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Abstract— In this work, we present a novel construction
for solving the linear multiuser detection problem using the
Gaussian Belief Propagation algorithm. Our algorithm yields
an efficient, iterative and distributed implementation of the
MMSE detector. Compared to our previous formulation, the
new algorithm offers a reduction in memory requirements, the
number of computational steps, and the number of messages
passed. We prove that a detection method recently proposed by
Montanari et al. is an instance of ours, and we provide new
convergence results applicable to both.

I. INTRODUCTION

Belief propagation (BP), also known as the sum-product

algorithm, is a powerful and efficient tool in solving, exactly

or approximately, inference problems in probabilistic graphical

models. The underlying essence of estimation theory is to

detect a hidden input to a channel from its observed output.

The channel can be represented as a certain graphical model,

while the detection of the channel input is equivalent to

performing inference in the corresponding graph.

The use of BP [1] for detection purposes has been proven to

be very beneficial in several applications in communications.

For randomly-spread code-division multiple-access (CDMA)

in the large-system limit, Kabashima has introduced a tractable

BP-based multiuser detection (MUD) scheme, which exhibits

near-optimal error performance for binary-input additive white

Gaussian noise (BI-AWGN) channels [2]. This message-

passing scheme has recently been extended to the case where

the ambient noise level is unknown [3], [4]. As for sub-optimal

detection, the nonlinear soft parallel interference cancellation

(PIC) detector was reformulated by Tanaka and Okada as an

approximate BP solution [5] to the MUD problem.

In contrast to the dense, fully-connected nature of the

graphical model of the non-orthogonal CDMA channel, a one-

dimensional (1-D) intersymbol interference (ISI) channel can

be interpreted as a cycle-free tree graph [6]. Thus, detection

in 1-D ISI channels (termed equalization) can be performed

in an optimal maximum a-posteriori (MAP) manner via BP,

also known in this context as the forward/backward, or BCJR,

algorithm [7]. Also, Kurkoski et al. [8], [9] have proposed an

1Contributed equally to this work.
Supported in part by NSF Grant No. CCR-0514859 and EVERGROW, IP
1935 of the EU Sixth Framework.

iterative BP-like detection algorithm for 1-D ISI channels that

uses a parallel message-passing schedule and achieves near-

optimal performance.

For the intermediate regime of non-dense graphs but

with many relatively short loops, extensions of BP to two-

dimensional ISI channels have been considered by Marrow

and Wolf [10], and recently Shental et al. [11]–[13] have

demonstrated the near-optimality of a generalized version

of BP for such channels. Recently, BP has been proved

to asymptotically achieve optimal MAP detection for sparse

linear systems with Gaussian noise [14], [15], for example, in

CDMA with sparse spreading codes.

An important class of practical sub-optimal detectors is

based on linear detection. This class includes, for instance,

the conventional single-user matched filter (MF), decorre-

lator (a.k.a. zero-forcing equalizer), linear minimum mean-

square error (MMSE) detector and many other detectors with

widespread applicability [16], [17]. In general, linear detection

can be viewed as the solution to a (deterministic) set of

linear equations describing the original (probabilistic) estima-

tion problem. Note that the mathematical operation behind

linear detection extends to other tasks in communication, e.g. ,

channel precoding at the transmitter [18].

Recently, linear detection has been explicitly linked to

BP [19], using a Gaussian belief propagation (GaBP) algo-

rithm. This allows for a distributed implementation of the

linear detector [20], circumventing the need of, potentially

cumbersome, direct matrix inversion (via, e.g. , Gaussian elim-

ination). The derived iterative framework was compared quan-

titatively with ‘classical’ iterative methods for solving systems

of linear equations, such as those investigated in the context

of linear implementation of CDMA demodulation [21]–[23].

GaBP is shown to yield faster convergence than these standard

methods. Another important work is the BP-based MUD,

recently derived and analyzed by Montanari et al. [24] for

Gaussian input symbols.

There are several drawbacks to the linear detection tech-

nique of [19]. First, the input matrix Rn×n = ST
n×kSk×n (the

chip correlation matrix) needs to be computed prior to running

the algorithm. This computation requires n2k operations. In

case where the matrix S is sparse [15], the matrix R might
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not no longer be sparse. Second, GaBP uses 2n2 memory to

store the messages. For a large n this could be prohibitive.

