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Abstract— The pivotal storage density win achieved by
solid-state devices over magnetic devices in 2015 is a result
of multiple innovations in physics, architecture, and signal
processing. One of the most important innovations in that
regard is enabling the storage of more than one bit per cell
in the Flash device, i.e., having more than two charge levels
per cell. Constrained coding is used in Flash devices to increase
reliability via mitigating inter-cell interference that stems from
charge propagation among cells. Recently, capacity-achieving
constrained codes were introduced to serve that purpose in
modern Flash devices, which have more than two levels per cell.
While these codes result in minimal redundancy via exploiting
the underlying physics, they result in non-negligible complexity
increase and access speed limitation since pages cannot be read
separately. In this paper, we suggest new constrained coding
schemes that have low-complexity and preserve the desirable high
access speed in modern Flash devices. The idea is to eliminate
error-prone patterns by coding data either only on the left-most
page (binary coding) or only on the two left-most pages (4-ary
coding) while leaving data on all the remaining pages uncoded.
Our coding schemes work for any number of levels q ≥ 4 per
cell, offer systematic encoding and decoding, and are capacity-
approaching. Since the proposed schemes enable the separation
of pages, except the two left-most pages in the case of 4-ary
coding, we refer to them as read-and-run (RR) constrained coding
schemes as opposed to schemes adopting read-and-wait for other
pages. The 4-ary RR coding scheme is introduced in order to limit
the rate loss incurred by the binary RR coding schemes, and we
show that our 4-ary RR coding scheme is also competitive when it
comes to complexity and error propagation. We analyze the new
RR coding schemes and discuss their impact on the probability
of occurrence of different charge levels. We also demonstrate the
performance improvement achieved via RR coding on a practical
triple-level cell Flash device.
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I. INTRODUCTION

THE history of constrained coding dates back to 1948,
when Shannon represented a constrained sequence via a

finite-state transition diagram (FSTD) and derived the capacity
under a constraint [2]. Run-length-limited (RLL) codes were
introduced by Tang and Bahl in 1970 to support the evolution
of magnetic recording at that time [3], and these codes were
based on lexicographic indexing. In 1973, Cover presented a
result about enumerative coding [4] that will prove fundamen-
tal for the design of constrained codes based on lexicographic
indexing decades later. Among other researchers, Franaszek
developed constrained codes based on finite-state machines
(FSMs) derived from FSTDs [5]. In 1983, Adler, Coppersmith,
and Hassner introduced a systematic method to develop con-
strained codes based on FSMs [6]. Details about the history
of constrained coding until 1998 are in [7].

Because of their ability to improve performance via elim-
inating error-prone data patterns and undesirable sequences,
constrained codes have a plethora of applications. They
find application in one-dimensional (1D) magnetic recording
devices, both the old ones, which are based on peak detection,
and the modern ones, which are based on sequence detec-
tion [8], [9]. They can also be combined with robust signal
detection using machine learning [10]. They find application
in the emerging two-dimensional (2D) magnetic recording
devices as well [11], [12]. Moreover, constrained codes are
used to achieve DC balance and self-calibration in optical
recording devices [13] in addition to many computer standards
for data transmission [14].

In Flash devices, charge propagation from cells pro-
grammed to high charge levels into cells programmed to lower
charge levels is the main reason behind inter-cell interference
(ICI) [15]. This is correct for any number q of charge levels
per cell. Mitigating ICI results in remarkable lifetime gains
in Flash as demonstrated in [16] for multi-level cell (MLC)
Flash (q = 4). There are data patterns that are considered usual
suspects for contributing most to ICI. Coding to eliminate data
patterns resulting in consecutive levels (q − 1)0(q − 1) was
considered in [17] and [18]. Coding to eliminate data patterns
resulting in consecutive levels (q − 1)µ(q − 1), also called
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level patterns, for all µ < q − 1, was presented in [16], [18],
and [19].

A number of recent results revisited [3] and [4] in
order to produce efficient constrained codes based on lex-
icographic indexing, and one example is [22]. Another
example is [8], in which we introduced binary symmetric
lexicographically-ordered constrained (S-LOCO) codes and
demonstrated density gains in a modern 1D magnetic record-
ing system. We extended our result to single-level cell (SLC)
Flash memories (q = 2) [23] then to Flash memories with
any number q of levels per cell [19]. Moreover, we devised
a general method to design LOCO codes for any finite set
of patterns to forbid [24], which will be useful in this paper.
We studied the power spectra of binary LOCO codes in [25].
LOCO codes are capacity-achieving, simple to encode-decode,
and easily reconfigurable [19], [24].

While the constrained codes in [18] and [19] are quite
efficient in terms of rate, they require all Flash pages to
be processed together, which negatively affects the access
speed. In this paper, we propose binary read-and-run (RR)
constrained coding schemes that allow pages to be accessed
separately in modern Flash devices, thus preserving high
access speed. Our binary RR coding schemes incur small rate
loss and work for any Flash device with q ≥ 4 levels per cell.
The key idea is that the constrained code is applied only on
one page, the left-most page, while no coding is applied on the
other log2 q−1 pages. We present a 2D RR coding scheme as
well as a 1D RR coding scheme that is based on LOCO codes,
and we name the latter binary RR-LOCO coding. Furthermore,
we present a 1D 4-ary RR coding scheme that is based
on LOCO codes, which we name 4-ary RR-LOCO coding,
in order to further reduce the rate loss without impacting the
device reliability. In particular, we apply constrained coding on
two pages, the two left-most pages, while no coding is applied
on the other log2 q−2 pages. Therefore, all pages are separated
except the two left-most ones. Our 4-ary RR coding scheme
works for any Flash device with q ≥ 8 levels per cell.1 We
show that our 4-ary RR coding scheme can even outperform
the binary RR coding schemes at capacity-approaching rates
in terms of both complexity and error propagation. There
are techniques in the literature that allow page separation;
however, they are either incurring notable rate loss [16] or
designed for a specific Flash setup [17]. We study various
aspects about the proposed RR coding schemes, including
charge-level probabilities. We introduce experimental results
in a practical triple-level cell (TLC) Flash device (q = 8)
that demonstrate notable lifetime gains achieved by our coding
schemes.

Signal processing techniques have also been proposed
to mitigate ICI effects in Flash memory. Precompensation,
or predistortion, methods [20] attempt to predict the ICI
that will be experienced by a cell and modify the program
level accordingly. Postcompensation, or postprocessing, meth-
ods [20], [21] attempt to estimate the ICI distortion after
sensing the cell voltages and apply an appropriate correction to

1This 4-ary RR coding scheme works for q = 4 as well, but with more
benign patterns forbidden and with no page separation.

the cell read voltage to offset the ICI effect. Both approaches
require accurate information about inter-cell coupling ratios
over a range of program/erase cycles. They must compute an
estimate of the expected ICI for every cell as a function of its
program level (or read voltage) and those of its neighboring
cells. As pointed out in [20] and [21], this comes at a cost
of additional processing either during programming or after
reading, resulting in extra calculations, additional storage over-
head, and added write or read latency. Furthermore, the ICI
compensation, whether during programming or after reading,
will not be exact, so there may be some residual ICI. On the
other hand, results of modeling and simulation in [20] and
[21] give evidence that these signal processing methods can be
very effective in mitigating ICI, and unlike constrained coding
methods that introduce redundant data, they do not incur any
rate loss penalty.

Given the many issues involved, it is difficult to identify one
approach to ICI mitigation as universally superior to another
without a careful assessment of the engineering trade-offs.
However, further comparison of constrained coding methods
with signal processing methods is an interesting topic for
future research, as is the consideration of techniques that
combine both methods in a complementary fashion.

The rest of the paper is organized as follows. In Section II,
we discuss the detrimental patterns, the Flash mapping,
and our 2D binary RR coding scheme. In Section III,
we introduce our 1D binary RR-LOCO coding scheme.
In Section IV, we propose our 1D 4-ary RR-LOCO coding
scheme. In Section V, we study the rate, complexity, and
error propagation of the new schemes and make comparisons.
In Section VI, we present the experimental results on TLC
Flash. In Section VII, we conclude the paper.

