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Generalized Partial Orders for
Polar Code Bit-Channels

Wei Wu and Paul H. Siegel , Life Fellow, IEEE

Abstract— We study partial orders (POs) for the synthesized
bit-channels of polar codes. First, we give an alternative proof of
an existing PO for bit-channels with the same Hamming weight
and use the underlying idea to extend the bit-channel ordering
to some additional cases. In particular, the bit-channel ordering
for a given code block length is used to generate additional
bit-channel ordering relationships for larger block lengths, gen-
eralizing previously known POs. Next, we consider POs especially
for the binary erasure channel (BEC). We identify a symmetry
property of the Bhattacharyya parameters of complementary
bit-channel pairs on the BEC and provide a condition for the
alignment of polarized sets of bit-channels for the BEC and
general binary-input memoryless symmetric (BMS) channels.
Numerical examples and further properties about the POs for
the bit-channels with different Hamming weights are provided
to illustrate the new POs. The bit-channels with universal
ordering positions, which are independent of the channel erasure
probability, are verified for all of the code block lengths. Finally,
we show the threshold behavior of the Bhattacharyya parameters
of some bit-channels by approximating the threshold values. The
corresponding value for a bit-channel can be used to determine
whether it is good or bad when the underlying channel is known.

Index Terms— Polar codes, partial order, Bhattacharyya para-
meter, induction, erasure channel, function composition.

I. INTRODUCTION

POLAR codes, as introduced by Arıkan [1], are the
first family of codes proved to be capacity-achieving

on binary-input memoryless symmetric (BMS) channels with
low-complexity encoders and decoders. The code construction
starts from a channel transformation, where N synthesized bit-
channels W (i)

N , i = 0, 1, . . . , N − 1, are obtained by applying
a linear transformation to N independent copies of a BMS
channel W . As the block length N goes to infinity, the syn-
thesized bit-channels become either noiseless or completely
noisy. Encoding has time complexity O(N log2 N), as does
decoding by means of successive cancellation (SC), whereby
the bit-channels W (i)

N are sequentially decoded.
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A polar code carries the information on the least noisy
bit-channel positions and freezes the remaining ones to a
predetermined value, usually chosen to be zero. However,
except for the binary erasure channel (BEC), it is generally
difficult to precisely measure the quality of the bit-channel
W (i)

N because of the exponentially growing output alphabet
size as a function of the bit-channel index. Several methods
have been proposed to help select the information-bearing
bit-channels: Monte Carlo simulation was discussed in [1],
density evolution was used in [18], and a Gaussian approx-
imation for density evolution was proposed in [30]. In [29],
Tal and Vardy accurately approximated the error probabilities
of bit-channels by using efficient degrading and upgrading
quantization schemes.

Another important characteristic of polar codes is that
the bit-channel orderings are channel-dependent. Although no
general rule is known for completely ordering the bit-channels
of a general BMS channel W , some partial orders (POs) that
are independent of the underlying channel W have been found
for selected bit-channels [3], [19], [28]. In [19], an ordering
applicable to bit-channels with different Hamming weights
was presented. (The Hamming weight of W (i)

N is defined as
the number of ones in the binary expansion of i .) It stated
that a bit-channel W ( j )

N is stochastically degraded with respect
to W (i)

N if the positions of 1 in the binary expansion of j
are a subset of the positions of 1 in the binary expansion
of i . The ordering in [28, Theorem 1] and [3] compared bit-
channels with the same Hamming weight. It was based on the
observation that a bit-channel W ( j )

N is stochastically degraded
with respect to W (i)

N if j is obtained by swapping a more
significant 1 with a less significant 0 in the binary expansion
of i . Both of these orderings are partial, in the sense that not
all bit-channel pairs (W (i)

N , W ( j )
N ) are comparable.

Valuable insight into the structural properties of the infor-
mation set of a polar code can be obtained with the help
of POs. In particular, the POs mentioned above were used
in [17] to show that it suffices to know the reliability of a
sublinear number of bit-channels in order to construct a polar
code. In a recent paper [33], a localization-based construc-
tion method with such sublinear complexity was proposed,
making use of a group-based PO diagram to directly find
the information set. In [11], a theoretical framework for fast
code construction over additive white Gaussian noise (AWGN)
channels was established using a mathematical concept called
β-expansion that was based on the PO results. The POs
were also used in [13], to study the algebraic structure and
some invariant properties of the information set. The PO
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in [28] and [3] traces back to an earlier paper [2], in which
polar codes were applied in a public key cryptosystem.

There are several other works in the literature that relate to
bit-channel orderings. The minimum distance of a polar code
was shown to be 2 to the power of the minimum Hamming
weight of bit-channels in the information set [9], [14]. In [23],
a modified construction based on swapping weak information
bits with strong frozen bits was proposed to improve the
performance under belief propagation (BP) and successive
cancellation list (SCL) decoding. In the asymptotic regime,
it was proved that the distribution of frozen bits converges
to a limit distribution [31]. Moreover, the information set
was proved to have several properties that were common to
fractals [7]. In the finite regime, the authors in [20] showed that
each of the bit-channels obtained by applying polarization to a
BEC has a sharp threshold for sufficiently large block length.

In this paper, we present further results related to bit-channel
orderings. They are summarized as follows.
• POs for BMS channels: We provide an elementary proof

based on mathematical induction for the PO proposed in [28]
and [3]. Then, we use the proof idea to identify new gen-
eral POs for bit-channels with different Hamming weights.
Specifically, we show that when certain types of bit-channel
orderings hold for a given code block length, some very
general POs can be established for larger block lengths.
The existence of the underlying bit-channel orderings is
discussed for both BEC and other BMS channels.

• POs for the BEC: We consider the bit-channel pairs whose
polarization processes are described by a pair of comple-
mentary binary sequences. Their Bhattacharyya parameters
exhibit a symmetry property on the BEC, whose impli-
cations we explore. This motivates the investigation of
conditions for the alignment of polarized sets of bit-channels
for the BEC and other BMS channels. We present several
examples to illustrate the new POs for the BEC and discuss
several further ordering properties. In particular, we consider
the ordering between the worst bit-channel with Hamming
weight n and the best bit-channel with Hamming weight m
at polarization step t = n + m, where m < n, as a function
of the pair (m, n). Finally, we characterize bit-channels with
universal ordering positions, which are independent of the
channel erasure probability, for all of the code block lengths.

• Threshold behavior: We study the threshold value for
the worst bit-channel with a given Hamming weight for
the BEC by analyzing the polynomial expression for the
Bhattacharyya parameter. This threshold value can be used
to determine whether the bit-channel is good or bad
when the erasure probability of the underlying channel is
fixed. (A similar result about threshold behavior for the
asymptotic case was presented in [7].) For general BMS
channels, we determine the relationship between threshold
values associated with lower and upper bounds on the
Bhattacharyya parameter.
Portions of this paper were presented in [32]. In the present

paper, we further analyze generalized POs for general BMS
channels, more completely characterize the scenarios where
bit-channel orderings at a given block length induce the
most orderings at larger block lengths, provide a complete

characterization of universal BEC bit-channels that preserve
their ordering positions independent of the channel erasure
probability, and study the threshold behavior of bit-channels
for the BEC and general BMS channels.

The rest of this paper is organized as follows. In Section II,
we present notation and definitions, as well as some basic
results relating to key channel parameters. In Section III,
we give an elementary proof of the PO proposed in [28]
and [3]; then, we use the proof technique to derive some
generalized POs. In Section IV, we concentrate on POs for the
BEC and present numerical examples and further properties
for the new generalized POs. The threshold behavior of bit-
channels for both BEC and general BMS channels is discussed
in Section V. Finally, Section VI summarizes the paper and
discusses some directions for future research.

II. PRELIMINARIES

A. Channel Parameters

Consider a BMS channel given by W : X → Y , with input
alphabet X = {0, 1}, output alphabet Y and transition proba-
bilities {W (y|x) : x ∈ X , y ∈ Y}. Define the Bhattacharyya
parameter of the channel W as

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1)

and the error probability of W with uniform input under
maximum-likelihood decoding as

Pe(W ) = 1

2

∑
y∈Y

min{W (y|0), W (y|1)}.

Note that when W = BEC(�), i.e., the channel erasure
probability is �, we have Z(W ) = �.

The mutual information between the input and output of W
with uniform input distribution, which is also the symmetric
capacity of W , can be written as

I (W ) =
∑
y∈Y

∑
x∈X

1

2
W (y|x) log2

2W (y|x)

W (y|0) + W (y|1)
.

Each of the above three parameters can measure the reliabil-
ity of a BMS channel W . Roughly speaking, a BMS channel
W with higher reliability has a lower Z(W ), lower Pe(W ),
and higher I (W ). But different parameters used for comparing
two channels may lead to different channel orderings in some
cases. In this paper, the Bhattacharyya parameter Z(W ) is
used as the key parameter to measure the reliability of a BMS
channel W .

The following relations between Z(W ) and Pe(W ) were
given in [10]:

1 −
√

1 − Z(W )2 � 2Pe(W ) � Z(W ). (1)

In addition, the following relations between Z(W ) and
I (W ) were proved in [8]:

1 − Z(W ) � I (W ) � 1 − h2

(
1 − √

1 − Z(W )2

2

)
, (2)
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where h2(·) denotes the binary entropy function, i.e., h2(x) =
−x log2(x)−(1−x) log2(1−x). These lower and upper bounds
are both tighter than those presented in [1].