In this paper, we propose a new construction that addresses

those two drawbacks. In our improved construction, given a

non-rectangular CDMA matrix Sn×k, we compute the MMSE

detector x = (ST S + Ψ)−1ST y where Ψ is the AWGN

diagonal covariance matrix. We utilize the GaBP algorithm

which is an efficient iterative distributed algorithm. The new

construction uses only 2nk memory for storing the messages.

When k � n this represents significant saving relative to the

2n2 in our previously proposed algorithm. Furthermore, we do

not explicitly compute ST S, saving an extra n2k overhead.

We show that Montanari’s algorithm [24] is an instance of

our method. By showing this, we are able to prove new con-

vergence results for Montanari’s algorithm. Montanari proves

that his method converges on normalized random-spreading

CDMA sequences, assuming Gaussian signaling. Using binary

signaling, he conjectures convergence to the large system limit.

Here, we extend Montanari’s result, to show that his algorithm

converges also for non-random CDMA sequences when binary

signaling is used, under weaker conditions. Another advantage

of our work is that we allow different noise levels per bit

transmitted.

The paper is organized as follows. Section II formulates the

problem of linear detection and presents the distributed GaBP-

based linear detection scheme. Section III describes a novel

construction for efficiently computing the MMSE detector.

The relation to a factor graph construction is explored in

Section IV. New convergence results for Montanari’s work

are presented in Section V. We conclude in Section VI. In the

Appendix we further explore the relation to Montanari’s work.

We shall use the following notations. The operator {·}T

stands for a vector or matrix transpose, the matrix IN is a

N×N identity matrix, while the symbols {·}i and {·}ij denote

entries of a vector and matrix, respectively. N(i) is the set of

graph node connected to node i.

II. LINEAR DETECTION VIA BELIEF PROPAGATION

Consider a discrete-time channel with a real input vec-

tor x = {x1, . . . , xK}T governed by an arbitrary prior

distribution, Px, and a corresponding real output vector

y = {y1, . . . , yK}T = f{xT } ∈ R
K . Here, the function f{·}

denotes the channel transformation. By definition, linear de-

tection compels the decision rule to be

x̂ = Δ{x∗} = Δ{A−1b}, (1)

where b = y is the K × 1 observation vector and the

K × K matrix A is a positive-definite symmetric matrix

approximating the channel transformation. The vector x∗ is

the solution (over R) to Ax = b. Estimation is completed

by adjusting the (inverse) matrix-vector product to the input

alphabet, dictated by Px, accomplished by using a proper

clipping function Δ{·} (e.g. , for binary signaling Δ{·} is the

sign function).

For example, linear channels, which appear extensively in

many applications in communication and data storage systems,

are characterized by the linear relation

y = f{x} = Rx + n,

where n is a K × 1 additive noise vector and R = ST S
is a positive-definite symmetric matrix, often known as the

correlation matrix. The N×K matrix S describes the physical

channel medium while the vector y corresponds to the output

of a bank of filters matched to the physical channel S.

Assuming linear channels with AWGN with variance σ2 as

the ambient noise, the general linear detection rule (1) can

describe known linear detectors. For example [16], [17]:

• The conventional matched filter (MF) detector is obtained

by taking A � IK and b = y. This detector is optimal,

in the MAP-sense, for the case of zero cross-correlations,

i.e. , R = IK , as happens for orthogonal CDMA or when

there is no ISI effect.

• The decorrelator (zero forcing equalizer) is achieved by

substituting A � R and b = y. It is optimal in the

noiseless case.

• The linear minimum mean-square error (MMSE) detector

can also be described by using A = R + σ2IK . This de-

tector is known to be optimal when the input distribution

Px is Gaussian.

In general, linear detection is suboptimal because of its

deterministic underlying mechanism (i.e. , solving a given set

of linear equations), in contrast to other estimation schemes,

such as MAP or maximum likelihood, that emerge from an

optimization criterion.

In [19], linear detection, in its general form (1), was

implemented using an efficient message-passing algorithm.