II. PATTERNS, MAPPING, AND 2D RR CODING

As implied in the introduction, literature works do not
strictly agree on the set of forbidden patterns to operate on.
Additionally, as the Flash device ages, the set of error-prone
patterns is expected to expand [19]. According to our recent
experimental tests and a machine learning-based ICI charac-
terization [26] of TLC Flash memories, we decided to focus
on the set characterized as follows. Let

β1, β1 ∈ V0 ≜
{q

2
,
q

2
+ 1, . . . , q − 1

}
, (1)

where q is the number of levels per Flash cell (a positive power
of 2) and V1 = {0, 1, . . . , q−1}\V0. Then, the set of interest
is the set resulting in the high-low-high level patterns in Lq:2

Lq ≜ {β1µβ1,∀β1, β1 | 0 ≤ µ < min(β1, β1)}. (2)

This set already subsumes all 3-tuple forbidden patterns
adopted in the literature for Flash. This set can be relaxed by
removing few patterns that have minimal impact on perfor-
mance as we shall see in Section IV. A block inside the Flash
device can be seen as a 2D grid of wordlines and bitlines, with
a cell being placed at each intersection [16]. Level patterns

2Levels are defined through their indices {0, 1, . . . , q − 1} for simplicity.
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Algorithm 1 Recursive Alternate Gray Mapping
1: Input: Number of levels per cell q, and p = log2 q.
2: Define map, a binary array of dimensions q × p.
3: Set map(0, :) = 1p. (a sequence of p 1’s)
4: for i ∈ {0, 1, . . . , p− 1} do
5: for j ∈ {0, 1, . . . , 2i − 1} do
6: map(2i + j, :) = map(2i − 1− j, :).
7: Flip the bit map(2i + j, i). (each sequence in map

is indexed from right to left by 0, 1, . . . , p− 1)
8: end for
9: end for

10: Output: Array map that maps each index to binary data.

in Lq are detrimental whether they occur on 3 adjacent cells
along the same wordline or along the same bitline.

Example 1. Consider an MLC Flash device, i.e., q = 4.
In this case, we have β1, β1 ∈ {2, 3}. Then, the set of interest
is the set resulting in:

L4 = {202, 212, 203, 213, 302, 312, 303, 313, 323}. (3)

The last three elements in L4 are quite known [16], [17], [19].

Next, we discuss how to map from data to charge levels in
Flash and vice versa. Since we are interested in page separation
throughout this work, the mapping here is from a charge level
out of q possible ones to log2 q binary bits, one for each page,
and vice versa. Gray mapping offers the advantage that there
is only one-bit difference between any two adjacent charge
levels, which is valuable for error performance. We adopt a
recursive alternate Gray mapping (RAGM), and Algorithm 1
shows how to produce it for any q ≥ 4. We highlight
that RAGM has already been used in the literature in MLC
Flash [16] and TLC Flash [17].

Example 2. Consider a TLC Flash device, i.e., q = 8. In this
case, the output of Algorithm 1, which is RAGM, becomes:

0←→ 111, 1←→ 110,

2←→ 100, 3←→ 101,

4←→ 001, 5←→ 000,

6←→ 010, 7←→ 011. (4)

Now, we are ready to discuss binary coding schemes. Let
us first index the Flash pages the same way the bits in each
sequence in the array map are indexed (see Algorithm 1).
This means that the left-most page is the one indexed by p−1.
From (2) and Algorithm 1, the level patterns in Lq correspond
to binary patterns where the left-most page (pages) always
has (have) two 0’s separated by some bit, i.e., 0 × 0. Based
on that, forbidding {000, 010} on the left-most page (pages)
guarantees that no level pattern in Lq would appear while
writing to a Flash device, with any q ≥ 4, at least in the
wordline (bitline) direction. This corresponds to an interleaved
RLL (d, k) = (0, 1) constraint [27]. Notably, no coding on any
other page is needed. Data will therefore be read from each
page independently, and immediately passed to the low-density

Fig. 1. The left-most pages of a 2D Flash grid with data encoded via the
proposed 2D binary RR coding scheme. Symbol x means bit can be 0 or
1 freely.

parity-check (LDPC) decoder to start its processing. This idea
is the key idea of our binary RR constrained coding schemes.3

RR coding can be performed in the wordline direction only
(1D), the bitline direction only (1D), or both directions (2D).
Observe that binary RR coding will also prevent some benign
level patterns, e.g., 474, 555, and 676 in TLC Flash, resulting
in inevitable rate loss. However, as we shall see in Section V,
this rate loss is small. Furthermore, some of these benign
level patterns will be allowed when we shift from binary to
4-ary coding, which reduces this rate loss, as we shall see in
Section IV. RR-LOCO codes are capacity-approaching codes.

We start here with our scheme for 2D binary RR constrained
coding. As the name suggests, we want to prevent the patterns
in R2 = {000, 010} from appearing at the left-most pages
in both wordline and bitline directions in the Flash device
through simple encoding and decoding. The encoding follows
the rules:

1) On wordlines with indices congruent to 0 or 1 (mod 4),
you are allowed to write 0’s and 1’s freely in bit
positions congruent to 0 or 1 (mod 4) at the left-most
pages.

2) On wordlines with indices congruent to 2 or 3 (mod 4),
you are allowed to write 0’s and 1’s freely in bit
positions congruent to 2 or 3 (mod 4) at the left-most
pages.

3) In the other bit positions, you can only write 1’s on
wordlines at the left-most pages.

This 2D binary RR constrained coding scheme is depicted
in Fig. 1. It is clear from the figure that the patterns in
R2 = {000, 010} are eliminated on the left-most pages, which
forbids all level patterns in Lq , in both directions. Upon encod-
ing, input data bits are freely placed at the positions marked
by x for the left-most pages, and they are directly placed
(uncoded) at the other pages. Upon decoding, information at
the positions marked by 1 is omitted, and data bits at the
remaining positions are read with no additional processing and
with no correlation between different Flash pages.4

3An equivalent scheme was proposed for MLC Flash, i.e., q = 4, in [27].
4An equivalent 2D scheme forbidding patterns {101, 111} on the

right-most pages in both wordline and bitline directions in MLC Flash was
proposed in [27].
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This 2D binary scheme is ideal in terms of complexity,
access speed, and error propagation (see Section V). It might
also seem notably better than any 1D scheme (binary or 4-ary)
in terms of performance. However, 1D schemes can achieve
almost the same performance with higher rates, which we will
discuss in more detail later.

III. RR-LOCO CODING OVER GF(2)

In order to design efficient constrained codes, LOCO codes,
we adopt the general method in [24]. The steps of this general
method are:

1) Use the forbidden patterns to determine a group struc-
ture (partition) for the code.

2) Derive the code cardinality (codebook size) for-
mula using the inherent recursion of the groups and
subgroups.

3) Specify the codeword patterns that represent special
cases given the forbidden patterns. Details about these
cases will be discussed shortly.

4) Find the contribution of a non-zero codeword symbol to
the codeword lexicographic index in each special/typical
case.

5) Merge the contributions for all cases in one codeword-
index equation, which is the (LOCO) encoding-decoding
rule.

6) Develop the encoding and decoding algorithms of the
code based on this rule.

In this section, we introduce a binary RR coding scheme
that forbids {000, 010} on the left-most pages in either the
wordline direction or the bitline direction, while leaving all
other pages with no coding, which forbids the level patterns
in Lq and achieves page separation. This scheme is the binary
RR-LOCO coding scheme. The constrained code we apply is
a binary LOCO code devised according to the aforementioned
general method. We start by defining the proposed binary
LOCO code.

Definition 1. A binary LOCO code RC2m, where m ≥ 1, that
forbids the patterns in R2 = {000, 010} is defined by the
following properties:

1) Codewords in RC2m are defined over GF(2) = {0, 1}
and are of length m bits.

2) Codewords in RC2m are ordered lexicographically.
3) Codewords in RC2m do not have patterns in R2.
4) All codewords satisfying 1)–3) are included.

GF(q) denotes Galois field of order q (the alphabet size).
Lexicographic ordering here is ordering codewords ascend-
ingly according to the rule “0 < 1”, where bit significance
reduces from left to right [3], [19]. Table I shows the code-
books of RC2m for all m in {1, 2, . . . , 5}. The first step to
devise the encoder-decoder of this binary LOCO code is to
specify the group structure. Codewords in RC2m, m ≥ 2, can
be partitioned into the following groups:
• Group 1: Codewords starting with 0011 from the left.
• Group 2: Codewords starting with 011 from the left.
• Group 3: Codewords starting with 1 from the left.