Based on (1) and (2), we conclude with two lemmas that
provide useful relationships among channel orderings with
respect to the Bhattacharyya parameter, error probability, and
symmetric capacity.

Lemma 1. For any two BMS channels W and Q, if Z(W ) �
β1 � β2 � Z(Q), where β1 and β2 satisfy

h2

⎛
⎝1 −

√
1 − β2

1

2

⎞
⎠ � β2, (3)

then we have I (W ) � I (Q). Since h2(
x
2 ) � x holds for any

x ∈ [0, 1], if β1 and β2 satisfy the stronger relation

1 −
√

1 − β2
1 � β2,

then we have I (W ) � I (Q) and Pe(W ) � Pe(Q).

Lemma 2. For any two BMS channels W and Q, if Pe(W ) �
λ1 � λ2 � Pe(Q), where λ1 and λ2 satisfy

2λ1 �
√

1 − (1 − 2λ2)2,

then Z(W ) � Z(Q).

A stronger measure of channel ordering is provided by the
channel degradation relation.

Definition 1. The channel W : X → Y is stochastically
degraded with respect to the channel Q : X → Z if there
exists a channel P : Z → Y such that

W (y|x) =
∑
z∈Z

Q(z|x)P(y|z)

for all y ∈ Y and x ∈ X .

We write W � Q to denote that W is stochastically degraded
with respect to Q. For clarity later on, we may also write
it as Q � W to describe the same channel relation between
W and Q. The following lemma states that the relation of
channel parameters between different channels can be obtained
from the channel degradation relation.

Lemma 3. [29, Lemma 3] For any two BMS channels
W and Q, if W � Q, then we have the following three
inequalities:

Z(W ) � Z(Q),

Pe(W ) � Pe(Q),

I (W ) � I (Q).

In general, however, the converse is not true. That is, the chan-
nel degradation relation does not hold even if all three of the
inequalities are satisfied. However, when W and Q are two
BECs, any one of the three inequalities is enough to imply
the channel degradation relation.

B. Channel Transformation
Consider the channel transformation W → (W 0, W 1)

defined in the following manner. Starting from a BMS channel

W : {0, 1} → Y , the channels W 0 : {0, 1} → Y2 and W 1 :
{0, 1} → {0, 1} × Y2 are defined as

W 0(y0, y1|x0) =
∑

x1∈{0,1}

1

2
W (y0|x0 ⊕ x1)W (y1|x1), (4)

W 1(y0, y1, x0|x1) = 1

2
W (y0|x0 ⊕ x1)W (y1|x1). (5)

When there are N = 2t independent copies of BMS
channel W , the channel transformation can be recursively
repeated t times to produce N bit-channels W (i)

N : {0, 1} →
YN × {0, 1}i , 0 � i � N − 1, defined as follows. For any
0 � i � N − 1, let bt = b1b2 · · · bt be the binary expansion
of i , where b1 is the most significant digit. For example,
if t = 3 and i = 6, the corresponding binary expansion of
i is b3 = b1 b2 b3 = 110. The bit-channel W (i)

N is defined as

W (i)
N = W bt def= (((W b1)b2)···)bt .

We denote the binary complement of bt by b̄t = b̄1b̄2 · · · b̄t .
Here, b j ⊕ b̄ j = 1 for any 1 � j � t . Then, b̄t is the binary
expansion of N − 1 − i , so W (N−i−1)

N = W b̄t
. It should be

noted that W (i)
N is also a BMS channel. In particular, when W

is a BEC, each of the bit-channels W (i)
N is also a BEC.

The PO in [19] is based on the relation between two bit-
channels obtained by one-step channel transformation, which
is stated as follows.

Lemma 4. [26, Lemma 3] Let W be a BMS channel. Then,
W 0 is stochastically degraded with respect to W 1,

W 0 � W 1.

The channel transformation above yields the following
results relating to the Bhattacharyya parameters of the chan-
nels W 0, W 1, and W [10]:

Z(W )
√

2 − Z(W )2 � Z(W 0) � 2Z(W ) − Z(W )2, (6)

Z(W 1) = Z(W )2. (7)

The lower bound and upper bound in (6) are achieved when W
is a binary symmetric channel (BSC) and a BEC, respectively.
In particular, when W = BEC(�), we have W 0 = BEC(2� −
�2) and W 1 = BEC(�2), with Z(W 0) = 2�−�2 and Z(W 1) =
�2. As a result, for the BEC there is an explicit recursion for
the bit-channels produced by the channel transformation.

Define f−1(x) = x
√

2 − x2, f0(x) = 2x − x2, f1(x) = x2,
x ∈ [0, 1], and

Fbt = fbt ◦ · · · ◦ fb2 ◦ fb1, (8)

Gbt = f2bt −1 ◦ · · · ◦ f2b2−1 ◦ f2b1−1. (9)

When W is a BEC, we have Z(W bt
) = Fbt (Z(W )). For any

BMS channel W and any bt ∈ {0, 1}t , we have

Gbt (Z(W )) � Z(W bt
) � Fbt (Z(W )), (10)

where the upper bound is achieved when W is a BEC. We also
define f (k)

j = f j ◦ f j ◦ · · · ◦ f j︸ ︷︷ ︸
k

for j = −1, 0, 1 and k � 1.

The relationship between (8) and (9) is stated in the follow-
ing lemma, whose proof is given in Appendix A.
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Lemma 5. For any binary sequence ak ∈ {0, 1}k , k � 1, and
any x ∈ [0, 1], we have

G2
ak (x) = Fak (x2). (11)

In [5], similar relations involving the error probability were
proved:

Pe(W 0) = 2Pe(W ) − 2Pe(W )2, (12)

Pe(W 1) � 2Pe(W )2. (13)

For any ε ∈ (0, 1
2 ), with ε usually taken to be very small,

the following sets of ε-good and ε-bad bit-channels are often
considered:

Gε
N (W ) � {i ∈ [N] : Z(W (i)

N ) � ε}, (14)

Bε
N (W ) � {i ∈ [N] : Z(W (i)

N ) � 1 − ε}, (15)

where [N] denotes the set {0, 1, . . . , N − 1}.
The channel transformation in (4) and (5) preserves the

degradation relation when the underlying channels are BMS
channels.

Lemma 6. [29, Lemma 5] Given two BMS channels W and Q,
if Q � W , then

Q0 � W 0 and Q1 � W 1.

Note that when both W and Q are BECs, either Q0 � W 0

or Q1 � W 1 implies Q � W because of the monotonicity of
f0 and f1.

III. PARTIAL ORDERS FOR BMS CHANNELS

In this section, we give an elementary proof of the PO
proposed in [28] and [3] based on mathematical induction.
We then use the underlying idea to derive more general-
ized POs.

A. New Proof
The following basic lemma is deduced in [28] from a

discussion of the case N = 4.

Lemma 7. For any BMS channel W , when N = 4, we have
the bit-channel relation W 01 � W 10.

Remark 1. This implies that Z(W 10) � Z(W 01) for any
BMS channel W , a fact that also follows immediately from
(6) and (7), which give:

Z(W 10) � 2Z(W 1) − Z(W 1)2 = 2Z(W )2 − Z(W )4,

Z(W 01) = Z(W 0)2 � [Z(W )
√

2 − Z(W )2]2.

If W is replaced by W pn
, for any pn ∈ {0, 1}n and n � 1,

Lemma 7 implies
W pn 01 � W pn 10.

Applying Lemma 6 recursively yields

W pn 01qm � W pn 10qm
(16)

for all qm ∈ {0, 1}m and m � 1. We now restate the main PO
in [28] as follows.

Theorem 1. For any BMS channel W , the degradation relation

W pn 0rl 1qm � W pn 1rl 0qm
(17)

holds for all pn ∈ {0, 1}n , r l ∈ {0, 1}l , qm ∈ {0, 1}m , and
n, l, m � 0.

Proof: The proof proceeds by mathematical induction.
It is easy to see that when l = 0, (17) reduces to (16). Now
assume (17) is true for l = k, k � 0, i.e.,

W pn 0rk 1qm � W pn 1rk 0qm

holds for all rk ∈ {0, 1}k , pn ∈ {0, 1}n , qm ∈ {0, 1}m , and
n, m � 0.

For the induction step, let l = k +1, denoting the additional
bit by rk+1. There are two cases to consider.
1) If rk+1 = 0, the following relations hold:

W pn0rk+11qm = W pn0rk 01qm (a)
� W pn 0rk 10qm

(b)
� W pn 1rk00qm = W pn1rk+10qm

. (18)

Here, (a) follows from (16) and (b) is based on the
induction hypothesis for l = k.

2) If rk+1 = 1, the following relations hold:

W pn 0rk+11qm = W pn 0rk 11qm (c)
� W pn 1rk 01qm

(d)
� W pn 1rk 10qm = W pn 1rk+10qm

. (19)

Here, (c) is based on the induction hypothesis for l = k
and (d) follows from (16).

Combining cases 1) and 2), we have

W pn 0rk+11qm � W pn 1rk+10qm

for all rk+1 ∈ {0, 1}k+1, pn ∈ {0, 1}n , qm ∈ {0, 1}m , and
n, m � 0. This completes the induction step.

Remark 2. Theorem 1 presents the same PO as in [28,
Theorem 1], and (16) leads to the Covering Relation (CR)
of the POs proposed in [28].