The linear detection problem was shifted from an algebraic

to a probabilistic domain. Instead of solving a deterministic

vector-matrix linear equation, an inference problem is solved

in a graphical model describing a certain Gaussian distribution

function. Given the overall channel matrix R and the obser-

vation vector y, one knows how to write explicitly p(x) and

the corresponding graph G with edge potentials (‘compatibility

functions’) ψij and self-potentials (‘evidence’) φi. These graph

potentials are determined according to the following pairwise

factorization of the Gaussian distribution p(x)

p(x) ∝
K∏

i=1

φi(xi)
∏
{i,j}

ψij(xi, xj),

resulting in ψij(xi, xj) � exp(−xiRijxj) and

φi(xi) = exp
(
bixi − Riix

2
i /2

)
. The set of edges {i, j}

corresponds to the set of all non-zero entries of A
for which i > j. Hence, we would like to calculate

the marginal densities, which must also be Gaussian,

p(xi) ∼ N (μi = {R−1y}i, P
−1
i = {R−1}ii), where μi

and Pi are the marginal mean and inverse variance (a.k.a.

precision), respectively. It is shown that the inferred mean μ
is identical to the desired solution x∗ = R−1y. Table I lists

the GaBP algorithm update rules.
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TABLE I

COMPUTING A−1b VIA GABP. ONLINE MATLAB IMPLEMENTATION IS PROVIDED IN [25].

# Stage Operation
1. Initialize Compute Pii = Aii and μii = bi/Aii.

Set Pki = 0 and μki = 0, ∀k �= i.
2. Iterate Propagate Pki and μki, ∀k �= i such that Aki �= 0.

Compute Pi\j = Pii +
∑

k∈N(i)\j Pki and μi\j = P−1
i\j (Piiμii +

∑
k∈N(i)\j Pkiμki).

Compute Pij = −AijP
−1
i\j Aji and μij = −P−1

ij Aijμi\j .

3. Check If Pij and μij did not converge, return to #2. Else, continue to #4.

4. Infer Pi = Pii +
∑

k∈N(i) Pki , μi = P−1
i (Piiμii +

∑
k∈N(i) Pkiμki).

5. Decide x̂i = Δ{μi}

III. DISTRIBUTED ITERATIVE COMPUTATION OF THE

MMSE DETECTOR

In this section, we efficiently extend the applicability of the

proposed GaBP-based solver for systems with symmetric ma-

trices [19] to systems with any square (i.e. , also nonsymmet-

ric) or rectangular matrix. We first construct a new symmetric

data matrix R̃ based on an arbitrary (non-rectangular) matrix

S ∈ R
k×n

R̃ �
(

Ik ST

S −Ψ

)
∈ R

(k+n)×(k+n). (2)

Additionally, we define a new vector of variables x̃ �
{x̂T , zT }T ∈ R

(k+n)×1, where x̂ ∈ R
k×1 is the (to be shown)

solution vector and z ∈ R
n×1 is an auxiliary hidden vector,

and a new observation vector ỹ � {0T ,yT }T ∈ R
(k+n)×1.

Now, we would like to show that solving the symmetric

linear system R̃x̃ = ỹ and taking the first k entries of the

corresponding solution vector x̃ is equivalent to solving the

original (not necessarily symmetric) system Rx = y. Note

that in the new construction the matrix R̃ is sparse again, and

has only 2nk off-diagonal nonzero elements. When running

the GaBP algorithm we have only 2nk messages, instead of

n2 in the previous construction.

Writing explicitly the symmetric linear system’s equations,

we get

x̂ + ST z = 0, Sx̂ − Ψz = y.

Thus,

x̂ = Ψ−1ST (y − Sx̂),

and extracting x̂ we have

x̂ = (ST S + Ψ)−1ST y.

Note, that when the noise level is zero, Ψ = 0m×m, we get

the Moore-Penrose pseudoinverse solution

x̂ = (ST S)−1ST y = S†y.