The second step is to enumerate the codewords in RC2m,
which is done by Theorem 1. Let N2(m) ≜ |RC2m|.

Theorem 1. The cardinality of a binary LOCO code RC2m is
given by the recursive formula:

N2(m) = N2(m− 1) + N2(m− 3) + N2(m− 4), m ≥ 2,

(5)
where the defined cardinalities are:

N2(−3) ≜ 0, N2(−2) = N2(−1) = N2(0) ≜ 1,

and N2(1) = 2. (6)

Proof: We compute the cardinalities of each group then
add them all. Let the cardinality of Group i be N2,i. As for
Group 3 in RC2m, there is a bijection between its codewords
and the codewords in RC2m−1 (attach 1 from the left). Thus,

N2,3(m) = N2(m− 1). (7)

As for Group 2 in RC2m, there is a bijection between its
codewords and the codewords starting with 1 from the left
in RC2m−2 (attach 01 from the left). Thus using (7),

N2,2(m) = N2,3(m− 2) = N2(m− 3). (8)

As for Group 1 in RC2m, there is a bijection between its
codewords and the codewords starting with 1 from the left
in RC2m−3 (attach 001 from the left). Thus using (7),

N2,1(m) = N2,3(m− 3) = N2(m− 4). (9)

Adding (7), (8), and (9) gives (5). The defined cardinalities
(used for computing N2(m) for 2 ≤ m ≤ 4), other than
N2(1), can be computed by observing that N2(1) = 2,
N2(2) = 4, N2(3) = 6, and N2(4) = 9, which sets up four
equations. This observation is immediate given the forbidden
patterns.

Define a codeword c in RC2m as c ≜ cm−1cm−2 . . . c0,
with ci ≜ ζ for i ≥ m, where ζ represents “out of
codeword bounds”. This ζ is defined to characterize, only for
completeness, the symbols preceding cm−1, which practically
do not exist. The integer equivalent of a LOCO codeword bit
ci, 0 ≤ i ≤ m−1, is ai, i.e., ai is 0 (1) when ci is 0 (1). Denote
the lexicographic index of a codeword c among all codewords
in the LOCO code RC2m by g2(m, c), which is abbreviated to
g(c). In general, g(c) is in {0, 1, . . . , N2(m)− 1}.

Before introducing the third step, we briefly introduce a
general definition for the terms “special case” and “typical
case”. Consider a general LOCO code Cq

m, where the alphabet
is GF(q) and the length is m.

Definition 2. A special case of existence for symbol ci of
codeword c in Cq

m is a case where not all codewords starting
with any c′i < ci, according to the lexicographic ordering,
from the left in Cq

i+1 are allowed to be concatenated from the
right to the symbols preceding ci.

The typical case of existence for ci is the case where all
codewords starting with any c′i < ci from the left in Cq

i+1

are allowed to be concatenated from the right to the symbols
preceding ci.
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TABLE I

ALL THE CODEWORDS OF FIVE BINARY (RR) LOCO CODES, RC2
m , m ∈ {1, 2, . . . , 5}. THE THREE DIFFERENT GROUPS OF CODEWORDS ARE

EXPLICITLY ILLUSTRATED FOR THE CODE RC2
5

Intuitively, the special cases are the ones implying “jumps”
among the codewords of length i+1, while the typical case is
the one implying “no jumps” among the codewords of length
i + 1. “Typicality” of the typical case follows from the lack
of these jumps.

The third step is to specify the special cases of occurence
for a 1 inside a codeword in RC2m. These cases are:
• Case 2: ci+2ci+1ci = 001.
• Case 3: ci+2ci+1ci = 011.
• Case 4: ci+2ci+1ci = 101 or ci+2ci+1ci = ζ01.

The typical or default case, Case 1, is simply the case of
“otherwise”. In particular, it is the case that ci+2ci+1ci = 111,
ci+2ci+1ci = ζ11, or ci+1ci = ζ1.

The fourth and fifth steps are to find the encoding-decoding
rule, which specifies the mapping from index to codeword and
vice versa. This rule for RC2m is given in Theorem 2.

Theorem 2. The relation between the lexicographic index
g(c), c ∈ RC2m, and the binary codeword c itself is given
by:

g(c) =
m−1∑
i=0

ai

[
(1− yi,1)N2(i− 2)

+ (1− yi,1 − yi,2)N2(i− 3)
]
, (10)

where yi,1 and yi,2 are specified as follows:

yi,1 = 1 if ci+2ci+1ci ∈ {001, 011}, and yi,1 = 0 otherwise,

yi,2 = 1 if ci+1ci = 01 s.t. yi,1 = 0, and yi,2 = 0 otherwise.

(11)

Proof: We compute the contributions gi,j(ci) of a bit
ci under Case j, for all j ∈ {1, 2, 3, 4}, in a binary LOCO
codeword then merge them all. As for the typical case, which
we index by 1, this contribution is the number of codewords
starting with 0 from the left in RC2i+1. Thus using (8) and (9),

gi,1(ci) = N2,2(i + 1) + N2,1(i + 1)
= N2(i− 2) + N2(i− 3). (12)

As for Case 2 (Case 3), this contribution is the number of
codewords starting with 000 (010) from the left in RC2i+3.
Note that 000 and 010 are forbidden patterns. Thus,

gi,2(ci) = 0 and
gi,3(ci) = 0. (13)

As for Case 4, this contribution is the number of codewords
starting with 00 from the left in RC2i+2. Thus using (9),

gi,4(ci) = N2,1(i + 2) = N2(i− 2). (14)

Using yi,1 (for Cases 2 and 3) and yi,2 (for Case 4) from (11)
along with ai to merge (12), (13), and (14) gives:

gi(ci) = ai

[
(1− yi,1)N2(i− 2)

+ (1− yi,1 − yi,2)N2(i− 3)
]
. (15)

Substituting (15) in g(c) =
∑m−1

i=0 gi(ci) gives (10).

For brevity, we skip the sixth step, which is to assemble
the encoding and decoding algorithms. These algorithms are
a direct consequence of the rule in (10), and we refer the
reader to [3], [19], [24], and [28] for details. Note that we
sometimes refer to RC2m as a 1D binary RR-LOCO code. The
encoding-decoding rule of a LOCO code is the reason behind
its low complexity algorithms, where reconfiguration becomes
as easy as reprogramming an adder [8], [24].

Example 3. Consider the binary LOCO code RC25 (m = 5).
Using (5) and (6), we get N2(−3) ≜ 0, N2(−2) = N2(−1) =
N2(0) ≜ 1, N2(1) = 2, N2(2) = 4, N2(3) = 6, and N2(4) =
9. Consider the codeword c = c4c3c2c1c0 = 11011 in RC25.
The case indexed by ic = 1 (the typical case) applies to c4 and
c3, which means y4,1 = y4,2 = y3,1 = y3,2 = 0. The case
indexed by ic = 4 applies to c1, which means y1,1 = 0 and
y1,2 = 1. The case indexed by ic = 3 applies to c0, which
means y0,1 = 1 and y0,2 = 0. Consequently, and using (10),
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we get:

g(c = 11011) = [N2(2) + N2(1)] + [N2(1) + N2(0)]
+ [N2(−1)] + [0]

= [4 + 2] + [2 + 1] + [1] = 10,

which is consistent with the codeword index in Table I.
In practice, only 8 = 23 codewords will be used from RC25.

Remark 1. If the coded bits are complemented before writing
to pages, the set of forbidden patterns on the left-most pages
becomes {101, 111} instead, which appears in [16] as well.
In this case, the cardinality of the binary LOCO code remains
as in (5), while the encoding-decoding rule becomes exactly
that of a binary asymmetric LOCO code in [23] for x = 1:

g(c) =
m−1∑
i=0

aiN2(i− ai+1). (16)

Encoding and decoding on the left-most pages are just
subtractions and additions. As for the remaining pages, data is
written and read directly (uncoded). This guarantees simplicity
and maintains high access speed via our 1D binary RR-LOCO
coding scheme.