B. Generalized PO
The PO in [28] and [3] applies to bit-channels with the same

Hamming weight. Except for the PO in [19], little is known
about relations among bit-channels with different Hamming
weights. We now exploit the idea in the proof of Theorem 1 to
derive some additional bit-channel orderings, thus generalizing
the PO in [28] and [3] to bit-channels with possibly different
Hamming weights.

Theorem 2. Let ak be a binary sequence of length k and
bm, cm be binary sequences of length m, for k � 0 and m � 1.
Let W be a BMS channel, and assume W bm � W cm

. If the
condition

W bmak1n � W cm ak0n
(�)
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holds for some n � 1, then

W bmakdh1n � W cm akdh0n
(20)

holds for all dh ∈ {0, 1}h and h � 1.

Proof: We first let h = 1. There are two cases to consider.

1) If d1 = 0, we have

W bm ak01n � W bm ak1n0 � W cm ak0n0 = W cm ak00n
.

The first degradation relation follows from the PO in
Theorem 1, and the second degradation relation is based
on applying Lemma 6 to the condition (�).

2) If d1 = 1, we have

W bm ak11n = W bm ak1n1 � W cm ak0n 1 � W cm ak10n
.

The first degradation relation is based on applying
Lemma 6 to the condition (�), and the second degradation
relation follows from the PO in Theorem 1.

Combining cases 1) and 2) gives

W bm akd11n � W cm akd10n
.

Repeating this argument for successive inserted bits d2, . . . , dh

completes the proof.

Remark 3. In fact, Theorem 2 is a generalization of Theo-
rem 1 inspired by its proof. Taking m = n = 1 and bm = 0,
cm = 1 the condition (�) in Theorem 2 becomes the induction
hypothesis in Theorem 1 (by omitting the same beginning
and ending sequences, i.e., pn and qm used in Theorem 1).
Note that the induction step in the proof of Theorem 1 does
not depend on the sequences just ahead of rk , i.e., 0 and 1;
thus, if we substitute them with some other sequences with the
degradation relation preserved, e.g., bm and cm (W bm � W cm

)
in Theorem 2, the result (20) will follow provided that the
condition (�) holds.

Remark 4. In contrast to the assumption in Theorem 2,
if W bm � W cm

, then

W bm ak1n � W cm ak0n

holds for all ak ∈ {0, 1}k and k � 0. Hence, there is no ak

that satisfies the condition (�).

Remark 5. If W bm � W cm
, we consider two scenarios, based

upon the difference between the Hamming weights of the two
binary sequences, wt(cm) − wt(bm).
1) wt(cm) − wt(bm) � n: Applying the PO in [19] and the

PO in Theorem 1, we get W bm 1n � W cm 0n
. According to

Theorem 2, this implies that the condition (�) is satisfied
for all ak ∈ {0, 1}k and any k � 0.

2) wt(cm)− wt(bm) < n: This case is non-trivial since the ak

that satisfies the condition (�) depends on the underlying
channel W , the values of (m, n), and the sequences bm , cm .
In Section III-C, we prove a strong result about the
existence of such ak when W is a BEC. A discussion for
general BMS channels is also provided.

The following corollary is immediately obtained by setting
bm = 0m and cm = 1m in Theorem 2, noting that W 0m �
W 1m

for any BMS channel W , and taking into consideration
Remark 5.

Corollary 1. Let bm = 0m and cm = 1m . If for some k∗ � 0,
W 0m ak∗

1n � W 1m ak∗
0n

holds for all ak∗ ∈ {0, 1}k∗
, then

W 0m ak1n � W 1m ak0n

holds for all ak ∈ {0, 1}k and k � k∗. When m � n,
the condition holds for k∗ = 0.

In a similar manner, if W is a BEC, the PO for larger N
can be used to deduce bit-channel orderings for smaller N .

Theorem 3. Let ek be a binary sequence of length k, k � 0.
Assume W is a BEC. If

W 0m ek 1n � W 1m ek0n
(†)

holds for some m < n, then

W 0mek�
1n � W 1m ek�

0n
(21)

holds for any 0 � k � � k.

Proof: There are two cases to consider involving the last
bit ek of the middle binary sequence.

1) If ek = 0, then

W 0m ek−11n0 � W 0m ek−101n = W 0m ek1n

� W 1m ek0n = W 1mek−10n0.

The first upgradation relation follows from Theorem 1, and
the second upgradation relation is the condition (†).

2) If ek = 1, then

W 0m ek−11n1 = W 0m ek1n � W 1m ek0n

= W 1mek−110n � W 1m ek−10n1.

The first upgradation relation is the condition (†), and
the second upgradation relation follows from Theorem 1.

Combining cases 1) and 2) gives

W 0m ek−11nek � W 1mek−10nek . (22)

If W and V are BECs, W 0 � V 0 or W 1 � V 1 implies
W � V . Therefore, the relation (22) implies

W 0m ek−11n � W 1mek−10n
.

The above argument reduces the length of the middle binary
sequence ek by 1 in (†). We can repeat the same process to
get the result for any shorter middle sequence in (21).

Remark 6. Theorem 3 only considers the case m < n because,
according to part 1) of Remark 5, the condition (†) never holds
when m � n.
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C. The Condition (�)

Theorem 2 provides a generalized PO that does not require
the bit-channels to have the same Hamming weight, provided
the ordering in the condition (�) holds. The next proposition
shows that, if the channel W is a BEC, then for any m, n � 1,
the condition (�) holds for some sequence ak , for sufficiently
large k.

Proposition 1. Let W = BEC(�) for some � ∈ (0, 1), and
m, n � 1. Let bm , cm be distinct binary sequences of length m
such that W bm � W cm

. Then, for sufficiently large k, there
exists a finite-length sequence ak ∈ {0, 1}k , such that

Z(W bmak1n
) � Z(W cm ak0n

). (23)

Therefore, W bm ak1n � W cm ak0n
.

Proof: According to (8), we have

Z(W bm ak1n
) = f (n)

1 [Fak (Fbm (�))] = [Fak (Fbm (�))]2n
,

Z(W cm ak0n
) = f (n)

0 [Fak (Fcm (�))] = 1 − [1 − Fak (Fcm (�))]2n
.

We want to find ak such that (23) is satisfied, that is

[Fak (Fbm (�))]2n + [1 − Fak (Fcm (�))]2n � 1. (24)

Let (a�)��1 be a sequence of independent and identically
distributed (i.i.d.) Bernoulli( 1

2) random variables. Let ak be
a realization of the random vector a1 a2 · · · ak . Then almost
surely, the function Fak exhibits a threshold behavior as k
grows large. To be more precise, according to [10, Lemma 11],
there exists a point �∗ ∈ [0, 1] such that

lim
k→∞ Fak (z) =

{
0, z ∈ [0, �∗),
1, z ∈ (�∗, 1]. (25)

Here, �∗ depends on the realization ak and has a uniform
distribution on [0, 1]. We use this result to complete the proof.

Since W bm � W cm
and bm , cm are distinct, then we have

0 < Fcm (�) < Fbm (�) < 1. We can therefore find a threshold
point �∗ such that Fcm (�) < �∗ < Fbm (�). Therefore, there
exists a realization ak with a sufficiently large k such that

Fak (Fbm (�)) � 1 − θ(n),

Fak (Fcm (�)) � θ(n),

where θ(n) is a function of n. Here, to satisfy the inequality
in (24), θ(n) � 1 − 2− 1

2n . These inequalities imply that

[Fak (Fbm (�))]2n + [1 − Fak (Fcm (�))]2n � 2[1 − θ(n)]2n = 1

and thus (23) holds. The degradation relation follows from the
fact that the bit-channels are BECs.

Generalized POs for bit-channels with different Hamming
weights are proposed in Theorem 2 for any BMS channel;
however, the degradation relation in the condition (�), which
states that W bmak1n � W cm ak0n

, may be difficult to verify
for any BMS channel W other than BEC. It would therefore
be desirable to have a bit-channel ordering result based upon
a more easily verified condition involving the Bhattacharyya
parameter or error probability. The following two propositions
represent a step in that direction.

Proposition 2. For any BMS channel W and an ak ∈ {0, 1}k ,
if Z(W bmak1n

) � Z(W cm ak0n
), then

Z(W bm ak11n
) � Z(W cm ak10n

).

Proposition 3. For any BMS channel W and an ak ∈ {0, 1}k ,
if Pe(W bm ak1n

) � Pe(W cm ak0n
), then

Pe(W bm ak01n
) � Pe(W cm ak00n

).

Remark 7. The proofs of Proposition 2 and Proposition 3
are derived from equations (7) and (12), respectively, using
Lemma 3 and the PO in Theorem 1.

In connection with Proposition 2, we can prove a result for
a general BMS channel analogous to Proposition 1 showing
the existence of ak satisfying the required Bhattacharyya
parameter ordering condition for sufficiently large k. In Propo-
sition 1, the assumption is W bm � W cm

. This is equivalent
to Z(W bm

) � Z(W cm
) when W is a BEC. For a general

BMS channel, the difference compared to Proposition 1 is
that a stronger assumption about the Bhattacharyya parameter
ordering is required.

Proposition 4. Let W be a general BMS channel and
m, n � 1. Let bm , cm be binary sequences of length m such
that Z(W bm

)2 > Z(W cm
). Then, for sufficiently large k, there

exists a finite-length sequence ak ∈ {0, 1}k , such that

Z(W bm ak1n
) � Z(W cm ak0n

). (26)

Proof: According to (10), we have

Z(W bm ak1n
) � [Gak (Z(W bm

))]2n
,

Z(W cm ak0n
) � 1 − [1 − Fak (Z(W cm

))]2n
.

