1. Let

S0 = {i : πb (̂x)i �= 0, x̂i = 1},
S1 = {i : πb (̂x)i �= 0, x̂i = 0, x̂i+1 = 1},

...

Sb−2 = {i : πb (̂x)i �= 0, x̂i = · · · = x̂i+b−3 = 0, x̂i+b−2 = 1},
Sb−1 = {i : πb (̂x)i �= 0, x̂i = · · · = x̂i+b−2 = 0, x̂i+b−1 = 1}.

Clearly, wH (̂x) = |S0| and, since Sj ∩ S� = ∅, for all
0 � j < � � b − 1, we also have

wb (̂x) = | ∪b−1
i=0 Si | =

b−1∑

i=0

|Si |.

Let us now show that for all 2 � � � b − 1, |S1| = |S�|.
If i ∈ S1 then (̂xi , x̂i+1) = (0, 1). Since there is no sequence
of less than b − 1 consecutive zeros

(̂xi−(b−2), . . . , x̂i , x̂i+1) = (0, . . . , 0, 1)

and thus i − (�−1) ∈ S�. Hence, |S�| � |S1|. For the opposite
inequality, note that if i ∈ S�, � � 1, then

(̂xi , x̂i+1, . . . , x̂i+�−1, x̂i+�) = (0, . . . , 0, 1).

Therefore (̂xi+�−1, x̂i+�) = (0, 1), so i + �− 1 ∈ S1, implying
that |S1| � |S�|. Hence, |S1| = |S�| for all 2 � � � b − 1.
Remember that the vector x̂′ is defined according to (1) to be
the vector

x̂′ = (̂x0 + x̂1, x̂1 + x̂2, . . . , x̂n−1 + x̂0),

and hence as in the proof of Lemma 1, |S1| = wH (̂x′)
2 , so we

can conclude that

wb (̂x) =
b−1∑

�=0

|Si | = wH (̂x) + (b − 1) · wH (̂x′)
2

.

Example 4: Assume b = 4 and let x = (1, 0, 0, 0, 1,
0, 0, 1). Then wH (x) = 3,

π4(x) = [1000, 0001, 0010, 0100, 1001, 0011, 0110, 1100],
and, therefore, w4(x) = 8. It is easy to verify that the
inequalities in Proposition 3 hold.

We also see that

x̂ = [1, 0, 0, 0, 1, 1, 1, 1]

and

x̂′ = [1, 0, 0, 1, 0, 0, 0, 0],
so wH (̂x) = 5 and wH (̂x′) = 2. The relationship in Lemma 4
is clearly seen to hold.

In analogy to the definition of symbol-pair codes, we define
the b-symbol read code of a code C over � to be the code
πb(C) = {πb(c) : c ∈ C} over �b . The minimum b-distance
of C, db(C), is given by db(C) = dH (πb(C)), where the
Hamming distance is over the alphabet �b. Referring to
Proposition 3, we see that if 0 < dH (C) � n − (b − 1), then

dH (C) + b − 1 � db(C) � b · dH (C). (3)

A b-symbol error in the i -th symbol of πb(c) changes at least
one of the b symbols in the vector πb(c)i = (xi , . . . , xi+b−1).
Using the same reasoning as in the proof of Proposition 3
in [1], we see that a code C can correct any t b-symbol errors
if db(C) � 2t + 1.

In the next section, we study the b-distance of a code
constructed by interleaving. We note that an extension of
Theorem 1 is not straightforward to derive in this case.
Namely, if c is a codeword in a linear cyclic code C, then
the vectors ĉ and ĉ′ do not necessarily belong to the code C,
and hence it is not possible to use Lemma 4 to derive a bound
on the minimum b-distance of a binary cyclic code.

B. Code Construction by Interleaving
The interleaving scheme studied in [1] generates codes C

that satisfy dp(C) = 2dH (C). We will next show how this
construction can be generalized for arbitrary b � 3, so we
generate codes which satisfy db(C) = b · dH (C). This result
approves also that the upper bound on the minimum b-distance
stated in (3) is tight. The standard notation of (n, M, d)
will be used to denote the parameters of a binary code of
length n, size M , and minimum distance d . Given a collection
of b codes C0, . . . , Cb−1, where for 0 � i � b − 1 the code
Ci has parameters (n, Mi , di), their interleaved code C is a
(bn,�b−1

i=0 Mi , min0�i�b−1{di }) code defined as follows:

C = {(c0,0, . . . , cb−1,0, c0,1, . . . , cb−1,1, . . . , c0,n−1, . . . ,

cb−1,n−1) : ci =(ci,0, . . . , ci,n−1) ∈ Ci , for 0� i �b−1}.
Theorem 4: Let C0, . . . , Cb−1 be a set of b binary codes

with respective parameters (n, Mi , di), for 0 � i � b − 1.
Then their interleaved code C satisfies

db(C) = b · dH (C) = b · min
0�i�b−1

{di }.
Proof: Every codeword in c ∈ C has the form

c = (c0,0, . . . , cb−1,0, c0,1, . . . , cb−1,1, . . . ,

c0,n−1, . . . , cb−1,n−1),

obtained by interleaving codewords

ci = (ci,0, . . . , ci,n−1) ∈ Ci , 0 � i � b − 1.

If c �= 0, then ci �= 0 for some 0 � i � b − 1. The symbols
in ci are separated by at least b positions from one another in c
and, therefore, there are at least b · wH (ci) symbols in πb(c)
that are non-zero. That is,

wb(c) � b · wH (ci) � b · min
0�i�b−1

{di} = b · dH (C).

YAAKOBI et al.: CONSTRUCTIONS AND DECODING OF CYCLIC CODES OVER b-SYMBOL READ CHANNELS 1549

The opposite inequality follows from the fact that there is a
codeword c ∈ C such that wH (c) = dH (C) and, according to
Proposition 3,

wb(c) � b · wH (c) = b · dH (C).

We conclude that db(C) = b · dH (C), as claimed.
According to the remark at the end of the previous sub-

section, Theorem 4 implies that the interleaved code C can
correct any �(db(C)−1)/2� b-symbol errors. We now describe
a decoding algorithm for C that achieves this decoding radius.

For a length-n vector c = (c0, . . . , cn−1) we define the
length-bn vector

(c)b = (c0, . . . , c0, . . . , cn−1, . . . , cn−1)

obtained by repeating b times each bit in c. Now, for each
component code Ci , 0 � i � b − 1, of the interleaved code C,
we let (Ci)b be the length-bn code

(Ci)b = {(c)b : c ∈ Ci }.
If Ci is an (n, Mi , di) code, then (Ci)b is a (bn, Mi , bdi) code.
We assume that the code Ci has a bounded distance decoder Di

that corrects errors of weight up to the decoding radius. Since
the code (Ci)b can be interpreted as a concatenation of an outer
code Ci and an inner b-repetition code, we can also assume
that (Ci)b has a decoder (Di)b that can correct up to � bdi−1

2 �
errors; for more details on constructing the decoder (Di)b from
decoder Di , we again refer the reader to [15, Ch. 12].

Assume that the stored codeword c ∈ C is

c = (c0,0, . . . , cb−1,0, c0,1, . . . , cb−1,1, . . . ,

c0,n−1, . . . , cb−1,n−1),

where ci = (ci,0, ci,1, . . . , ci,n−1) ∈ Ci for all 0 � i � b − 1.
Let πb(C) be the b-symbol read vector of c, and let y be the
length-bn received vector. We represent y as

y = (y0, . . . , ybn−1)

where y j = (y j,0, . . . , y j,b−1), for 0 � j � bn − 1, and we
make the assumption that

dH (y, πb(c)) � �(db(C) − 1)/2�.
If we index the bit positions in c from 0 to bn−1, the bit ci, j

in c lies in position (jb+ i), for 0 � i � b−1, 0 � j � n−1.
Each bit ci, j is read b times, corresponding to the components
y jb+i−(b−1),b−1, . . . , y jb+i−1,1, and y jb+i,0 that belong to
the b-symbols y j b+i−(b−1), . . . , y j b+i−1, and y j b+i , respec-
tively.

Next, we combine these estimates of ci, j into a binary
vector yi, j for 0 � i � b − 1, 0 � j � n − 1, where

yi, j = (y jb+i−(b−1),b−1, . . . , y jb+i−1,1, y jb+i,0).

Finally, the vector y, treated as a binary vector, is partitioned
into the following b vectors, each of length bn bits,

yi = (yi,0, yi,1, . . . , yi,n−1),

for 0 � i � b − 1.
Lemma 5: For 0 � i � b − 1,

dH
(

yi , (ci)b
)

� �(db(C) − 1)/2�

where dH denotes the Hamming distance over the binary
alphabet �.