IV. RR-LOCO CODING OVER GF(4)

In this section, we propose a 1D RR coding scheme over
GF(4), which is also based on LOCO codes. This scheme
is our 4-ary RR-LOCO coding scheme. The goal is to limit
the rate loss resulting from binary RR coding schemes via
coding on the two left-most pages. Finer classification of error-
prone patterns, stemming from characterizing them via two
bits instead of one, results in allowing some benign or less
detrimental patterns, and therefore increasing the rate with
negligible effect on performance.

We start by modifying the set of error-prone patterns. Let

θ1, θ1 ∈ W0 ≜

{
3q

4
,
3q

4
+ 1, . . . , q − 1

}
,

θ2, θ2 ∈ W1 ≜

{
q

2
,
q

2
+ 1, . . . ,

3q

4
− 1

}
,

θ3 ∈ W2 ∪W3, W2 ≜
{q

4
,
q

4
+ 1, . . . ,

q

2
− 1

}
,

W3 ≜
{

0, 1, . . . ,
q

4
− 1

}
, (17)

where q is the number of levels per Flash cell (a positive power
of 2). While mathematically q ≥ 4, we focus here on the case
of q ≥ 8. Then, the set of interest is the set resulting in the
high-low-high level patterns in L′q ⊂ Lq:

L′q ≜ {θ1ηθ1,∀θ1, θ1 | 0 ≤ η < min(θ1, θ1)}
∪ {θ1θ3θ2,∀θ1, θ2, θ3} ∪
{θ2θ3θ1,∀θ1, θ2, θ3} ∪ {θ2θ3θ2,∀θ2, θ2, θ3}. (18)

This set also subsumes all 3-tuple forbidden patterns adopted
in the literature for Flash. The only difference between the set
L′q and the set Lq is that in the former, if either the left level is
or the right level is or both levels are in W1, the middle level
is always in W2∪W3. Our experimental results show that the

level patterns in Lq \L′q have very limited contribution to the
errors occurring upon reading from the Flash device.

Example 4. Consider a TLC Flash device, i.e., q = 8.
In this case, we have θ1, θ1 ∈ {6, 7}, θ2, θ2 ∈ {4, 5}, and
θ3 ∈ {0, 1, 2, 3}. Then, the difference between the two sets of
interest is only one level pattern:

L8 \ L′8 = {545, 546, 547, 645, 745}. (19)

For mapping from charge levels to binary bits, we adopt the
RAGM of Algorithm 1. Moreover, we index the Flash pages
the same way the bits in each sequence in the array map
are indexed using Algorithm 1. Therefore, we are interested
here in the data on the two left-most pages indexed by
p − 1 and p − 2. We adopt the following binary to 4-ary
mapping-demapping, where GF(4) = {0, 1, α, α2}, for these
two specific Flash pages:

11←→ 0 (W3), 10←→ 1 (W2),

00←→ α (W1), 01←→ α2 (W0). (20)

The set of level patterns corresponding to each GF(4) symbol
is given between parenthesis.

We can see from (17), (18), and (20) that the set of level
patterns in L′q can be forbidden in the wordline or the bitline
direction by forbidding the 4-ary patterns in the following set
R4 from being written on the two left-most pages indexed by
p− 1 and p− 2:

R4 = {α0α, α1α, α0α2, α1α2, α20α, α21α,

α20α2, α21α2, α2αα2, α2α2α2}. (21)

Once again, no coding on any other page is needed. Data
will therefore be read from each page independently, except
the two left-most pages, and immediately passed to the low-
density parity-check (LDPC) decoder to start its processing.
This idea is the key idea of our 4-ary RR constrained coding
scheme.

Consider a TLC Flash device (q = 8) once again. Forbid-
ding the patterns in R4 on the two left-most pages instead of
the patterns in R2 on the left-most page results in allowing
many benign patterns that are forbidden if binary RR coding
is adopted, e.g., 444, 474, and 555.

Now, we introduce our 4-ary RR coding scheme that forbids
the patterns in R4 on the two left-most pages in either the
wordline direction or the bitline direction, while leaving all
other pages with no coding. The constrained code we apply
is a 4-ary LOCO code devised according to the general
method in [24]. We start by defining the proposed 4-ary
LOCO code.

Definition 3. A 4-ary LOCO code RC4m, where m ≥ 1,
that forbids the patterns in R4 is defined by the following
properties:

1) Codewords in RC4m are defined over GF(4) =
{0, 1, α, α2} and are of length m symbols.

2) Codewords in RC4m are ordered lexicographically.

3) Codewords in RC4m do not have patterns in R4.
4) All codewords satisfying 1)–3) are included.
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Lexicographic ordering here is ordering codewords ascend-
ingly according to the rule “0 < 1 < α < α2”, where
symbol significance reduces from left to right [3], [19]. The
first step to devise the encoder-decoder of this 4-ary LOCO
code is to specify the group structure. Let γ1 and γ2 be in
{0, 1}. Codewords in RC4m, m ≥ 3, can be partitioned into
the following groups:
• Group 1: Codewords starting with γ1, ∀γ1, from the left.
• Group 2: Codewords starting with αγ1γ2, ∀γ1, γ2, from

the left.
• Group 3: Codewords starting with αα or αα2 from the

left.
• Group 4: Codewords starting with α2γ1γ2, ∀γ1, γ2, from

the left.
• Group 5: Codewords starting with α2αγ1γ2, ∀γ1, γ2,

from the left.
• Group 6: Codewords starting with α2αα from the left.
• Group 7: Codewords starting with α2α2γ1γ2, ∀γ1, γ2,

from the left.
• Group 8: Codewords starting with α2α2α from the left.
The second step is to enumerate the codewords in RC4m,

which is done by Theorem 3. Let N4(m) ≜ |RC4m|.

Theorem 3. The cardinality of a 4-ary LOCO code RC4m is
given by the recursive formula:

N4(m) = 3N4(m− 1)− 2N4(m− 2)
+ 9N4(m− 3) + 7N4(m− 4)
+ 6N4(m− 5) + 4N4(m− 6), m ≥ 3, (22)

where the defined cardinalities are:

N4(−5) ≜
1
32

, N4(−4) ≜ − 1
16

, N4(−3) ≜ 0,

N4(−2) ≜
1
4
, N4(−1) ≜

1
2
, N4(0) ≜ 1,

and N4(1) = 4, N4(2) = 16. (23)

Proof: We compute the cardinalities of each group then
add them all. Let the cardinality of Group i be N4,i. As for
Group 1 in RC4m, there is a surjection between its codewords
and the codewords in RC4m−1 (attach 0 or 1 from the left).
Thus,

N4,1(m) = 2N4(m− 1). (24)

As for Group 2 in RC4m, there is a surjection between its
codewords and the codewords in RC4m−3. Thus,

N4,2(m) = (2)(2)N4(m− 3) = 4N4(m− 3). (25)

As for Group 3 in RC4m, there is a bijection between its
codewords and the codewords starting with α or α2 from the
left in RC4m−1. Thus using (24),

N4,3(m) = N4(m− 1)−N4,1(m− 1)
= N4(m− 1)− 2N4(m− 2). (26)

As for Group 4 in RC4m, the cardinality is the same as that of
Group 2. Thus,

N4,4(m) = (2)(2)N4(m− 3) = 4N4(m− 3). (27)

As for Group 5 in RC4m, it is handled in a way similar to that
of Groups 2 and 4. Thus,

N4,5(m) = (2)(2)N4(m− 4) = 4N4(m− 4). (28)

As for Group 6 in RC4m, there is a bijection between its
codewords and the codewords starting with α from the left
in RC4m−2. Thus using (25) and (26),

N4,6(m) = N4,2(m− 2) + N4,3(m− 2)
= N4(m− 3)− 2N4(m− 4) + 4N4(m− 5). (29)

As for Group 7 in RC4m, the cardinality is the same as that of
Group 5. Thus,

N4,7(m) = (2)(2)N4(m− 4) = 4N4(m− 4). (30)

As for Group 8 in RC4m, there is a bijection between its
codewords and the codewords starting with α2α from the left
in RC4m−1. Thus using (28) and (29),

N4,8(m) = N4,5(m− 1) + N4,6(m− 1)
= N4(m− 4) + 2N4(m− 5) + 4N4(m− 6). (31)

Adding (24), (25), (26), (27), (28), (29), (30), and (31) gives
(22). The defined cardinalities (used for computing N4(m) for
3 ≤ m ≤ 6), other than N4(1) and N4(2), can be computed
from the cardinalities at small values of m, which set up six
equations.