We want to find ak such that (26) is satisfied. Combining
the above two inequalities, we get a stronger result than (26),
that is

[Gak (Z(W bm
))]2n + [1 − Fak (Z(W cm

))]2n � 1. (27)

Hence, by Lemma 5, the inequality (27) is equivalent to

[Fak (Z(W bm
)2)]2n−1 + [1 − Fak (Z(W cm

))]2n � 1.

Since Z(W bm
)2 > Z(W cm

), arguing as in the proof of Propo-
sition 1, we can find a threshold point �∗ such that Z(W bm

)2 >
�∗ > Z(W cm

). Therefore, there exists a realization ak with a
sufficiently large k such that

Fak (Z(W bm
)2) � 1 − θ(n),

Fak (Z(W cm
)) � θ(n).

These inequalities imply that

[Fak (Z(W bm
)2)]2n−1 + [1 − Fak (Z(W cm

))]2n

� [1 − θ(n)]2n−1 + [1 − θ(n)]2n
> 1

and thus (27) holds, implying that (26) holds.
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IV. PARTIAL ORDERS FOR THE BEC

In this section, we concentrate on POs for the BEC.
First, we consider complementary bit-channel pairs whose
Bhattacharyya parameters on the BEC exhibit a symmetry
property. This symmetry is used to gain insight into the
alignment of polarized sets of bit-channels for the BEC and
other BMS channels. Next, we give several examples of
Theorem 2 and Corollary 1 and discuss further properties of
BEC bit-channel orderings, with particular attention on the
orderings of bit-channels with different Hamming weights.
Finally, we show that some bit-channels have universal order-
ing positions which are independent of the channel erasure
probability. For all of the code block lengths, we determine all
the indices of bit-channels with universal ordering positions.

A. Complementary Bit-Channels

We study the properties of bit-channel pairs (W bt
, V b̄t

),
whose binary expansions represent complementary polariza-
tion sequences, by examining the effect of the basic one-step
channel transformation on sums of Bhattacharyya parameters.

Proposition 5. For any two BMS channels W and V ,
if Z(W )+Z(V ) � a, a ∈ [0, 1], then Z(W 1)+Z(V 0) � f0(a)
and Z(W 0) + Z(V 1) � f0(a).

Proof: According to (6) and (7), we have Z(W 1) =
Z(W )2 and Z(V 0) � 2Z(V ) − Z(V )2. Since the
Bhattacharyya parameter is non-negative, the condition
Z(W ) + Z(V ) � a implies 0 � Z(W ) � a − Z(V ) and
0 � Z(V ) � a. Therefore,

Z(W 1) + Z(V 0) � Z(W )2 + 2Z(V ) − Z(V )2

� [a − Z(V )]2 + 2Z(V ) − Z(V )2

= a2 + 2(1 − a)Z(V )

� a2 + 2a(1 − a)

= 2a − a2

= f0(a).

Interchanging the roles of W and V , we obtain Z(W 0) +
Z(V 1) � f0(a).

Proposition 6. For any two BMS channels W and V ,
if Z(W ) + Z(V ) � a, a ∈ [0, 1], then Z(W bt

) + Z(V b̄t
) �

f (t)
0 (a), for all bt ∈ {0, 1}t and t � 1.

Proof: Notice that f0(a) ∈ [0, 1] for any a ∈ [0, 1]. The
result can be proved by applying Proposition 5 recursively t
times.

We have the following three corollaries based on
Proposition 6.

Corollary 2. If Z(W )+Z(V ) � 1, then Z(W bt
)+Z(V b̄t

) � 1,
for all bt ∈ {0, 1}t and t � 1.

Remark 8. In Corollary 2, the equality, i.e., Z(W bt
) +

Z(V b̄t
) = 1, can be achieved when W and V are BECs and

Z(W ) + Z(V ) = 1.

Fig. 1. BEC bit-channels with universal positions when N = 64.

Corollary 3. If Z(W ) � 1/2, then Z(W bt
)+ Z(W b̄t

) � 1, for
all bt ∈ {0, 1}t and t � 1.

Remark 9. By Corollary 3, if W satisfies Z(W ) � 1/2, then
the two bit-channels W bt

and W b̄t
cannot both belong to

Bε
N (W ) for any bt ∈ {0, 1}t .

Corollary 4. Let W = BEC(�) and V = W c def= BEC(1 − �),
� ∈ (0, 1). So Z(W ) + Z(W c) = 1. Then, Z(W bt

) +
Z((W c)b̄t

) = 1, for all bt ∈ {0, 1}t and t � 1.

In Figure 1, we plot the Bhattacharyya parameters of
selected bit-channels obtained by polarizing BECs, for
N = 64. Each curve corresponds to a bit-channel index i .
The corresponding index in the legend increases as the curves
progress from left to right. The solid and dashed curves
represent complementary bit-channel pairs (W (i)

N , W (N−1−i)
N ).

According to Corollary 4, the curve of bit-channel W (i)
N can be

obtained by rotating the curve of bit-channel W (N−1−i)
N by an

angle of 180◦ around the point (0.5, 0.5). (This symmetry was
also noted in [20].) The bit-channels shown in the figure have
universal positions with respect to bit-channel ordering in
the sense that their positions in the complete ordering of
the 64 bit-channels are independent of the channel erasure
probability. The universality can be verified by using the POs
in [3], [19], [28], and some computations. These universal
ordering positions will be discussed further in Section IV-D.

We conclude with some results on the alignment of polar-
ized sets of BEC and other BMS channels.

Theorem 4. Let V = BEC(�), � ∈ (0, 1). For any BMS
channel W , if Z(W ) + Z(V c) � 1, i.e., Z(W ) � �, then
the ε-good and ε-bad sets defined in (14) and (15) satisfy

Gε
N (W ) ⊇ Gε

N (V ) and Bε
N (W ) ⊆ Bε

N (V )

for all t � 1 and ε ∈ (0, 1
2 ).

Proof: By Corollary 2, we have Z(W bt
)+ Z((V c)b̄t

) � 1,
for all bt ∈ {0, 1}t and t � 1. Since V is a BEC, Corollary 4
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Fig. 2. BEC bit-channels with intersections when N = 32.

TABLE I

THE INTERSECTIONS OF ALL INTERSECTING PAIRS WHEN N = 32

can be applied to get Z(V bt
)+ Z((V c)b̄t

) = 1. Combining the
above two relations, we get

Z(W bt
) � Z(V bt

)

for all bt ∈ {0, 1}t and t � 1. Therefore, Z(V bt
) � ε implies

that Z(W bt
) � ε, or Gε

N (W ) ⊇ Gε
N (V ). Similarly, we find

Bε
N (W ) ⊆ Bε

N (V ).

Remark 10. Theorem 4 can also be derived by using the
results in (6) and (7). Further results about the alignment of
polarized sets were given in [24].

B. Numerical Examples
We consider some applications of Theorem 2 and Corol-

lary 1 to BECs in the case where bm = 0m and cm = 1m .
1) Application of Theorem 2: The Bhattacharyya para-

meters of several synthesized bit-channels for BECs when
N = 32 are shown in Figure 2. All bit-channels whose
curves intersect are represented in the figure. The two pairs of
intersecting curves at the left correspond to bit-channel index
pairs (3, 16) and (12, 17), while the two pairs of intersecting
curves at the right correspond to bit-channel index pairs
(14, 19) and (15, 28). The four intersecting curves in the
middle correspond to bit channel indices (7, 20, 11, 24). Since
the curves can be described explicitly as polynomial functions
of the erasure probability �, we can numerically determine the
intersection points for any pair of intersecting curves. Table I
lists all values of � ∈ (0, 1) for which a pair of bit-channels
(W (i)

N , W ( j )
N ), denoted by (i, j), has an intersection point. For

example, the curves corresponding to W (7)
32 and W (20)

32 intersect
at two locations, � = 0.3077 and � = 0.5772.

TABLE II

VALUES OF k∗
min FOR VARIOUS (m, n) WHEN W = BEC(0.5)

Since the curve for W (7)
32 is above the curve for W (20)

32

when 0.3077 < � < 0.5772, this implies that W (7)
32 � W (20)

32
when W = BEC(�) for � in this range. Applying Theorem 2,
we obtain the following results.

Example 1. Suppose W = BEC(�), where 0.3077 < � <

0.5772. We have seen that W (7)
32 � W (20)

32 , i.e., W 00111 �
W 10100. Then, for N = 64, Theorem 2 implies that

W 001011 � W 101000, i.e., W (11)
64 � W (40)

64 ,

W 001111 � W 101100, i.e., W (15)
64 � W (44)

64 .

More generally, for N = 25+h , we have

W 001dh11 � W 101dh00,

which holds for all dh ∈ {0, 1}h and h � 1.

2) Application of Corollary 1: We define the minimum
possible k∗ in Corollary 1 as follows.

Definition 2. When W = BEC(�), for a fixed pair (m, n),
consider the set

S = {k∗|W 0mak∗
1n � W 1mak∗

0n
,∀ak∗ ∈ {0, 1}k∗ }.

The minimum element in the set S is denoted by k∗
min(m, n, �),

i.e.,
k∗

min(m, n, �) = min
k∗∈S

k∗.

According to Corollary 1, S = {k∗|k∗ � k∗
min(m, n, �)}.