Proof: First, note that, for 0 � i � b − 1, every yi is a
noisy version of the codeword

(ci)b = (ci,0, . . . , ci,0, . . . , ci,n−1, . . . , ci,n−1) ∈ (Ci)b.

Furthermore, every b-symbol error in y can change at most one
of the bits in every yi and thus the binary Hamming distance
between (ci)b and yi is at most �(db(C) − 1)/2�, that is,

dH
(

yi , (ci)b
)

� �(db(C) − 1)/2�.

Finally, from Theorem 4, we have

�(db(C) − 1)/2� = �(b · dH (C) − 1)/2� � �(b · di − 1)/2�,
for all i with 1 � i � b, which implies that the decoder (Di)b

can successfully decode the word yi . Thus, for 0 � i � b −1,
the codeword ci is successfully decoded and, therefore, so is
the codeword c.

C. Codes With Small Minimum Hamming Distance

In this section we study the minimum b-distance of two
special classes of codes. The first class corresponds to the
“complete” codebooks �n and the second to the linear cyclic
Hamming codes.

Given a length-n vector over �b , the majority decoder
outputs for each b-symbol the majority value among its b
constituent bits, or ? if b is even and the number of zeros
and ones is equal. The following lemma provides the minimum
b-distance of the code �n and proves that the majority decoder
can be used to decode up to the b-distance decoding radius.

Lemma 6: Let C = �n. For all b � 3, the minimum
b-distance satisfies db(C) = b and the majority decoder can
correct � b−1

2 � b-symbol errors.
Proof: Assume x is a non-zero vector, and let x̂ be as

defined in Section II. Then x̂ �= 0 and therefore wH (̂x) � 1.
If x �= 1, then wH (̂x′) � 2. Lemma 4 then implies that
wb(x) � 1 + (b − 1) · 2

2 = b. If x = 1, then wb(x) = n, and
the inequality follows from the fact that b < n. We conclude
that db(C) = b by noting that the codewords in πb(C)
corresponding to the b-symbol read vector of a weight-1 word
in C has b-weight b.

If there are � b−1
2 � symbol errors in the received version of

πb(x), then for every 0 � i � n −1, the bit xi of the vector x
is in error in at most � b−1

2 � of the b symbols that provide an
estimate of that bit. Thus, the majority decoder can be used
to recover every bit xi and, therefore, the vector x.

The following lemma considers the b-distance of linear
cyclic Hamming codes, providing a generalization of a result
in [1].

Lemma 7: If C is the linear cyclic Hamming code of length
n = 2m − 1 and b + 2 � m, then db(C) = 2b + 1.

Proof: Let x ∈ C be a non-zero codeword. We first
show that wb (̂x) � 2b + 1. Clearly, wH (̂x) � wH (x) � 3.
Assume that x̂ �= 1, so wH (̂x′) is a positive even integer.
If wH (̂x′) � 4, then according to Lemma 4, we have wb(x) �
3 + (b − 1) · 4

2 = 2b + 1. If wH (̂x′) = 2, then x̂ contains

1550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

a single sequence of consecutive ones, whose length � must
satisfy � � m. Otherwise, if � < m, the non-zero entries of
the codeword x would be confined to at most m −1 locations.
If g(x) is a generator polynomial of degree m for the code, this
would mean there exists a non-zero polynomial of degree at
most m −1 which is a multiple of g(x), which is not possible.
Therefore, Lemma 4 implies that wb (̂x) � m + (b − 1) · 2

2 =
m + b − 1 � 2b + 1. Finally, we note that if x̂ = 1, then
wb (̂x) = n � 2b + 1 for b � 3 and m � b + 2.

To show that db(C) = 2b + 1, we note that C contains a
weight-3 codeword x with two consecutive ones. For such a
codeword, the b-weight is exactly 2b + 1.

VI. CONCLUSION

In this paper, we studied the symbol-pair read channel and
developed an improved lower bound on the minimum pair
distance of linear cyclic codes. We then developed an efficient,
bounded distance decoding algorithm that corrects a number
of symbol-pair errors up to the decoding radius corresponding
to this bound. Finally, we studied properties of the b-symbol
read channel model, for b � 3, and the associated b-distance.
We then considered several constructions of codes for the
b-symbol read channel, computed their minimum b-distance,
and in several cases proposed effective bounded distance
decoding algorithms.