IV. RELATION TO FACTOR GRAPH

In this section we give an alternate proof of the correctness

of our construction. Given the inverse covariance matrix R̃
defined in (2), and the shift vector x̃ we can derive the

matching self and edge potentials

ψij(xi, xj) � exp(−xiRijxj)

φi(xi) � exp(−1/2xiR
2
iixi − xiyi)

which is a factorization of the Gaussian system distribution

p(x) ∝
∏

i

φi(xi)
∏
i,j

ψij(xi, xj) =

=
∏
i≤k

φi(xi)
∏
i>k

φi(xi)
∏
i,j

ψij(xi, xj) =

=
∏
i≤k

prior on x︷ ︸︸ ︷
exp(−1

2
x2

i )
∏
i>k

exp(−1
2
Ψix

2
i−xiyi)

∏
i,j

exp(−xi

Rij︷︸︸︷
Sij xj)

Next, we show the relation of our construction to a factor

graph. We will use a factor graph with k nodes to the left (the

bits transmitted) and n nodes to the right (the signal received),

shown in Fig. 1. Using the definition x̃ � {x̂T , zT }T ∈
R

(k+n)×1 the vector x̂ represents the k input bits and the

vector z represents the signal received. Now we can write the

system probability as:

p(x̃) ∝
∫
x̂

N (x̂; 0, I)N (z;Sx̂, Ψ)dx̂

It is known that the marginal distribution over z is:

= N (z; 0,ST S + Ψ)

This distribution is Gaussian, with the following parameters:

E(z|x̂) = (ST S + Ψ)−1ST y

Cov(z|x̂) = (ST S + Ψ)−1

It is interesting to note that a similar construction was used

by Frey [26] in his seminal 1999 work when discussing the

factor analysis learning problem. While his work is beyond

the scope of this paper, it can be shown that his algorithm can

be modelled using the GaBP algorithm.

V. NEW CONVERGENCE RESULTS

One of the benefits of using our new construction is that

we propose a new mechanism to provide future convergence

results. In the Appendix we prove that Montanari’s algorithm

is an instance of our algorithm, thus our convergence results

apply to Montanari’s algorithm as well.

We know that if the matrix R̃ is strictly diagonally domi-

nant, then GaBP converges and the marginal means converge
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Fig. 1. Factor graph describing the linear channel

to the true means [27, Claim 4]. Noting that the matrix R̃ is

symmetric, we can determine the applicability of this condition

by examining its columns. Referring to (4) we see that in

the first k columns, we have the k CDMA sequences. We

assume random-spreading binary CDMA sequences which are

normalized to one. In other words, the absolute sum of each

column is
√

n. In that case, the matrix R̃ is not diagonally

dominant (DD). We can add a regularization term of
√

n + ε
to force the matrix R̃ to be DD, but we pay in changing the

problem. In the next n columns of the matrix R̃, we have the

diagonal covariance matrix Ψ with different noise levels per bit

in the main diagonal, and zero elsewhere. The absolute sum of

each column of S is k/
√

n, thus when the noise level of each

bit satisfies Ψi > k/
√

n, we have a convergence guarantee.

Note, that the convergence condition is a sufficient condition.

Based on Montanari’s work, we also know that in the large

system limit, the algorithm converges for binary signaling,

even in the absence of noise.

An area of future work is to utilize this observation to

identify CDMA schemes with matrices S that when fitted into

the matrix R̃ are either DD, or comply to the spectral radius

convergence condition of [28].

VI. CONCLUSION

We presented a novel distributed algorithm for comput-

ing the MMSE detector for the CDMA multiuser detection

problem. Our work utilizes the Gaussian Belief Propagation

algorithm while improving two existing constructions [19],

[24] in this field. Although we described our algorithm in

the context of multiuser detection, it has wider applicability.

For example, it provides an efficient iterative method for

computing the Moore-Penrose pseudoinverse, and it can also

be applied to the factor analysis learning problem [26].

APPENDIX: MONTANARI’S ALGORITHM IS AN INSTANCE

OF OUR ALGORITHM

In this section we show that Montanari’s algorithm is an

instance of our algorithm. Our algorithm is more general.

First, we allow different noise level for each received bit,

unlike his work which uses a single fixed noise for the whole

system. In practice, the bits are transmitted using different

frequencies, thus suffering from different noise levels. Second,

the update rules in his paper are fitted only to the randoml-

spreading CDMA codes, where the matrix A contains only

values which are drawn uniformly from {−1, 1}. Assuming

binary signalling, he conjectures convergence to the large

system limit. Our new convergence proof holds for any CDMA

matrices provided that the absolute sum of the chip sequences

is one, under weaker conditions on the noise level. Third,

we propose in [19] an efficient broadcast version for saving

messages in a broadcast supporting network.