Therefore, by determining k∗
min(m, n, �), we can deduce the

largest number of new POs by adding a middle sequence
with the length starting from k∗

min(m, n, �). The properties of
k∗

min(m, n, �) will be discussed in Section IV-C. In Table II,
we consider the case where � = 0.5 and list values of k∗

min for
various (m, n). The values of k∗

min are obtained by checking all
the binary sequences of the same length starting from k∗ = 1.
The following example illustrates how to interpret the results
in Table II.

Example 2. Consider two cases (m, n) = (1, 2) and (m, n) =
(2, 4). From Table II, we find that the corresponding k∗

min
values are 3 and 1, respectively. It follows that, for W =
BEC(0.5), we have W 0ak11 � W 1ak00 for all ak ∈ {0, 1}k ,
k � 3. Similarly, W 00ak1111 � W 11ak0000 for all ak ∈ {0, 1}k ,
k � 1.

Remark 11. When k∗
min(m, n, �) = 0 for some (m, n, �),

the assumption in Corollary 1 holds with k∗ = 0, that is,
W 0m 1n � W 1m 0n

. Thus, one can derive from Corollary 1 the
largest number of new POs by adding a middle sequence with
any length.
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C. Properties of k∗
min(m, n, �)

We now prove some additional properties of the parameter
k∗

min(m, n, �) defined in Section IV-B.2.
1) Structural Property of Table II: The following proposi-

tion considers “L”-shaped regions in tables for k∗
min(m, n, �)

with a fixed �, similar to Table II (� = 0.5). For convenience,
in the “L”-shaped region associated with m � 1 and n � 1
we write k1 = k∗

min(m + 1, n, �), k2 = k∗
min(m + 1, n + 1, �),

and k3 = k∗
min(m, n, �), as shown below.

k3

k1 k2

Proposition 7. The values in the “L”-shaped region above
satisfy

k1 � k2 � k3.

Proof: Since W is a BEC, we have

W 0 � W � W 1. (28)

The proof includes two parts.
1) To prove k1 � k2, we consider any two adjacent values

in the same row of the table for k∗
min(m, n, �) with a fixed �.

Thus, for any m � 1 and n � 1, we need to show

W 0m ak1n+1 � W 1mak0n+1 ⇒ W 0m ak1n � W 1mak0n
.

This follows from (28), which implies

W 0m ak1n � W 0m ak1n+1 � W 1mak0n+1 � W 1mak0n
.

2) To prove k2 � k3, for any m � 1 and n � 1, we need to
show

W 0m ak1n � W 1m ak0n ⇒ W 0m+1ak1n+1 � W 1m+1ak0n+1
.

Applying Theorem 2 to the assumption gives

W 0m ak01n � W 1mak00n
. (29)

Furthermore, by applying the PO of Theorem 1, we have

W 0m+1ak1n = W 0m 0ak1n � W 0m ak01n
. (30)

Combining (29) and (30) gives

W 0m+1ak1n � W 1mak0n+1
. (31)

By applying Lemma 6 to (31), we get

W 0m+1ak1n+1 = W 0m+1ak1n1 � W 1mak0n+11. (32)

Again, by using the PO, W ak0n+11 � W 1ak0n+1
, so

W 1mak0n+11 � W 1m 1ak0n+1 = W 1m+1ak0n+1
. (33)

Combining (32) and (33), we get

W 0m+1ak1n+1 � W 1m+1ak0n+1
.

Remark 12. This structural property in Proposition 7 shows
that for a fixed �, k∗

min(m, n, �) increases as m decreases or
as n increases. This observation helps reduce the complexity
of computing the values of k∗

min .

2) Pairs (m, n) for which k∗
min(m, n, 0.5) = 0: Notice that

k∗
min(m, n, 0.5) = 0 means W 0m 1n � W 1m0n

, i.e.,

Z(W 0m 1n
) � Z(W 1m 0n

) (34)

when W = BEC(0.5). In general, when W = BEC(�),
the Bhattacharyya parameters of these two bit-channels can
be expressed as

Z(W 0m 1n
) = f (n)

1 ( f (m)
0 (�)) = [1 − (1 − �)2m ]2n

, (35)

Z(W 1m 0n
) = f (n)

0 ( f (m)
1 (�)) = 1 − (1 − �2m

)2n
. (36)

Combining (35) and (36), (34) translates to

T (�) � (1 − �2m
)2n + [1 − (1 − �)2m ]2n � 1. (37)

Specializing to � = 0.5, the inequality yields an upper bound
on n, namely

n � − log2[2m − log2(2
2m − 1)] � U(m). (38)

The following proposition, proved in Appendix B, shows that
n = 2m −1 is the largest value for which k∗

min(m, n, 0.5) = 0.

Proposition 8. For any m � 1,

2m − 1 < U(m) < 2m .

3) Range of � where k∗
min(m, n, �) = 0: To explore the

range of � where k∗
min(m, n, �) = 0 for a given pair (m, n),

we need to figure out when T (�) � 1. Referring to (37),
we see that T (�) = T (1 − �) holds for any � ∈ [0, 1] and any
pair (m, n). Therefore, T (�) is a symmetric function about the
line � = 0.5 for any pair (m, n), so we only need to look at
the behavior of T (�) on the interval (0, 0.5). The derivative of
T (�) is given in (39) and (40), as shown at the bottom of this

page. Define g(�, m) = 1−(1−�)2m

1−�2m . Here, we consider three
different cases based on the value of the pair (m, n).

1) n � m: We make use of the following result.

Lemma 8. 1 > g(�, m+1) > g(�, m) > 0, for any � ∈ (0, 0.5)
and any m � 1.

Proof: When � ∈ (0, 0.5), we have

g(�, m + 1) = 1 − (1 − �)2m+1

1 − �2m+1

= g(�, m) · 1 + (1 − �)2m

1 + �2m

> g(�, m).

T �(�) = 2m+n[(1 − (1 − �)2m
)2n−1(1 − �)2m−1 − (1 − �2m

)2n−1�2m−1] (39)

= 2m+n[(1 − (1 − �)2m

1 − �2m )2n−1 − (
�

1 − �
)2m−1](1 − �)2m−1(1 − �2m

)2n−1. (40)
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It is also clear that 0 < g(�, m) < 1 for any � ∈ (0, 0.5) and
any m � 1.

From Lemma 8, we have

[g(�, m)]2n−1 � [g(�, m)]2m−1 > [g(�, 0)]2m−1

for any � ∈ (0, 0.5) and any m � 1. Referring to (40), we see
that for n � m, T �(�) > 0 for any � ∈ (0, 0.5). That is,
T (�) is increasing on (0, 0.5). Noting the symmetry of T (�),
we conclude that

T (�) � T (0) = 1, for any � ∈ [0, 1].
Note that this case also follows from Corollary 1.

2) m < n � 2m − 1: We use the following lemma.

Lemma 9. For any x ∈ (0, 1) and any n � 0, we have

1 − nx � (1 − x)n � 1 − nx + n(n − 1)

2
x2. (41)

The lower bound is Bernoulli’s inequality, and the upper bound
follows from the Taylor series of (1 − x)n . The proof is given
in Appendix C.

Using the expression for T (�) in (37) and Lemma 9, we get

T (�) � 1 − 2n�2m + 2n(2n − 1)

2
�2m+1 + (2m�)2n

(42)

� 1 − 2n�2m + 2n(2n − 1)

2
�2m+1 + 2m2n

�2m+1
(43)

= 1 + �2m [(2n(2n − 1)

2
+ 2m2n

)�2m − 2n], (44)

where (43) follows from n � m + 1. By setting ( 2n(2n−1)
2 +

2m2n
)�2m − 2n = 0, we can find a value of �, denoted

by η(m, n), such that T (η(m, n)) � 1. Then, for any � ∈
(0, η(m, n)), we have ( 2n(2n−1)

2 + 2m2n
)�2m − 2n < 0, which

implies T (�) < 1. The upper bound 2m − 1 on n guarantees
that T (0.5) > 1, so T (�) = 1 has at least one solution
in [η(m, n), 0.5). Denoting the largest one by �∗

max(m, n),
we conclude that

T (�) � 1, for any � ∈ [�∗
max(m, n), 1 − �∗

max(m, n)].
3) n � 2m : For any � ∈ (0, 0.5), if T (�) < 1 for n = 2m ,

then T (�) < 1 for n > 2m since T (�) decreases as n increases
for a fixed m. For m = 1, 2, 3, and n = 2m , a computer
search confirms that the only real roots of T �(�) = 0 occur at
� = 0, 0.5, and 1. This implies that T (�) < 1, for any � ∈
(0, 1), as can be seen in the corresponding curves in Figure 3,
where the curves progress from bottom to top as m increases.
Consequently, for m = 1, 2, 3, and any � ∈ (0, 1), we have

W 0m 12m

� W 1m02m

. (45)

We conjecture that this is also true for m � 4.
We can analyze the asymptotic behavior of bit-channels

W 0m 12m

and W 1m 02m

based on the following lemma, whose
proof is given in Appendix D.

Lemma 10.

lim
n→∞(1 − �n)2n =

⎧⎨
⎩

1, � ∈ [0, 0.5),

e−1, � = 0.5,
0, � ∈ (0.5, 1].

(46)

Fig. 3. The function T (�) when m = 1, 2, 3, 4 and n = 2m .