Clearly, the results in this paper do not solve all problems
related to b-symbol read channels. In particular, it is not clear
whether the lower bound on the minimum pair-distance of
a linear cyclic code in Theorem 1 can be improved, and
possible improvement in the b-distance case remains open, as
well. There is also a need for additional code constructions
beyond interleaving and those based on codes with small
minimum Hamming distance. Simplified decoding algorithms
for specific codes in the b-symbol error correction setting
are also of interest. Finally, several other topics relating to
b-symbol error-correcting codes have not been explored, such
as the existence of perfect codes, tight upper bounds on
code cardinalities, and optimal code constructions with some
prescribed minimum b-distance.

ACKNOWLEDGEMENT

The authors thank Yuval Cassuto for helpful discussions on
the symbol-pair read channel and Ryan Gabrys for bringing
reference [17] to their attention. They also thank two anony-
mous reviewers and the Associate Editor Prof. Yongyi Mao
for their valuable comments and suggestions.

REFERENCES

[1] Y. Cassuto and M. Blaum, “Codes for symbol-pair read channels,” IEEE
Trans. Inf. Theory, vol. 57, no. 12, pp. 8011–8020, Dec. 2011.

[2] Y. Cassuto and S. Litsyn, “Symbol-pair codes: Algebraic construc-
tions and asymptotic bounds,” in Proc. IEEE Int. Symp. Inf. Theory,
St. Petersburg, Russia, Jul./Aug. 2011, pp. 2348–2352.

[3] Y. M. Chee, H. M. Kiah, and C. Wang, “Maximum distance separable
symbol-pair codes,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge,
MA, USA, Jul. 2012, pp. 2886–2890.

[4] Y. M. Chee, L. Ji, H. M. Kiah, C. Wang, and J. Yin, “Maximum distance
separable codes for symbol-pair read channels,” IEEE Trans. Inf. Theory,
vol. 59, no. 11, pp. 7259–7267, Nov. 2013.

[5] M. Hirotomo, M. Takita, and M. Morii, “Syndrome decoding of
symbol-pair codes,” in Proc. IEEE Inf. Theory Workshop, Hobart, TAS,
Australia, Nov. 2014, pp. 162–166.

[6] E. Konstantinova, “Reconstruction of signed permutations from their
distorted patterns,” in Proc. IEEE Int. Symp. Inf. Theory, Adelaide, SA,
Australia, Sep. 2005, pp. 474–477.

[7] E. Konstantinova, V. I. Levenshtein, and J. Siemons. (Feb. 2007).
“Reconstruction of permutations distorted by single transposition
errors.” [Online]. Available: http://arxiv.org/abs/math/0702191

[8] V. I. Levenshtein, “Reconstruction of objects from a minimum number
of distorted patterns,” Doklady Math., vol. 55, no. 3, pp. 417–420, 1997.

[9] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.
Inf. Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.

[10] V. I. Levenshtein, “Efficient reconstruction of sequences from their
subsequences or supersequences” J. Combinat. Theory A, vol. 93, no. 2,
pp. 310–332, 2001.

[11] V. I. Levenshtein and J. Siemons, “Error graphs and the reconstruction
of elements in groups,” J. Combinat. Theory A, vol. 116, no. 4,
pp. 795–815, 2009.

[12] S. Motahari, G. Bresler, and D. Tse. (Feb. 2013). “Information the-
ory of DNA shotgun sequencing.” [Online]. Available: http://arxiv.
org/abs/1203.6233

[13] S. Motahari, G. Bresler, and D. Tse, “Information theory for DNA
sequencing: Part I: A basic model,” in Proc. IEEE Int. Symp. Inf. Theory,
Cambridge, MA, USA, Jul. 2012, pp. 2741–2745.

[14] E. Orsini and M. Sala, “Correcting errors and erasures via the syndrome
variety,” J. Pure Appl. Algebra, vol. 200, nos. 1–2, pp. 191–226, 2005.

[15] R. M. Roth, Introduction to Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2005.

[16] H. Shahri and K. K. Tzeng, “On error-and-erasure decoding of cyclic
codes,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 489–496, Mar. 1992.

[17] S. E. Tavares and S. G. S. Shiva, “Detecting and correcting multiple
bursts for binary cyclic codes (Corresp.),” IEEE Trans. Inf. Theory,
vol. 16, no. 5, pp. 643–644, Sep. 1970.

[18] E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval in
associative memories,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge,
MA, USA, Jul. 2012, pp. 106–110.

[19] E. Yaakobi, J. Bruck, and P. H. Siegel, “Decoding of cyclic codes
over symbol-pair read channels,” in Proc. IEEE Int. Symp. Inf. Theory,
Cambridge, MA, USA, Jul. 2012, pp. 2891–2895.