Define a codeword c in RC4m as c ≜ cm−1cm−2 . . . c0,
with ci ≜ ζ for i ≥ m, where ζ represents “out of codeword
bounds”. The integer equivalent of a LOCO codeword symbol
ci, 0 ≤ i ≤ m − 1, is ai, i.e., ai is 0, 1, 2, or 3 when ci is
0, 1, α, or α2, respectively. Denote the lexicographic index of
a codeword c among all codewords in the LOCO code RC4m
by g4(m, c), which is abbreviated to g(c). In general, g(c) is
in {0, 1, . . . , N4(m)− 1}.

Recall Definition 2 of special and typical cases. The third
step is to specify the typical/special cases of occurence for a
symbol in GF(4) \ {0} inside a codeword in RC4m. Let γ be
in {ζ, 0, 1} and χ be in {α, α2}. These cases are:
• Case 1.a: ci+1ci = γ1 or ci+1ci = γα, for all γ.
• Case 1.b: ci+1ci = γα2, for all γ.
• Case 2: ci+1ci = χ1 or ci+1ci = χα, for all χ.
• Case 3: ci+1ci = αα2.
• Case 4: ci+1ci = α2α2.

The typical or default case is Case 1 (Case 1.a and Case 1.b
combined).

The fourth and fifth steps are to find the encoding-decoding
rule, which specifies the mapping from index to codeword
and vice versa. This rule for RC4m is given in Theorem 4.

Theorem 4. The relation between the lexicographic index
g(c), c ∈ RC4m, and the 4-ary codeword c itself is given by:

g(c) =
m−1∑
i=0

[[
(yi,1 + y′i,1)ai + yi,3

]
N4(i)

+
[
2(yi,2ai + yi,3 − y′i,1) + 5yi,d

]
N4(i− 1)

+
[
4(y′i,1 + yi,3) + 2yi,d

]
N4(i− 2)

+ 4yi,dN4(i− 3)
]
, (32)
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where yi,1, y′i,1, yi,2, yi,3, and yi,d are specified as follows:

yi,1 = 1 if ci+1ci ∈ {γ1, γα | ∀γ}, and yi,1 = 0 otherwise,

y′i,1 = 1 if ci+1ci ∈ {γα2 | ∀γ}, and y′i,1 = 0 otherwise,

yi,2 = 1 if ci+1ci ∈ {χ1, χα | ∀χ}, and yi,2 = 0 otherwise,

yi,3 = 1 if ci+1ci = αα2, and yi,3 = 0 otherwise,

yi,d = 1 if ci+1ci = α2α2, and yi,d = 0 otherwise. (33)

Proof: We compute the contributions gi,j(ci) of a symbol
ci under Case j, for all j in {1, 2, 3, 4}, in a 4-ary LOCO
codeword then merge them all. As for the typical case,
Situation a, which we index by 1.a, this contribution is the
number of codewords starting with c′i < ci, where ci ∈ {1, α},
from the left in RC4i+1. Thus using (24),

gi,1.a(ci) = aiN4(i + 1− 1) = aiN4(i). (34)

As for the typical case, Situation b, which we index by 1.b, this
contribution is the number of codewords starting with c′i < ci,
where ci = α2, from the left in RC4i+1. Thus using (24), (25),
and (26),

gi,1.b(ci) = N4,1(i + 1) + N4,2(i + 1) + N4,3(i + 1)
= 3N4(i)− 2N4(i− 1) + 4N4(i− 2). (35)

As for Case 2, this contribution is the number of codewords
starting with c′iγ1, c′i < ci, where ci ∈ {1, α} and γ1 ∈ {0, 1},
from the left in RC4i+1. Thus using (24),

gi,2(ci) = aiN4,1(i) = 2aiN4(i− 1). (36)

As for Case 3, this contribution is the number of codewords
starting with αc′i, c′i < ci, where ci = α2, from the left in
RC4i+2. Those are all the codewords starting with γ1γ2, for
all γ1 and γ2, from the left in RC4i+1 plus all the codewords
starting with α from the left in RC4i+1. Thus using (24), (25),
and (26),

gi,3(ci) = 2N4,1(i) + N4,2(i + 1) + N4,3(i + 1)
= N4(i) + 2N4(i− 1) + 4N4(i− 2). (37)

As for Case 4, this contribution is the number of codewords
starting with α2c′i, c′i < ci, where ci = α2, from the left in
RC4i+2. Those are all the codewords starting with γ1γ2, for
all γ1 and γ2, from the left in RC4i+1 plus all the codewords
starting with α2α from the left in RC4i+2. Thus using (24),
(28), and (29),

gi,4(ci) = 2N4,1(i) + N4,5(i + 2) + N4,6(i + 2)
= 5N4(i− 1) + 2N4(i− 2) + 4N4(i− 3). (38)

We use yi,1, y′i,1 (for Case 1), yi,2 (for Case 2), yi,3 (for
Case 3), and yi,d (for Case 4) from (33) along with ai to
merge (34), (35), (36), (37), and (38). We adopt the following
merging functions, where fmer

ℓ (·) is associated with N4(i +
1− ℓ):

fmer
1 (·) = (yi,1 + y′i,1)ai + yi,3,

fmer
2 (·) = 2(yi,2ai + yi,3 − y′i,1) + 5yi,d,

fmer
3 (·) = 4(y′i,1 + yi,3) + 2yi,d,

fmer
4 (·) = 4yi,d. (39)

Fig. 2. An FSTD of a 1D constrained sequence forbidding level patterns in
Lq , for any q. Here, we operate directly on level patterns for simplicity. The
same state could represent multiple 2-tuples, depending on the previous state.
Illustrative example: To arrive at S1, we can a) receive two consecutive levels
< q

2
then q

2
to transition to S1 via S0, b) receive two consecutive levels q

2
then q

2
to self-transition to S1, or c) receive two consecutive levels q

2
then

q
2

to transition to S1 via Sx2 .

Therefore, the general form of the symbol contribution gi(ci)
is:

gi(ci) =
4∑

ℓ=1

fmer
ℓ (·)N4(i + 1− ℓ). (40)

Substituting (39) and (40) in g(c) =
∑m−1

i=0 gi(ci) gives (32).

Remark 2. Observe that the number of linearly independent
merging variables is always less than the number of final
cases [24]. Here, yi,d is dependent on the other merging
variables as it can be written as yi,d = 1(ai)(1 − yi,1 −
y′i,1− yi,2− yi,3), where 1(ai) = 1 if ai > 0 and 1(ai) = 0 if
ai = 0.

For brevity, we again skip the sixth step, which is to assem-
ble the encoding and decoding algorithms. These algorithms
are a direct consequence of the rule in (32), and we refer the
reader to [3], [19], [24], and [28] for details. Note that we
sometimes refer to RC4m as a 1D 4-ary RR-LOCO code.

V. RATE, COMPLEXITY, AND ERROR PROPAGATION

We start by calculating asymptotic rates. Unfortunately,
deriving the capacity for 2D constrained codes is known to be
notoriously hard. Therefore, we will derive the capacity C1D

Lq

only under the 1D constrained coding setup, which is already
higher than the capacity under the 2D setup. Thus, C1D

Lq
serves

as a ceiling for the highest achievable rate in a device where
patterns in Lq are forbidden at least in one direction. We will
shortly show that 1D constrained coding suffices in terms of
performance.

A finite-state transition diagram (FSTD) of a sequence
where level patterns in Lq are forbidden is shown in Fig. 2.
This FSTD is designed to have a reduced number of states.
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Based on this FSTD, the general adjacency matrix is (vectors
are row vectors):

A1 =



q
2 1 q

2
0 0 q

2−1

0T
q
2

U1
q
2

q
21

T
q
2

0 q
2−1

L1
q
2−1

q
2 0 q

2
0 0 q

2−1

0T
q
2−1

I q
2−1 0T

q
2−1

q
21

T
q
2−1

0 q
2−1

L1
q
2−2 0T

q
2−2


, (41)

where U1
δ (L1

δ) is an upper (lower) only-ones triangular matrix
of size δ × δ. Thus and from [2], the normalized capacity of
a 1D constrained code forbidding the level patterns in Lq is:

C1D
Lq

=
log2(λmax(A1))

log2 q
, (42)

where λmax(A) is the maximum real positive eigenvalue of
the matrix A.5

The capacity of a 2D binary code preventing {000, 010} is
the capacity of a 2D (0, 1) RLL code, which is ≈ 0.5879 [30].
Thus, the normalized capacity of our 2D RR coding scheme is:

C2D
RR2 ≈

0.5879 + log2 q − 1
log2 q

=
log2 q − 0.4121

log2 q
. (43)

As mentioned above, the 1D constrained system where
patterns in R2 = {000, 010} are forbidden can be interpreted
as an interleaved RLL (d, k) = (0, 1) constrained system,
whose capacity is known to be log2((1 +

√
5)/2) ≈ 0.6942.