Combining (35), (36) and Lemma 10, we find the asymp-
totic values of the Bhattacharyya parameters for the two bit-
channels: (

Z(W 0m12m

), Z(W 1m 02m

)
)

m→∞−−−−→
⎧⎨
⎩

(0, 0), � ∈ [0, 0.5),

(e−1, 1 − e−1), � = 0.5,
(1, 1), � ∈ (0.5, 1].

Remark 13. For a fixed m, we note that W 0m1n
becomes

more reliable as n increases, converging to a perfect channel
as n goes to infinity. In contrast, W 1m 0n

does the opposite,
converging to a completely noisy channels as n goes to infinity.
When W = BEC(�), the channel upgradation relation in (45)
provides the cut-off value 2m for the smallest possible n such
that W 0m 1n � W 1m 0n

for any � ∈ (0, 1). Furthermore, we note
that for the bit-channels represented by binary sequences with
the length m + 2m , W 0m 12m

is the worst one among the
bit-channels with Hamming weight greater than or equal to 2m ,
while W 1m 02m

is the best one among the bit-channels with
Hamming weight less than or equal to m. Setting t = m +2m ,
we consider the sets

S1 = {bt ∈ {0, 1}t |wt(bt ) � m}
and

S2 = {bt ∈ {0, 1}t |wt(bt) � 2m}.
When the channel upgradation relation in (45) holds, it pro-
vides a PO that applies to all pairs of bit-channels with one
belonging to S1 and the other belonging to S2. That is, for any
bt

1 ∈ S1 and any bt
2 ∈ S2, we have

W bt
2 � W bt

1 .

We have seen that (45) holds for m = 1, 2, 3. If, as conjec-
tured, (45) holds for m � 4, this PO would extend to all of
the code block lengths with the form t = m + 2m .

D. Universal Positions
Recall from Figure 1 that several bit-channels for the BEC

have universal positions with respect to bit-channel ordering
in the sense that their positions in the complete ordering of
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Fig. 4. Universal POs for the BEC when N = 2, 4, 8, 16, 32.

the 64 bit-channels are independent of the channel erasure
probability. In other words, the bit-channels we show in
Figure 1 are universally comparable with each of the other
63 bit-channels. If code rates are suitably chosen, we can have
universal information sets which are independent of channel
erasure probability.

Definition 3. Consider W = BEC(�). Define the universal set
UN ⊆ [N] to be the indices i ∈ [N] such that for any j ∈
[N]\{i}, either W (i)

N � W ( j )
N for all � ∈ [0, 1] or W (i)

N � W ( j )
N

for all � ∈ [0, 1]. (By Lemma 3, this property of bit-channels
can be equivalently defined in terms of the Bhattacharyya
parameter, error probability, or symmetric capacity.)

The following proposition presents two properties of UN ,
which are useful in determining UN .

Proposition 9.
1) Symmetry: If i ∈ UN , then N − 1 − i ∈ UN ;
2) Nesting: U2N ∩ [N] ⊆ UN .

Proof: Consider W = BEC(�).
1) For i ∈ UN , assume i has binary expansion bt =

b1 b2 · · · bt , t = log2 N . Then, N − 1 − i has binary
expansion b̄t . Indeed, (W (i)

N , W (N−1−i)
N ) is a complementary

bit-channel pair. According to Corollary 4, we have

Z(W bt
) + Z((W c)b̄t

) = 1,

that is,
Z(W (i)

N ) + Z((W c)
(N−1−i)
N ) = 1, (47)

where W c = BEC(1 − �). Universality of i implies that, for
any j ∈ [N] \ {i}, W (i)

N is universally comparable with W ( j )
N .

Therefore, according to (47), (W c)
(N−1−i)
N is also universally

comparable with (W c)
(N−1− j )
N . Since the erasure probability

1 − � of W c ranges over the whole interval [0, 1] when �
does, the index N − 1 − i satisfies the condition presented in
Definition 3 and thus N − 1 − i ∈ UN .

2) Consider any i ∈ U2N ∩ [N]. The index i has binary
expansion 0bt , where t = log2 N . Now, universality of i
implies that W (i)

2N is universally comparable with W ( j )
2N for

any j ∈ [2N] \ {i}. In particular, if j is in the smaller
half of [2N], its binary expansion will have the form 0at

for some at ∈ {0, 1}t , implying that W 0bt
is universally

comparable with W 0at
. Setting V = W 0, we can restate this

property as V bt
is universally comparable with V at

, for any
at ∈ {0, 1}t . Noting that V = W 0 = BEC(2� − �2), we see
that the erasure probability 2�−�2 of V ranges over the whole
interval [0, 1] when � does, which implies that W (i)

N = W bt
is

universally comparable with W ( j )
N = W at

for any j ∈ [N]\{i}.
We conclude that i ∈ UN .

In Figure 4, we show universal PO diagrams for the BEC
when N = 2, 4, 8, 16, 32. The diagrams use the following
conventions.
• Each number i represents the bit-channel W (i)

N .
• The directed arrow from i to j between any two nodes

indicates that W (i)
N � W ( j )

N .
• Every PO is universal, which means the ordering is inde-

pendent of channel erasure probability.
• The dotted arrows are based on the PO in [19].
• The solid arrows are based on the PO in [28, Theorem 1]

and [3].
• The dashed arrows are additional POs for the BEC beyond

the existing POs.

Remark 14. Because of the explicit recursion for polarizing
W = BEC(�), we can express the Bhattacharyya parameter of
each bit-channel as a polynomial function of �. The orderings
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TABLE III

UNIVERSAL SETS FOR BLOCK LENGTHS N = 2t , 1 � t � 7

denoted by dashed arrows in Figure 4 are obtained by com-
paring the polynomial functions of � associated with the
corresponding bit-channels on � ∈ [0, 1].

The universal sets for block lengths N = 2t , 1 � t � 7,
are shown in Table III. The results for N = 2, 4, 8, 16, 32
are derived from Figure 4, the result for N = 64 is derived
from Figure 1, and the result for N = 128 follows from the
following proposition, which identifies the universal sets UN

for block lengths N = 2t , t � 7.

Proposition 10. The universal set for N = 2t , t � 7, is given
by UN = {0, 1, 2, 4, 8, N − 9, N − 5, N − 3, N − 2, N − 1}.

Proof: Let W = BEC(�). Consider the case where N =
27 = 128. After comparing the Bhattacharyya parameters of
the corresponding bit-channels, we find that the orderings of
the following pairs are not universal:

(W (9)
128, W (64)

128 ), (W (10)
128 , W (64)

128 ), (W (18)
128 , W (64)

128 ),

(W (45)
128 , W (104)

128 ), (W (53)
128 , W (104)

128 ), (W (54)
128 , W (104)

128 ),

(W (55)
128 , W (120)

128 ), (W (59)
128 , W (120)

128 ), (W (61)
128 , W (120)

128 ), and

(W (62)
128 , W (120)

128 ). For example, to compare the first pair we can
write

Z(W (9)
128)= Z(W 0001001)= f1 ◦ f0 ◦ f0 ◦ f1 ◦ f0 ◦ f0 ◦ f0(�),

(48)

Z(W (64)
128 )= Z(W 1000000)= f0 ◦ f0 ◦ f0 ◦ f0 ◦ f0 ◦ f0 ◦ f1(�).

(49)

One of the intersection points of the curves corresponding
to polynomial functions (48) and (49) is at � = 0.0509,
which means the ordering of (W (9)

128, W (64)
128 ) depends on the

value of �. Similar arguments can be applied for the other
pairs. Therefore, the indices 9, 10, 18, 45, 53, 54, 55, 59,
61, and 62 are not included in U128. Note that the ordering
of (W (9)

128, W (64)
128 ) is not universal, which also implies that 64

is not included in U128. According to the symmetry property
of UN , 63 is excluded.

Next, we will show that the indices 0, 1, 2, 4, 8 are included
in UN for any t � 4. Referring to the universal PO diagram
for N = 16 in Figure 4, we have the universal orderings 0 →
1 → 2 → 4 → 8 → 3, which translate to

W 0000 � W 0001 � W 0010 � W 0100 � W 1000 � W 0011.

(50)

Because of the universality, we can substitute W 0t−4
for W

in (50) and the orderings are still preserved. When N = 2t ,
t � 4, by translating back to bit-channel indices, we get the
universal orderings

W (0)
N � W (1)

N � W (2)
N � W (4)

N � W (8)
N � W (3)

N .

In fact, for a fixed N , W (3)
N is the worst bit-channel among

those with Hamming weight at least 2. In addition, among the
bit-channels with Hamming weight 1, W (1)

N , W (2)
N , W (4)

N , W (8)
N

are the worst four bit-channels. Therefore, we conclude that,
for any j ∈ [N] \ {0, 1, 2, 4, 8},

W (0)
N � W (1)

N � W (2)
N � W (4)

N � W (8)
N � W ( j )

N

holds for any t � 4. Thus, 0, 1, 2, 4, 8 are included in UN

for any t � 4.
We also need to show that N − 9, N − 5, N − 3, N − 2,

and N − 1 are not included in U2N for t � 7. When
N = 2t , the binary expansions of the above five indices are
1t−40111, 1t−41011, 1t−41101, 1t−41110, 1t−41111. To con-
sider whether these indices are included in U2N , we extend
the corresponding binary expansions by adding 0 in the most
significant digit position. For example, the first one becomes
01t−40111. According to Table I (or Fig. 2), we know that
(W (14)

32 , W (19)
32 ) and (W (15)

32 , W (28)
32 ), i.e., (W 01110, W 10011) and

(W 01111, W 11100), are not universally ordered pairs. Based
on the orderings of these two pairs, we conclude that the
following pairs are not universally ordered:

(W 01t−40111 = W 01110111, W 10011111), t = 7,

(W 01t−40111 = W 011111t−80111, W 111001t−80111), t � 8,

(W 01t−41011 = W 011111t−7011, W 111001t−7011), t � 7,

(W 01t−41101 = W 011111t−7101, W 111001t−7101), t � 7,

(W 01t−41110 = W 011111t−7110, W 111001t−7110), t � 7,

(W 01t−41111 = W 011111t−7111, W 111001t−7111), t � 7.