[20] E. Yaakobi, M. Schwartz, M. Langberg, and J. Bruck, “Sequence
reconstruction for Grassmann graphs and permutations,” in Proc. IEEE
Int. Symp. Inf. Theory, Istanbul, Turkey, Jul. 2013, pp. 874–878.

Eitan Yaakobi (S’07–M’12) is an Assistant Professor at the Computer
Science Department at the Technion — Israel Institute of Technology.
He received the B.A. degrees in computer science and mathematics, and the
M.Sc. degree in computer science from the Technion — Israel Institute of
Technology, Haifa, Israel, in 2005 and 2007, respectively, and the Ph.D. degree
in electrical engineering from the University of California, San Diego, in 2011.
Between 2011-2013, he was a postdoctoral researcher in the department of
Electrical Engineering at the California Institute of Technology. His research
interests include information and coding theory with applications to non-
volatile memories, associative memories, data storage and retrieval, and voting
theory. He received the Marconi Society Young Scholar in 2009 and the Intel
Ph.D. Fellowship in 2010-2011.

YAAKOBI et al.: CONSTRUCTIONS AND DECODING OF CYCLIC CODES OVER b-SYMBOL READ CHANNELS 1551

Jehoshua Bruck (S’86–M’89–SM’93–F’01) is the Gordon and Betty Moore
Professor of computation and neural systems and electrical engineering at the
California Institute of Technology (Caltech). His current research interests
include information theory and systems and the theory of computation in
nature.

Dr. Bruck received the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology, in 1982 and 1985, respec-
tively, and the Ph.D. degree in electrical engineering from Stanford University,
in 1989.

His industrial and entrepreneurial experiences include working with IBM
Research where he participated in the design and implementation of the first
IBM parallel computer; cofounding and serving as Chairman of Rainfinity
(acquired in 2005 by EMC), a spin-off company from Caltech that created
the first virtualization solution for Network Attached Storage; as well as
cofounding and serving as Chairman of XtremIO (acquired in 2012 by EMC),
a start-up company that created the first scalable all-flash enterprise storage
system.

Dr. Bruck is a recipient of the Feynman Prize for Excellence in Teaching,
the Sloan Research Fellowship, the National Science Foundation Young
Investigator Award, the IBM Outstanding Innovation Award and the IBM
Outstanding Technical Achievement Award.

Paul H. Siegel (M’82–SM’90–F’97) received the S.B. and Ph.D. degrees in
mathematics from the Massachusetts Institute of Technology (MIT),
Cambridge, in 1975 and 1979, respectively. He held a Chaim Weizmann
Postdoctoral Fellowship at the Courant Institute, New York University. He was
with the IBM Research Division in San Jose, CA, from 1980 to 1995.
He joined the faculty at the University of California, San Diego in July 1995,
where he is currently Professor of Electrical and Computer Engineering
in the Jacobs School of Engineering. He is affiliated with the Center
for Magnetic Recording Research where he holds an endowed chair and
served as Director from 2000 to 2011. His primary research interests lie
in the areas of information theory and communications, particularly coding
and modulation techniques, with applications to digital data storage and
transmission. Prof. Siegel was a member of the Board of Governors of
the IEEE Information Theory Society from 1991 to 1996 and again from
2009 to 2014. He served as Co-Guest Editor of the May 1991 Special
Issue on “Coding for Storage Devices” of the IEEE TRANSACTIONS ON

INFORMATION THEORY. He served the same TRANSACTIONS as Associate
Editor for Coding Techniques from 1992 to 1995, and as Editor-in-Chief from
July 2001 to July 2004. He was also Co-Guest Editor of the May/September
2001 two-part issue on “The Turbo Principle: From Theory to Practice”
and the February 2016 issue on “Recent Advances in Capacity Approaching
Codes” of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.
Prof. Siegel was co-recipient, with R. Karabed, of the 1992 IEEE Information
Theory Society Paper Award and shared the 1993 IEEE Communications
Society Leonard G. Abraham Prize Paper Award with B. H. Marcus and
J.K. Wolf. With J. B. Soriaga and H. D. Pfister, he received the 2007 Best
Paper Award in Signal Processing and Coding for Data Storage from the
Data Storage Technical Committee of the IEEE Communications Society. He
was the 2015 Padovani Lecturer of the IEEE Information Theory Society.
Prof. Siegel is an IEEE Fellow and a member of the National Academy of
Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

