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Abstract—Analog error correction codes over the real field
have recently been proposed for analog in-memory computing
on resistive crossbars, a promising circuit for accelerating vec-
tor–matrix multiplication in machine learning. Unlike traditional
communication or storage channels, this scenario involves a
mixed noise model consisting of small perturbations and outlier
errors. Existing analog codes either focus on single outlier
correction or can correct multiple outliers but lack a systematic
construction. In this paper, we introduce a new class of geometric
codes that can correct multiple outlier errors with a systematic
construction. Then we provide analysis and comparisons with the
best existing codes, showing that the proposed geometric codes
have superior error correction capability across various settings.

I. INTRODUCTION

Analog in-memory computing is a cutting-edge technol-
ogy that integrates data storage and computation directly
within memory cells, enabling significant acceleration of deep
neural network (DNN) computations [1], [2]. The primary
motivation for analog in-memory computing is to overcome
the "von Neumann bottleneck" by avoiding the need for
massive data transfers between processors and memory [3]–
[5]. This approach promises substantial improvements in speed
and energy efficiency by exploiting the vector-matrix mul-
tiplications within crossbar architectures [6], a fundamental
operation in DNNs. In recent years, significant progress has
been made in the development of analog computing chips
that implement deep neural networks (DNNs) for training [7]
and inference [8] directly in analog circuits. They achieve
performance comparable to software-based implementations
while having substantially higher speed and energy efficiency
than digital circuits.

However, a challenge for analog in-memory computing
is the reliability of computing against errors. Non-volatile
memories (NVMs) are known to suffer from a range of
noise mechanisms, including cell-programming noise, cell-
level drift, random noise, read/write disturbances, stuck cells,
and short cells, etc [9]. In general, these errors can be broadly
categorized into two types: small but ubiquitous errors, such as
programming noise, and more isolated but potentially severe
errors, such as stuck cells.

Analog ECCs have been proposed to address the above
challenge [10], [11]. These codes are specifically designed
to correct errors in codewords transmitted through channels
that introduce two primary types of additive noise: limited-
magnitude errors (LMEs) and unlimited-magnitude errors
(UMEs). LMEs are small but widespread, arising from effects
like cell-programming noise and random read/write distur-
bances in NVM arrays. In contrast, UMEs, such as stuck cells
or short cells, occur less frequently but can be significantly
more disruptive. While DNNs can often tolerate minor, dis-
tributed noise, they are particularly vulnerable to large, isolated
errors, making robust error correction essential for reliable in-
memory computation [1].

This has motivated the development of several analog error
correction code constructions [10]–[12]. However, most ex-
isting codes focus primarily on detecting or correcting only a
single UME [10], [11]. Some promising short codes for multi-
ple UMEs have been generated using genetic algorithms [12].
Despite this progress, the design of Analog ECCs remains
a significant challenge. A critical metric for the analysis of
analog codes is the m-height [10], which quantifies a code’s
ability to correct UMEs, analogous to the minimum distance
in conventional ECCs over finite fields. Calculating the exact
m-height has a computational complexity of approximately
O(nm+1) [12].

To explore codes with systematic construction and the
ability to correct multiple UMEs, this paper introduces a class
of geometry-based analog codes: polygonal codes, polyhedral
codes and dual polyhedral codes. The polygonal codes have
dimension k = 2 with configurable length n. There are
two polyhedra we investigated: the icosahedron and dodec-
ahedron. The icosahedral code and its dual have parameters
(n, k) = (6, 3), while the dodecahedral code and its dual have
parameters (n, k) = (10, 7) and (n, k) = (10, 3), respectively.
We present explicit constructions of these codes and analyze
their m-heights. A comparison with the best known codes
demonstrates their superior performance.

The paper is organized as follows. Section II introduces the
necessary background and notation. Section III presents the
construction and analysis of the polygonal codes. Section ??



introduces the icosahedral and dodecahedral codes, together
with their corresponding analyses. Section IV discusses the
dual icosahedral and dual dodecahedral codes and analyzes
their error correction capability. Finally, Section V concludes
the paper.

II. PRELIMINARIES

Let C ⊂ Rn denote a real-valued linear code of dimension
k, generated by a real-valued k×n matrix G. Each codeword
takes the form

c = uG, u ∈ Rk, G ∈ Rk×n, c ∈ Rn,

where u is an arbitrary real input vector. For a codeword c =
(c0, c1, . . . , cn−1) ∈ C, consider the absolute values

|c0|, |c1|, . . . , |cn−1|.

Rearrange these n values in nonincreasing order and denote
the order statistics by

|c(0)| ≥ |c(1)| ≥ · · · ≥ |c(n−1)|,

where c(j) denotes the entry of c whose absolute value is the
j-th largest among {|c0|, . . . , |cn−1|}.