Therefore, N − 9, N − 5, N − 3, N − 2, and N − 1 are not
included in U2N for any t � 7. The proposition follows from
the symmetry property of UN presented in Proposition 9.

Remark 15. We note that the set inclusion in Proposition 9,
part 2), is an equality for N = 2, 4, 8. It is a proper inclusion
for N = 2t , t � 4, with the intersection exactly equal to
{0, 1, 2, 4, 8} for t � 6.

Remark 16. For any index i in the set UN , the ordering
position of W (i)

N is called universal if it remains the same for
any � ∈ [0, 1]. In other words, there is a nonzero code rate
associated with each index i ∈ UN that produces a universal
information set (with i included) when constructing a polar
code with the block length N . The number of these code
rates is equal to the size of UN . When N = 2, 4, 8, 16, all
the bit-channels are universally ordered for each block length,
respectively. So each nonzero code rate for these block lengths
produces a universal information set. When N = 32 and 64,
there are 20 and 16 code rates with universal information
sets, respectively. As an example, rate 22

32 is associated with
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index 10 when N = 32. In Figure 4, the diagram for N = 32
could be divided into two groups if a boundary is chosen
between index 9 and 10; the frozen set consists of the indices
in the left group and the information set consists of those in the
right group. For block lengths N = 2t , t � 7, Proposition 10
implies that there are 10 code rates with universal information
sets; these rates are k

N or N−k
N , where k = 1, 2, 3, 4, 5.

V. THRESHOLD BEHAVIOR

In Section IV-D, we obtained several results relating
to BEC bit-channel orderings by explicitly comparing the
Bhattacharyya parameters of the corresponding bit-channels
for short code block lengths. However, for larger block lengths,
the computations become complex because of the exponen-
tially growing degrees of the corresponding polynomials.
It therefore becomes impractical to obtain additional POs by
directly comparing the Bhattacharyya parameters. According
to [20], each of the bit-channels has a sharp threshold for suf-
ficiently large block length, in the sense that the function (8),
whose asymptotic behavior is shown in (25), converges to a
step function as the block length grows. This threshold value
can be used to determine whether a bit-channel is good or bad
when constructing a polar code for a BEC [7, Proposition 2].

In this section, we first explore the threshold behavior of bit-
channels when the underlying channel is a BEC by considering
the half-way point for bt ∈ {0, 1}t , defined as follows.

Definition 4. For any bt ∈ {0, 1}t , t � 1, there exists a half-
way point, denoted by αbt , such that

Fbt (αbt ) = 1

2
.

Since f0(x) and f1(x) are strictly increasing on [0, 1],
it follows that so is Fbt (x) for any bt ∈ {0, 1}t . Therefore,
the half-way point αbt is unique for any bt ∈ {0, 1}t .

Then, for general BMS channels, we combine the bounds of
the bit-channel Bhattacharyya parameter shown in (10) with
Lemma 5 and its auxiliary result to derive the relationship
between the corresponding half-way points of the lower and
upper bound (achieved by the BEC).

A. BEC

Recall f0(x) = 2x − x2, f1(x) = x2, and Fbt (x) = fbt ◦
· · · ◦ fb2 ◦ fb1(x), for bt ∈ {0, 1}t , t � 1. Assume t = m + n.
Among all bt ∈ {0, 1}t with the same Hamming weight n,
the value of αbt is minimized for

b∗ = 00 · · · 0︸ ︷︷ ︸
m

11 · · · 1︸ ︷︷ ︸
n

= 0m1n.

According to (36), when W = BEC(�), we have

Z(W b∗
) = Fb∗(�) = F0m 1n (�) = [1 − (1 − �)2m ]2n

.

We know that the bit-channel W b∗
has a sharp threshold

for sufficiently large t . In [20], the threshold behavior of the
bit-channel W b∗

was analyzed at � = αb∗ as t goes to infinity.
Here, we will give further results about the value of αb∗ .

For a constant c ∈ [0, 1], if there exists a positive and
vanishing sequence {δ(t)}∞t=1 such that

Fb∗(c) � 1

2
and Fb∗(c − δ(t)) � 1

2
,

then αb∗ = c − o(1). Similarly, if the conditions become

Fb∗(c) � 1

2
and Fb∗(c + δ(t)) � 1

2
,

then αb∗ = c+o(1), where o(1) stands for a vanishing positive
number as t goes to infinity.

If we consider n to be a function of m, then t = m + n
can also be regarded as a function of m. Finding a sequence
{δ(t)}∞t=1 translates to finding a sequence {δ(m)}∞m=1. The fol-
lowing proposition analyzes four cases, based on the functional
dependence of n on m, denoted by n(m).

Proposition 11.
1) When limm→∞ n(m)

2m = 0, αb∗ = o(1).
2) When limm→∞ n(m)

2m � 1 and n(m) < 2m , αb∗ = 1
2 −

o(1).
3) When limm→∞ n(m)

2m � 1 and n(m) � 2m , αb∗ = 1
2 +

o(1).
4) When limm→∞ n(m)

2m = ∞, αb∗ = 1 − o(1).

The proof is given in Appendix E. We show several
examples illustrating the half-way points αb∗ in Figure 5.
Figure 5(a) considers the case where n varies as a function
of m for m = 5. We see that for a fixed m, the value of the
half-way point αb∗ increases as n increases, yielding a better
bit-channel W 0m1n

. Figure 5(b) shows the results for n = 2m

when m = 1, 2, 3, 4, 5. This is a special case of n(m) =
2m in the third scenario of Proposition 11. In Figure 5(b),
the steepness of the curves increases as m increases.

Remark 17. The proposition generalizes the results about the
half-way point in [20, Section II]. In particular, it was stated
in [20] that αb∗ = 1

2 − o(1) when m = log2 t , which is a
special case of n(m) = 2m − m in the second scenario of
Proposition 11. It was also stated in [20] that αb∗ = 1 − o(1)

when m = log2 t − log2 log2 t . If t = 22k
, k � 0, consider

m = log2 t − log2 log2 t = 2k − k, so that n = t − m = 22k −
2k + k. These values satisfy

2mm − m < n(m) < 2m · 2m − m,

which is included in the fourth scenario of Proposition 11.

Remark 18. By the symmetry shown in Corollary 4, we get
α1m0n = 1 − αb∗ . When n = 2m ,

α1m02m = 1

2
− o(1) <

1

2
+ o(1) = α0m12m ,

which supports our conjecture about (45).

Assuming N = 2t , we can deduce from Proposition 11 sev-
eral results about the bit-channel W 0m 1n

when W = BEC(�).

1) When limm→∞ n(m)
2m = 0, limm→∞ Z(W 0m 1n(m)

) = 1 for

any � ∈ (0, 1), i.e., W 0m 1n(m)
converges to a bit-channel in

Bε
N (W ) for any � ∈ (0, 1).
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Fig. 5. Examples of Proposition 11: (a) The half-way points αb∗ when n varies as a function of m for m = 5. (b) The half-way points αb∗ when n = 2m

for m = 1, 2, 3, 4, 5.

2) When limm→∞ n(m)
2m � 1 and n(m) < 2m ,

limm→∞ Z(W 0m1n(m)
) = 1 for any � ∈ [ 1

2 , 1), i.e., W 0m 1n(m)

converges to a bit-channel in Bε
N (W ) for any � ∈ [ 1

2 , 1).
3) When limm→∞ n(m)

2m � 1 and n(m) � 2m ,

limm→∞ Z(W 0m1n(m)
) = 0 for any � ∈ (0, 1

2 ], i.e., W 0m 1n(m)

converges to a bit-channel in Gε
N (W ) for any � ∈ (0, 1

2 ].
4) When limm→∞ n(m)

2m = ∞, limm→∞ Z(W 0m1n(m)
) = 0 for

any � ∈ (0, 1), i.e., W 0m 1n(m)
converges to a bit-channel in

Gε
N (W ) for any � ∈ (0, 1).

B. BMS Channels
Given a BMS channel with Z(W ) = z, according to (10),

for any bt ∈ {0, 1}t , we have

Gbt (z) � Z(W bt
) � Fbt (z).

From Lemma 5, this is equivalent to√
Fbt (z2) � Z(W bt

) � Fbt (z).

There is an auxiliary result of Lemma 5. Let (a�)��1 be
a sequence of i.i.d. Bernoulli( 1

2) random variables. For a
realization ak of the random vector a1a2 · · · ak , the function
Fak has the threshold point �∗ ∈ [0, 1] as shown in (25).
Then, with the same realization ak , Gak has a larger threshold
point

√
�∗. Namely,

lim
k→∞ Gak (z) = lim

k→∞

√
Fak (z2) =

{
0, z ∈ [0,

√
�∗),

1, z ∈ (
√

�∗, 1].
(51)

Definition 5. For any bt ∈ {0, 1}t , t � 1, there exists a half-
way point, denoted by βbt , such that

Gbt (βbt ) = 1

2
.