The probability distribution of the factor graph used by

Montanari is:

dμN,K
y =

1

ZN,K
y

N∏
a=1

exp(−1
2
σ2ω2

a + jyaωa)
K∏

i=1

exp(−1
2
x2

i )

·
∏
i,a

exp(− j√
N

saiωaxi)dω

Extracting the self and edge potentials from the above

probability distribution:

ψii(xi) � exp(−1
2
x2

i ) ∝ N (x; 0, 1)

ψaa(ωa) � exp(−1
2
σ2ω2

a + jyaωa) ∝ N (ωa; jya, σ2)

ψia(xi, ωa) � exp(− j√
N

saiωaxi) ∝ N (x;
j√
N

sai, 0)

For convenience, Table II provides a translation between the

notations used in this paper (taken from [19]) and that used

by Montanari et al. in [24]:

TABLE II

SUMMARY OF NOTATIONS

This work [19] Montanari el al. [24] Description

Pij λ
(t+1)
i→a precision msg from left to right

λ̂
(t+1)
a→i precision msg from right to left

μij γ
(t+1)
i→a mean msg from left to right

γ̂
(t+1)
a→i mean msg from right to left

μii yi prior mean of left node
0 prior mean of right node

Pii 1 prior precision of left node
Ψi σ2 prior precision of right node

μi
Gi
Li

posterior mean of node

Pi Li posterior precision of node

Aij
−jsia√

N
covariance

Aji
−jsai√

N
covariance

j j =
√−1

Now we derive Montanari’s update rules. We start with the

precision message from left to right:

Pij︷ ︸︸ ︷
λ

(t+1)
i→a = 1 +

1
N

Σb �=a
s2

ib

λ
(t)
b→i

=
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=

Pii︷︸︸︷
1 +Σb �=a

Pki︷ ︸︸ ︷
1
N

s2
ib

λ
(t)
b→i

=

Pii︷︸︸︷
1 −Σb �=a

−Aij︷ ︸︸ ︷
−jsib√

N

(Pj\i)
−1︷ ︸︸ ︷

1

λ
(t)
b→i

Aji︷ ︸︸ ︷
−jsib√

N
.

By looking at Table 1, it is easy to verify that this precision

update rule is equivalent to that in #2 of Table I.

Using the same logic we get the precision message from

right to left:

Pji︷ ︸︸ ︷
λ̂

(t+1)
i→a =

Pii︷︸︸︷
σ2 +

−A2
ijP−1

j\i︷ ︸︸ ︷
1
N

Σk �=i
s2

ka

λ
(t)
k→a

The mean message from left to right is given by

γ
(t+1)
i→a =

1
N

Σb �=a
sib

λ
(t)
b→i

γ̂
(t)
b→i =

=

μii︷︸︸︷
0 −Σb �=a

−Aij︷ ︸︸ ︷
−jsib√

N

P−1
j\i︷ ︸︸ ︷
1

λ̂
(t)
b→i

μj\i︷︸︸︷
γ̂

(t)
b→i .

The same calculation is done for the mean from right to left:

γ̂
(t+1)
i→a = ya − 1

N
Σk �=i

ska

λ
(t)
k→a

γ
(t)
k→a

Finally, the left nodes calculated the precision and mean by

G
(t+1)
i =

1√
N

Σb
sib

λ
(t)
b→i

γ̂
(t)
b→i , Ji = G−1

i

L
(t+1)
i = 1 +

1
N

Σb
s2

ib

λ
(t)
b→i

, μi = LiG
−1
i .

The key difference between the two constructions is that

Montanari uses a directed factor graph while we use an undi-

rected graphical model. As a consequence, our construction

provides additional convergence results and simpler update

rules.
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[16] S. Verdú, Multiuser Detection. Cambridge, UK: Cambridge University
Press, 1998.

[17] J. G. Proakis, Digital Communications, 4th ed. New York, USA:
McGraw-Hill, 2000.
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