The m-height of the codeword c is then defined as the
ratio of the largest-magnitude entry to the (m+1)-th largest-
magnitude entry:

hm(c) =

∣∣∣∣ c(0)c(m)

∣∣∣∣ .
The m-height of the code C is defined as

hm(C) = max
c∈C

hm(c),

that is, the largest possible m-height achieved over all code-
words.

Theorem 2 of [12] gives a general method to compute
hm(C) by solving a family of linear programs that jointly
determine the m-height and the corresponding optimal input
vector uopt. This procedure requires solving

n(n− 1)

(
n− 2

m− 1

)
2m

linear programs (each with k variables).
Let δ and ∆ be positive real thresholds, with ∆ > δ > 0. An

error vector ε = (ε0, ε1, . . . , εn−1) ∈ Rn is called a limited-
magnitude error (LME) vector if

εi ∈ [−δ, δ], ∀ i ∈ {0, 1, . . . , n− 1}.

For a vector e = (e0, e1, . . . , en−1) ∈ Rn, define its ∆-
support as

Supp∆(e) :=
{
i ∈ {0, 1, . . . , n− 1} : |ei| > ∆

}
.

This definition naturally extends to ∆ = 0, in which case

Supp0(e) = Supp(e)

is the ordinary support. The Hamming weight of e is then
defined as

WH(e) =
∣∣Supp0(e)∣∣.

An error vector e = (e0, . . . , en−1) ∈ Rn is called an
unlimited-magnitude error (UME) vector of Hamming weight
w if WH(e) = w.

A noisy received word y = (y0, . . . , yn−1) ∈ Rn is given
by

y = c+ ε+ e,

where c ∈ C is the transmitted codeword, ε is the LME
vector, and e is the UME vector. The analog error correction
code is designed to correct UMEs. A fundamental condition
characterizing this error correction capability was derived
in [10], as stated in the following theorem.

Theorem II.1. Let C be a linear (n, k) code over R. Given
δ,∆ ∈ R+ with δ < ∆ and a positive integer t, there exists a
decoder for C that corrects t UMEs if and only if

∆ ≥ 2
(
h2t(C) + 1

)
δ.

Thus, achieving smaller m-height directly translates to
stronger UME correction capability.

III. DUAL POLYGONAL CODES

In this section, we construct a class of k = 2 analog codes
whose generator matrices consist of evenly spaced unit vectors
over a half circle. It is the dual of the code introduced in
Example 1 of [13].

A. Code Construction

Let k = 2 and let G = [g0, . . . , gn−1] ∈ R2×n consist of
unit columns

gj =

[
cos θj

sin θj

]
, θj ∈ [0, π).

Choose
θj =

π

n
· j, j = 0, 1, . . . , n− 1.

Then the set {g0, . . . , gn−1} forms an evenly spaced set of
vectors over a half circle. An example with n = 3 is illustrated
in Fig. 1. The dashed lines mark the antipodal directions of
the generator vectors. Because only the absolute values of the
codeword |cj | affect the m-height, using gj or −gj yields
codes with the same error correction capability. For simplicity,
we select vectors within the angular range [0, π).

g0

g1g2

Fig. 1. An example of polygonal codes for n = 3.



B. m-height profile

According to the definition of m-height, the magnitude of
the information vector does not matter. For a unit information
vector u(φ) = (cosφ, sinφ)⊤, the resulting codeword is

c(φ) = u(φ)⊤G ∈ Rn,

whose entries are

cj(φ) = cos(θj − φ).

Let c(0)(φ) ≥ c(1)(φ) ≥ · · · ≥ c(n−1)(φ) denote the elements
of {|cj(φ)|}n−1

j=0 sorted in nonincreasing order. Then the m-
height of the code is

hm(C) = sup
φ∈[0,2π)

c(0)(φ)

c(m)(φ)
.

Information directions φ ∈
[
0, π

n

]
generate a subset of

codewords. Due to the symmetry of the construction, all
other codewords can be obtained from this subset by suitable
permutations (and sign changes) of the coordinates. Since per-
mutations do not affect the m-height, the interval φ ∈

[
0, π

n

]
constitutes a complete and sufficient domain for analyzing the
m-height of the code, as illustrated in Fig. 1. Hence, the m-
height simplifies to

hm(C) = sup
φ∈[0,2π)

c(0)(φ)

c(m)(φ)
= sup

φ∈[0,πn ]

c(0)(φ)

c(m)(φ)
.

Lemma III.1 (Order statistics of |cj(φ)|). Let n ≥ 2 and fix
φ ∈

[
0, π

n

]
. Then the order statistics c(k)(φ) of |cj(φ)|, are

attained at the indices

c(k)(φ) = |cjk(φ)|, k = 0, 1, . . . , n− 1,

where

jk =


0, k = 0,

k + 1

2
, k odd,

n− k

2
, k even and k ≥ 2.