Definition 6. For any bt ∈ {0, 1}t , t � 1, there exists a
quarter-way point, denoted by γbt , such that

Fbt (γbt ) = 1

4
.

Applying an argument similar to that used for αbt , we see
that both βbt and γbt are unique for any bt ∈ {0, 1}t . In fact,
βbt = √

γbt holds for any bt ∈ {0, 1}t , t � 1. In the asymptotic
regime, by the auxiliary result (51) of Lemma 5, we have

lim
t→∞ βbt = lim

t→∞
√

αbt ,

for the same realization bt on both sides.

VI. CONCLUSION

We give an alternative proof based on mathematical induc-
tion for an existing PO proposed in [28] and [3]. Then, we use
the proof idea to deduce further generalized POs. Since some
of the POs rely on verifying degradation relations, which can
be difficult for general BMS channels, we also give several
examples of ordering relations based upon the Bhattacharyya
parameter and error probability. The Bhattacharyya parameters
of complementary bit-channel pairs on the BEC exhibit a
symmetry property, whose implications we investigate, along
with alignment properties of polarized sets for BEC and BMS
channels. We illustrate the new POs for BEC bit-channels
with different Hamming weights using numerical examples.
Several further properties of ordering relations for particular
classes of bit-channels are analyzed. The bit-channels with
universal ordering positions, which are independent of the
channel erasure probability, are characterized using symmetry
and nesting properties. Finally, we approximate the half-way
point of the Bhattacharyya parameter for the worst bit-channel
among those with the same Hamming weight for the BEC
and derive the relationship between the half-way points of
the lower and upper bounds of the bit-channel Bhattacharyya
parameter for general BMS channels.

There are several directions for future research on POs.
In particular, since most of the work on POs concerns binary
polar codes with Arıkan’s 2 × 2 kernel for BMS channels,
it would be of interest to explore possible POs in other
scenarios, including non-binary inputs [21], [25], [27], larger
kernels [4], [6], [15], [22], and asymmetric channels [12], [16].
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APPENDIX A
PROOF OF LEMMA 5

Proof: When k = 1, there are two cases to consider for
any x ∈ [0, 1].
1) If a1 = 0, then

G2
a1

(x) = f 2−1(x) = 2x2 − x4,

Fa1(x2) = f0(x2) = 2x2 − x4.

2) If a1 = 1, then

G2
a1

(x) = f 2
1 (x) = x4,

Fa1(x2) = f1(x2) = x4.

Therefore, (11) is true for any x ∈ [0, 1] when k = 1.
Assume it is also true when k = s, s � 1, i.e.,

G2
as (x) = Fas (x2)

holds for any as ∈ {0, 1}s and x ∈ [0, 1].
Then, when k = s + 1, there are two cases to consider.

1) If as+1 = 0, then

G2
as+1(x) = [ f−1(Gas (x))]2 = 2G2

as (x) − G4
as (x),

Fas+1(x2) = f0(Fas (x2)) = 2Fas (x2) − F2
as (x2).

2) If as+1 = 1, then

G2
as+1(x) = [ f1(Gas (x))]2 = G4

as (x),

Fas+1(x2) = f1(Fas (x2)) = F2
as (x2).

Because of the assumption, we have

G2
as+1(x) = Fas+1(x2),

for any as+1 ∈ {0, 1}s+1 and x ∈ [0, 1].
The proof is complete.

APPENDIX B
PROOF OF PROPOSITION 8

Proof: Referring to (38), we can rewrite U(m) as

U(m) = − log2

[
− log2

(
1 − 1

22m

)]
. (52)

Set r(m) = 1
22m . Then, from the Taylor series of ln(1 − x),

we have

− log2(1 − r(m)) = 1

ln 2

∞∑
i=1

r(m)i

i
. (53)

The summation in (53) can be bounded from below and above,
respectively, by

∞∑
i=1

r(m)i

i
> r(m), (54)

and ∞∑
i=1

r(m)i

i
<

∞∑
i=1

r(m)i = r(m)

1 − r(m)
. (55)

Applying (53) and (54) in (52), we obtain the upper bound

U(m) < − log2

[
1

ln 2
· r(m)

]
= 2m + log2 ln 2

< 2m .

On the other hand, applying (53) and (55) in (52), we obtain
the lower bound

U(m) > − log2

[
1

ln 2
· r(m)

1 − r(m)

]
(56)

= log2

[
(22m − 1) · ln 2

]
(57)

> log2(2
2m−1) (58)

= 2m − 1. (59)

The inequality in (58) is based on the following lemma.

Lemma 11. For any m � 1,

(22m − 1) · ln 2 > 22m−1. (60)

Inequality (60) is equivalent to

1 − 1

2 ln 2
>

1

22m . (61)

As the right-hand side of (61) decreases as m increases,
it suffices to check the case m = 1, which can be verified
numerically.

The proof is complete.

APPENDIX C
PROOF OF LEMMA 9

Proof: The proof is by induction.
For n = 0, all three polynomials in (41) are equal to 1,

so the statement holds.
Let k � 0 be given and suppose (41) is true for n = k.

On the one hand, we have

(1 − x)k+1 = (1 − x)k(1 − x)

� (1 − kx)(1 − x)

= 1 − (k + 1)x + kx2

� 1 − (k + 1)x .

One the other hand, we have

(1 − x)k+1 = (1 − x)k(1 − x)

�
[

1 − kx + k(k − 1)

2
x2

]
(1 − x)

= 1 − (k + 1)x + k(k + 1)

2
x2 − k(k − 1)

2
x3

� 1 − (k + 1)x + k(k + 1)

2
x2.

Hence (41) holds for n = k +1, and the proof of the induction
step is complete.
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APPENDIX D
PROOF OF LEMMA 10

Proof: We use the following well-known inequality:
(1 + x)r � erx , for any x > −1 and r > 0. (62)

According to (62), we have

(1 − �n)2n � e−(2�)n
. (63)

When � ∈ [0, 0.5), lower and upper bounds on the limit
in (46) follow from Lemma 9 and (63), respectively; namely,
we have

1 − (2�)n � (1 − �n)2n � e−(2�)n
. (64)

From (64), it follows that limn→∞(1 − �n)2n = 1.
When � = 0.5, we use the expression limx→0(1 + x)

1
x = e

to obtain limn→∞(1 − 1
2n )2n = e−1.

When � ∈ (0.5, 1], the upper bound in (63) implies
limn→∞(1 − �n)2n = 0.

APPENDIX E
PROOF OF PROPOSITION 11

Proof: Combining (41) and (62) gives

1 − nx � (1 − x)n � e−nx ,

for any n � 0 and x ∈ [0, 1]. We use the above inequalities
to complete the proof.

1) limm→∞ n(m)
2m = 0. There exists a positive and vanishing

sequence δ(m) = 1 − 2− n(m)+1
2m such that

Fb∗(δ(m)) = (1 − (1 − δ(m))2m
)2n(m)

� 1 − 2n(m)(1 − δ(m))2m

= 1

2
.

It is straightforward that Fb∗(0) = 0. Therefore, the half-way
point αb∗ = o(1).

2) limm→∞ n(m)
2m � 1 and n(m) < 2m . Set p(m) =

2m − n(m), where p(m) is a positive integer and
limm→∞ p(m)

2m = 0. Then we have the following:

Fb∗
(

1

2

)
=

(
1 − 1

22m

)22m−p(m)

� 1 − 1

22m · 22m−p(m)

= 1 − 1

2p(m)

� 1

2
.

There exists a positive and vanishing sequence δ(m) =
1
2 [(2p(m) · ln 2)

1
2m − 1] such that

Fb∗
(

1

2
− δ(m)

)
=

[
1 −

(
1

2
+ δ(m)

)2m ]22m−p(m)

� exp

{
− (1 + 2δ(m))2m

2p(m)

}

= 1

2
.

Therefore, the half-way point αb∗ = 1
2 − o(1).

3) limm→∞ n(m)
2m � 1 and n(m) � 2m . Set q(m) =

n(m) − 2m , where q(m) is a non-negative integer and
limm→∞ q(m)

2m = 0. Then we have the following:

Fb∗
(

1

2

)
=

(
1 − 1

22m

)22m+q(m)

� exp

{
−22m+q(m)

22m

}

= exp
{
−2q(m)

}
� e−1.

There exists a positive and vanishing sequence δ(m) = 1
2 [1 −

2− q(m)+1
2m ] such that

Fb∗
(

1

2
+ δ(m)

)
=

[
1 −

(
1

2
− δ(m)

)2m ]22m+q(m)

� 1 − 22m+q(m) ·
(

1

2
− δ(m)

)2m

= 1

2
.

Therefore, the half-way point αb∗ = 1
2 + o(1).

4) limm→∞ n(m)
2m = ∞. Set r(m) = n(m)

2m , where
limm→∞ r(m) = ∞. Then there exists a positive and vanishing

sequence δ(m) = (ln 2)
1

2m

2r(m) such that

Fb∗(1 − δ(m)) = (1 − δ(m)2m
)22mr(m)

� exp
{
−(2r(m)δ(m))2m

}
= 1

2
.

It is straightforward that Fb∗(1) = 1. Therefore, the half-way
point αb∗ = 1 − o(1).
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