Thus, the normalized capacity of our 1D RR-LOCO coding
scheme is:

C1D
RR2 =

log2((1 +
√

5)/2) + log2 q − 1
log2 q

≈ log2 q − 0.3058
log2 q

.

(44)

The capacity gap between C1D
Lq

and C1D
RR2 for different values

of q is given in Table II. The table shows that the capacity gap
is small, and it gets even smaller as q increases.

The capacity C1D
L′

q
of a 1D constrained system where the

level patterns in L′q are forbidden is slightly higher than C1D
Lq

since L′q ⊂ Lq . We skip the derivation of C1D
L′

q
for brevity.

An FSTD of a 1D 4-ary constrained system where patterns
in R4 are forbidden is given in Fig. 3. This FSTD is also
designed to have a reduced number of states. The adjacency
matrix is:

A2 =


2 1 1 0 0 0
0 1 1 2 0 0
0 0 0 2 1 1
2 0 0 0 0 0
0 1 0 2 0 0
0 0 0 2 1 0

 .

5For positive integers a + b ≤ q, the set H of the a largest levels, and the
set L of the b smallest levels in {0, 1, . . . , q − 1}, a formula for the (count-
constrained) capacity of the constrained system forbidding all level patterns
in {β1β2β1 | β1, β1 ∈ H, β2 ∈ L} was derived in [29].

TABLE II

CAPACITY COMPARISON BETWEEN C1D
Lq

, 1D BINARY RR CAPACITY C1D
RR2 ,

AND 1D 4-ARY RR CAPACITY C1D
RR4

Fig. 3. An FSTD of a 1D 4-ary constrained sequence forbidding patterns
in R4. The same state could represent multiple 2-tuples, depending on the
previous state. Illustrative example: To arrive at S1, we can a) receive two
consecutive symbols 0 or 1 then α to transition to S1 via S0, b) receive
two consecutive symbols α then α to self-transition to S1, or c) receive two
consecutive symbols α then α to transition to S1 via S4.

The characteristic polynomial is:

det(xI−A2) = x6 − 3x5 + 2x4 − 9x3 − 7x2 − 6x− 4.
(45)

We can see that if x is replaced by λc = λmax(A2), we get:

λm
c = 3λm−1

c −2λm−2
c +9λm−3

c +7λm−4
c +6λm−5

c +4λm−6
c ,

(46)

which is consistent with the cardinality recursion in (22). The
capacity of this 4-ary constrained system is log2(λmax(A2)) =
log2(3.4147) = 1.7718 bits/symbol. Thus, the normalized
capacity of our 1D 4-ary RR-LOCO coding scheme is:

C1D
RR4 =

1.7718 + log2 q − 2
log2 q

≈ log2 q − 0.2282
log2 q

. (47)

Table II shows the capacity gain achieved by the 1D 4-ary
RR scheme over the 1D binary RR schemes, and we will show
that the performance, i.e., the Flash device protection, is nearly
the same. An interesting observation is that for q ∈ {8, 16, 32},
the capacity of our 1D 4-ary RR scheme C1D

RR4 is slightly higher
than C1D

Lq
. The reason is that the 1D 4-ary RR scheme is a

capacity-approaching constrained coding scheme that forbids
the level patterns in L′q ⊂ Lq .

Next, we discuss the finite-length rates. First, the normalized
rate of our 2D binary RR constrained coding scheme is:

R2D
RR2 =

0.5 + log2 q − 1
log2 q

=
log2 q − 0.5

log2 q
(48)

since the rate of our left-most page coding is 0.5.
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There are two differences between the capacity C and
the finite-length rate R of a 1D RR-LOCO coding scheme.
First, R is characterized by a specific length m of the
LOCO code applied on the left-most (two left-most) page(s).
Second, bridging bits or symbols are taken into account while
computing R.

Regarding our 1D binary RR-LOCO coding scheme,
we bridge with the pattern 11 between consecutive code-
words in RC2m on the left-most page, and we remove the
codeword 1m for self-clocking [19], [24]. Thus, the rate
on the left-most page is ⌊log2(N2(m) − 1)⌋/(m + 2), and
the normalized rate of our 1D binary RR-LOCO coding
scheme is:

R1D
RR2 =

1
log2 q

[
⌊log2(N2(m)− 1)⌋

m + 2
+ log2 q − 1

]
. (49)

1D binary RR-LOCO coding schemes are capacity-
achieving schemes in the sense that the limit as m → ∞ of
R1D

RR2 is C1D
RR2 (see also [19]). Another capacity-achieving 1D

RR constrained coding scheme, implementable using enumer-
ative coding without the need for bridging bits, can be obtained
by interleaving codewords from an optimal block code for the
RLL (d, k) = (0, 1) constraint [31] on the left-most pages.
LOCO codes, however, offer simplicity and reconfigurability,
which is important as the device ages [19].

Regarding our 1D 4-ary RR-LOCO coding scheme, we can-
not bridge with a single GF(4) symbol between consecutive
codewords in RC4m on the two left-most pages since any
symbol separating α2 and α2 generates a forbidden pattern.
We propose a novel two-symbol bridging in which we can
encode input information bits within the bridging interval as
follows:
• For input information bits 00 ∈ GF(2), bridge with 00 ∈

GF(4).
• For input information bits 01 ∈ GF(2), bridge with 01 ∈

GF(4).
• For input information bits 10 ∈ GF(2), bridge with 10 ∈

GF(4).
• For input information bits 11 ∈ GF(2), bridge with 11 ∈

GF(4).
While it has no effect on the asymptotic rate, this bridging
scheme remarkably reduces the code length at which a specific
rate is achieved, significantly reducing the complexity and
error propagation in consequence.

To achieve self-clocking, we remove the two codewords 0m

and 1m, which is expected given the bridging above [19], [24].
Thus, the rate on the two left-most pages is (⌊log2(N4(m)−
2)⌋+2)/(m+2) bits/symbol, and the normalized rate of our
1D 4-ary RR-LOCO coding scheme is:

R1D
RR4 =

1
log2 q

[
⌊log2(N4(m)− 2)⌋+ 2

m + 2
+ log2 q − 2

]
.

(50)

1D 4-ary RR-LOCO coding schemes are capacity-achieving
schemes in the sense that the limit as m→∞ of R1D

RR4 is C1D
RR4.

RR-LOCO codes offer simplicity and reconfigurability, which
is important as the device ages [19].

Remark 3. The removal of the two codewords 0m and 1m

from RC4m to achieve self-clocking is addressed in the encod-
ing algorithm by adding to the decimal integer equivalent
of the binary message, and in the decoding algorithm by
subtracting from the codeword index. This allows avoiding the
codewords 0m and 1m while covering all possible messages.

The 2D binary RR constrained coding scheme we propose
requires no additional complexity for encoding and decoding
since data is written/read directly to/from specific positions on
the left-most page and directly to/from all positions on other
pages. As for the 1D binary RR-LOCO coding scheme, the
complexity is governed by the size of the adder that executes
the encoding-decoding rule, which is:

s2 = ⌊log2(N2(m)− 1)⌋ (51)

bits. Similarly and as for the 1D 4-ary RR-LOCO cod-
ing scheme, the complexity is governed by the adder size,
which is:

s4 = ⌊log2(N4(m)− 2)⌋ (52)

bits. For ease of implementation and to avoid affecting the
access speed, we prefer to apply the 1D RR-LOCO coding
schemes along wordlines instead of bitlines since the per-
formance is very close, as demonstrated by the experimental
results in Section VI.

Error propagation is the phenomenon that a single writing
error results in multiple errors while reading. The 2D binary
RR coding scheme does not incur any error propagation. Thus,
the error propagation factor of it is E2D

RR2 = 1. As for the
1D binary RR-LOCO coding scheme, there is no codeword-
to-codeword error propagation. However, there exists limited
error propagation resulting from the codeword-to-message
conversion [8], [19] on the left-most page only. This error
propagation reaches s2/2 bits on average, where s2 is the
message length as well from (51). Consequently, the error
propagation factor averaged over log2 q pages is:

E1D
RR2 =

1
log2 q

[s2

2
+ log2 q − 1

]
. (53)

As for the 1D 4-ary RR-LOCO coding scheme, again
there exists limited error propagation resulting solely from
the LOCO codeword-to-message conversion [8], [19] on the
two left-most pages. This error propagation reaches s4/2 bits
on average, where s4 is the message length as well from
(52). Observe that there is no error propagation for the two
additional bits encoded at each bridging interval to specify
the two 4-ary bridging symbols. Therefore, the average error
propagation on any of these two left-most pages is:

s4

2
· m

m + 2
+ 1 · 2

m + 2
=

s4m + 4
2(m + 2)

. (54)

Consequently, the error propagation factor averaged over
log2 q pages is:

E1D
RR4 =

1
log2 q

[
2 · s4m + 4

2(m + 2)
+ log2 q − 2

]
=

1
log2 q

[
s4m + 4
m + 2

+ log2 q − 2
]

. (55)
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TABLE III
COMPARISONS OF RATE, COMPLEXITY, AND ERROR PROPAGATION AT THE SAME LENGTH BETWEEN 2D RR AND 1D BINARY RR CONSTRAINED CODING

SCHEMES – THE CAPACITY IS ALSO SHOWN

Another metric to compare 1D binary with 1D 4-ary
RR-LOCO coding schemes is the amount of coded data at a
given rate. As this amount decreases, the code allows achieving
the desired rate at a smaller length m, which is an advantage.
Since for our 1D binary and 1D 4-ary RR-LOCO coding
schemes we use two bits and two symbols for bridging,
respectively, these amounts of coded data, D1D

RR2 (binary) and
D1D

RR4 (4-ary) are:

D1D
RR2 = (m + 2) log2 q, m is the length of RC2m, (56)

D1D
RR4 = (m + 2) log2 q, m is the length of RC4m. (57)

Table III gives the normalized rates, adder sizes, and
error propagation factors of the proposed binary RR schemes
under various parameters. The 2D binary RR-LOCO coding
scheme has a remarkable rate advantage that reaches 10.147%,
6.096%, and 4.343% for q = 4, q = 8, and q = 16, respec-
tively, over the 2D binary RR constrained coding scheme. The
2D binary RR scheme has a clear advantage in terms of both
complexity and error propagation as it requires no processing
to encode and decode. Having said that, the error propagation
factor of the 1D binary RR scheme decreases notably as q
increases. For example, E1D

RR2 = 2.625 for q = 16 and m = 21,
which is remarkably small given the code length.

In Table IV, we compare 1D binary with 1D 4-ary
RR-LOCO coding schemes in a different way. In particular,
we fix the normalized rate, and find the minimum amount of
coded data and the minimum complexity (adder size) required
to achieve this desired rate for the two coding schemes,
in addition to the minimum error propagation associated with
them.6 The sign “−” is used in the table whenever the
binary coding scheme cannot achieve such a rate. The main
conclusions from Table IV are:
• For q = 8 and q = 16, the 4-ary coding scheme requires

less coded data (smaller lengths) than the binary coding
scheme does for all desired rates. The difference in favor
of the 4-ary coding scheme increases as the rate increases.

• At lower rates, the complexity of the binary coding
scheme is lower than that of the 4-ary coding scheme.
However, at rates ≥ 0.8900 for q = 8 and ≥ 0.9150 for
q = 16, the 4-ary coding scheme wins the complexity
competition.

6Achieving a desired rate here means reaching a normalized rate greater
than or equal to this desired rate.

TABLE IV
COMPARISONS OF MINIMUM CODED DATA, COMPLEXITY, AND ERROR

PROPAGATION TO ACHIEVE CERTAIN RATE BETWEEN 1D BINARY RR
AND 1D 4-ARY RR CONSTRAINED CODING SCHEMES

• As expected, the binary coding scheme incurs less error
propagation in general because LOCO coding is per-
formed on one page only. However, at higher rates
and higher q, the 4-ary coding scheme becomes quite
competitive to the intriguing extent that it already incurs
less error propagation at rate 0.9200 and q = 16.

The 1D and 2D RR coding schemes can be used in the
same device, but at different lifetime stages. A 1D RR-LOCO
coding scheme, binary or 4-ary, can be used when the device
is relatively fresh or until a moderate number of program/erase
(P/E) cycles, while the 2D RR constrained coding scheme
can be used when the device ages, where preventing the
error-prone patterns in both directions could make a difference
and the associated rate loss could be acceptable. However, this
performance difference is shown to be small in Section VI,
at least for the TLC Flash device we used. The section also
shows that the performance difference between 1D binary and
1D 4-ary RR-LOCO coding schemes is negligible.

Remark 4. An idea that allows page separation for MLC
Flash was introduced in [16]. However, the rate offered is
only 0.7500, which is significantly below the rates offered via
our 1D binary RR coding scheme for MLC. Another idea that
allows page separation for TLC Flash was introduced in [17].
However, it only heuristically addresses the level pattern 707.

VI. EXPERIMENTAL RESULTS ON TLC FLASH

To characterize the performance of the proposed RR con-
strained coding schemes, we conducted program/erase (P/E)
cycling experiments on several blocks of a commercial
1X-nm TLC Flash chip, as follows:

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on September 18,2024 at 20:16:22 UTC from IEEE Xplore.  Restrictions apply. 



HAREEDY et al.: EFFICIENT CONSTRAINED CODES THAT ENABLE PAGE SEPARATION 6845

Fig. 4. (Left) Measured average channel BER comparison when all pages are programmed with random data (green curve), 1D binary RR-LOCO coded
data (red curves) along wordlines (solid curve) or bitlines (dashed curve), and 1D 4-ary RR-LOCO coded data (blue curves) along wordlines (solid curve) or
bitlines (dashed curve) from P/E cycle 0 to P/E cycle 10,000. (Right) Measured average channel BER excluding random data from P/E cycle 4,000 to P/E
cycle 10,000.

1) Erase Flash memory block under test.
2) Program all pages of block under test with data. For

uncoded experiments, program pseudo-random data at
each P/E cycle. For RR experiments, program prepared
data satisfying RR constraints at each P/E cycle.

3) For each successive P/E cycle of RR experiments,
“rotate” the data, so the data that was written on the
page i is written on the page (i + 1), wrapping around
the last page to the first page.

4) Record bit errors and compute channel bit error rate
(BER) every 100 P/E cycles.

The PE cycling experiments were performed at room temper-
ature in a continuous manner with no wait time between the
erase-program-read operations.

Gray mappings used in Flash devices may vary between
manufacturers and product generations. In our preliminary
work [1], we modified the forbidden binary patterns in accor-
dance with the device mapping so that RR coding on one page
per wordline would eliminate most of the patterns in Lq that
induce the most severe ICI (see Remark 1).

In this work, the 8-ary encoded level sequences generated
by the RR encoders described herein using the RAGM map-
ping were translated according to the device Gray mapping
into the corresponding binary sequences for the lower, mid-
dle, and upper pages in the TLC Flash memory. Thus, the
8-ary level sequences stored in the memory are precisely the
RR-encoded level sequences (each cell is programmed to a
level in {0, 1, . . . , q − 1}).

The left subfigure in Fig. 4 shows the channel BER from P/E
cycle 0 to P/E cycle 10,000 using pseudo-random data, a rate
24:36 1D binary RR-LOCO code along wordlines or bitlines,
and a rate 20:12 bits/symbol 1D 4-ary RR-LOCO code along
wordlines or bitlines. The right subfigure in Fig. 4 shows the
channel BER from P/E cycle 4,000 to P/E cycle 10,000 for
these cases in more detail. Note that the binary RR code and
4-ary RR code have the same overall rate: R1D

RR2 = 8/9 ≈
0.8889 using (49) and R1D

RR4 = 8/9 ≈ 0.8889 using (50).

Therefore, the 1D binary coding scheme achieves about 99%
(96%) of the capacity C1D

RR2 (C1D
Lq

) and the 1D 4-ary coding
scheme achieves about 96% of the capacity C1D

RR4.
As shown in Fig. 4, the uncoded performance is better than

that of both binary and 4-ary RR codes up to around 1,200 P/E
cycles and is notably worse thereafter. At the later stages of
P/E cycling, ICI becomes severe and RR codes outperform
the uncoded setting. Specifically, 1D binary RR-LOCO codes
along wordlines increase device lifetime by about 1,800 P/E
cycles when channel BER is 2 × 10−3, representing a 57%
lifetime gain, and achieve about 3,700 P/E cycles gain when
channel BER is 3 × 10−3, corresponding to a 79% lifetime
gain. As shown in the right subfigure of Fig. 4, the BER of
1D binary RR code along wordlines is almost the same as that
of the 4-ary RR code between 2,000 and 8,000 P/E cycles.
When the P/E cycle count is larger than 8,000, the BER of
1D binary RR code along wordlines is slightly better than that
of the 1D 4-ary RR code. In particular, when channel BER is
3× 10−3, the 1D binary RR code along wordlines provides a
lifetime that is about 300 P/E cycles larger that than obtained
with the 1D 4-ary RR code along wordlines. Along the bitline
direction, quite intriguingly, the performance of the 1D 4-ary
RR-LOCO code is generally better than, though close to, that
of the 1D binary RR-LOCO code. The advantage of the 1D
4-ary RR-LOCO is most pronounced from P/E cycle 6,300 to
P/E cycle 8,300. For both binary and 4-ary schemes, coding
along bitlines generally offers slightly better performance than
coding along wordlines.

Fig. 5 compares the BER performance of different imple-
mentations of binary RR codes at high P/E cycles: the 24:36
1D binary RR-LOCO code along the wordline or bitline
direction, the 1D binary interleaved 12:18 RLL (d, k) = (0, 1)
code (which has an overall block length 36 after interleaving)
along the wordline or bitline direction, and the 2D binary
RR code. Using (48), we obtain R2D

RR2 = 5/6 ≈ 0.8333.
Therefore, the 2D coding scheme achieves about 93% (90%)
of the capacity C2D

RR2 (C1D
Lq

).
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Fig. 5. Measured average channel BER comparison of 1D binary RR-LOCO coded data (red curves) along wordlines (solid curve) or bitlines (dashed curve),
1D binary interleaved RLL-(0, 1) coded data (cyan curves) along wordlines (solid curve) or bitlines (dashed curve), and 2D binary RR coded data (black
curve) from P/E cycle 4,000 to P/E cycle 10,000.

Referring to Fig. 5, we make the following observations at
all P/E cycles. Each 1D RR coding scheme along the bitline
direction achieves a slightly better channel BER performance
than along the wordline direction; the 1D RR coding schemes
along the same direction have similar performance; and the
performance of the 2D RR constrained code is better than that
of the 1D RR codes along any one direction. For example,
when channel BER is 2 × 10−3, the 2D binary RR coding
increases lifetime by 100 P/E cycles over the 1D binary
RR-LOCO coding along bitlines and 300 P/E cycles over the
1D binary RR-LOCO coding along wordlines. When channel
BER is 3×10−3 and the wear condition of the Flash device is
severe, the 2D binary RR coding outperforms the 1D binary
RR-LOCO coding along bitlines by about 200 P/E cycles and
the 1D binary RR-LOCO coding along wordlines by about
600 P/E cycles.

These measurements confirm some of the claimed practical
advantages of 4-ary RR codes. The performance results of the
1D binary RR-LOCO code and the 1D 4-ary RR-LOCO code
along both wordline and bitline directions are very similar,
and the designed codes have the same overall rate (including
bridging symbols). The 1D 4-ary RR-LOCO code has a shorter
overall block length corresponding to 12 bits per coded page
(10 symbols plus 2 bridging symbols) in comparison to the
1D binary RR-LOCO code which has overall block length of
36 bits on the coded page. Moreover, in the code design, the
1D 4-ary RR-LOCO code requires an adder size of 18 bits,
while the 1D binary RR-LOCO code requires an adder size of
24 bits. Recall that the adder size governs the LOCO encoding-
decoding complexity.

An examination of level probabilities induced by 1D binary
and 1D 4-ary RR constraints provides some intuitive insight
into the experimental results in Figs. 4 and 5. The probabilities
of binary symbols 0 and 1 under the RLL (d, k) = (0, 1) con-
straint are approximately 0.2764 and 0.7236, respectively [27].
Asymptotically, this leads to probabilities of individual sym-
bols corresponding to levels in V0 = {4, 5, 6, 7} and V1 =
{0, 1, 2, 3} of about 0.0691 and 0.1809, respectively. From the
FSTD of the 4-ary constraint forbidding patterns in R4, shown
in Fig. 3, we find that the probabilities of individual symbols
corresponding to levels in W0 = {6, 7}, W1 = {4, 5},

W2 = {2, 3}, and W3 = {0, 1} are about 0.0787, 0.1030,
0.1591, and 0.1591, respectively. Bridging symbols change
these probabilities slightly, further increasing the probabilities
of symbols corresponding to levels in {0, 1, 2, 3} relative to
symbols corresponding to levels in {4, 5, 6, 7}. These prob-
abilities contrast with those of uncoded random data, where
each symbol/level has the same probability of 1/8 = 0.125.

The modified symbol probabilities help to explain the
observed relative performances of the 1D binary RR codes
in the wordline and bitline directions along with the 2D
RR code. Applying 1D binary RR coding in the wordline
direction also indirectly reduces the probability of detrimental
patterns in the bitline direction, and vice versa. This reduces
the expected advantage of bitline coding over wordline coding
in the presence of more severe ICI in the bitline direction.
Similarly, the advantage of 2D coding over 1D coding in
either direction is less than expected (even without taking into
account the rate penalty associated with 2D coding).

We remark that the designed codes are efficient, with
rates fairly close to capacity, and the symbol and pattern
probabilities observed in the data written to the Flash memory
are close to the theoretical values mentioned above.

The cross-over behavior observed in Fig. 4 can be explained
if the level patterns eliminated by the code, especially
ICI-prone patterns, are not the only significant contributors
to error early in the device lifetime. The RR coding signifi-
cantly changes level probabilities compared with the uncoded
setting, possibly increasing the probability of some of the
remaining level patterns that cause errors due to other effects,
and accordingly increasing their contribution to the BER at
low P/E cycles. One way to address this issue is to delay
the introduction of coding until later P/E cycles when ICI
affects performance. Alternatively, one might apply different
constraints at different P/E cycles before and after the cross-
over point, much as adaptive error-correction code designs
have been proposed to achieve different degrees of protection
at various stages of the Flash device lifetime [32], [33].
The reconfigurability feature of LOCO code designs could
be exploited, and a machine learning module could be used
to identify the device status and direct the transition from
one code to another at the appropriate time based on that
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status. In this regard, we also note that machine learning
modeling, as proposed in [34], can be used to characterize
the spatio-temporal ICI effects of the Flash memory device
and provide a tool for optimizing the offline design of
RR-LOCO codes. Another possible approach is to optimize
system performance through a combination of signal process-
ing methods [20], [21] and RR coding. These ideas represent
intriguing directions for future research.

VII. CONCLUSION

We introduced read-and-run (RR) constrained coding
schemes for modern Flash devices. RR coding schemes elim-
inate patterns prone to ICI-induced errors while allowing
systematic encoder and decoder implementations, high overall
rates, and page separation in data recovery. We analyzed
properties of 1D binary RR-LOCO codes, 1D 4-ary RR-LOCO
codes, and a 2D binary RR code. The three RR coding
schemes offer different advantages, and we suggest that sys-
tem requirements at different stages of the device lifetime
should determine the most suitable scheme or schemes to
use. Experimental results reveal significant P/E-cycle lifetime
gains in a commercial Flash device. Future work includes the
incorporation of LDPC codes [35] with RR coding schemes
and the development of machine learning-aided, reconfigurable
RR coding schemes to maximize Flash device lifetime.
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