Thus, by Lemma III.1, the m-height computation can be
simplified as follows.

hm(C) = sup
φ∈[0,πn ]

c(0)(φ)

c(m)(φ)
= sup

φ∈[0,πn ]

cosφ

cos θjm
.

For the polygonal code, the direction u(φ) can be or-
thogonal to at most one generator vector gj , that is, there
is at most one j such that cos(θj − φ) = 0. Hence at
most the smallest order statistic c(n−1)(φ) can vanish. When
m = n−1, the denominator c(n−1)(φ) vanishes for some φ, so
hn−1(C) = ∞, as expected for an MDS code. In particular,
for every m ≤ n − 2, the denominator c(m)(φ) is strictly
positive for all φ ∈ [0, π

n ], and the corresponding m-height is
finite. We therefore restrict attention to m ≤ n− 2.

Theorem III.2 (Critical points and maximal m-height). For
the polygonal codes, and 0 < m ≤ n − 2, the m-height
achieves its maximum at

arg max
φ∈[0,πn ]

hm(φ) =

{
φ = π

n , m even,

φ = 0, m odd.

Moreover, the m-height is

hm(C) =


cos π

2n

cos
(
(m+ 1) π

2n

) , m even,

1

cos
(
(m+ 1) π

2n

) , m odd.

C. Comparison with best-known codes

We compared our polygonal codes with the best known
codes with k = 2 and n ≤ 10 in the literature, namely the
codes found by genetic programming in [12]. The proposed
polygonal codes outperform the existing codes for most (n,m)
parameter pairs, and they achieve strictly smaller m-height in
the cases listed in Table I.

TABLE I
COMPARISON BETWEEN PREVIOUS BEST CODES AND POLYGONAL CODES.

(n,m) Genetic Polygonal codes
(5, 2) 1.83 1.6180
(5, 3) 3.25 3.2361
(6, 3) 2.28 2.0000
(6, 4) 4.10 3.7321
(8, 4) 2.88 1.7654
(10, 5) 1.92 1.7013
(10, 6) 3.88 2.1756
(10, 7) 3.88 3.2361
(10, 8) 28.74 6.3138

IV. DUAL POLYHEDRAL CODES

In this section, we introduce two classes of graph-based
codes derived from three-dimensional geometric structures: the
icosahedron and the dodecahedron. These codes are the duals
of the codes introduced in Examples 2 and 3 of [13].

A. Dual Icosahedral Codes

We first consider a class of graph codes based on three-
dimensional geometric structures, using the regular icosahe-
dron as the prototype.

1) Construction: The icosahedron has 12 vertices, 20 faces,
and 30 edges. By placing its vertices on the sphere, we obtain
6 symmetric axes {g1, . . . , g6}, where each axis corresponds to
a pair of antipodal vertices. These six axes can be represented
by the following matrix:

G =

0 0 1 1 ϕ ϕ
1 1 ϕ −ϕ 0 0
ϕ −ϕ 0 0 1 −1

 , ϕ =
1 +

√
5

2
.



2) m-height profile: When searching for the optimal infor-
mation vector u, only its direction matters, and its magnitude
does not affect the m-height. Therefore, it is sufficient to
restrict the analysis to the faces of the solid. Among the 20
faces, all are symmetric, and furthermore, each face contains
subregions that are themselves symmetric. Thus, analyzing a
single representative subregion is equivalent to analyzing the
entire space.

Motivated by this symmetry, we restrict our attention to the
subregion whose direction is closest to g1, as illustrated in
Fig. 2. We define the smaller triangle as

T := conv{v1, v2, v3}

with

v1 := g1, v2 :=
g1 + g3

2
, v3 :=

g1 + g3 + g5
3

.

Fig. 2. Icosahedron with a shaded triangular region indicating the fundamental
search space used to locate the optimal directions within one face.

Any x ∈ T can be written in barycentric form

x(u, v) := uv1 + vv2 + (1− u− v)v3.

The parameter domain is the standard triangle

D := {(u, v) ∈ R2 : u ≥ 0, v ≥ 0, u+ v ≤ 1}.

Lemma IV.1 (Global ordering of |x · gi|). For every x ∈ T ,
the six absolute values |x · gi|, i = 1, . . . , 6, satisfy the global
order

|x ·g1| ≥ |x ·g3| ≥ |x ·g5| ≥ |x ·g4| ≥ |x ·g2| ≥ |x ·g6|.

For m = 0, the m-height is trivial. Moreover, since the code
is MDS, we have hm(C) = ∞ for m = 4, 5. Hence, it suffices
to consider m = 1, 2, 3. From the proof of Lemma IV.1, we
have shown that for all x ∈ T ,

x · g1 ≥ x · g3 ≥ x · g5 ≥ 0 ≥ x · g4.

Therefore, for m = 1, 2, 3, the m-height optimization reduces
to maximizing

fm(x) :=
x · g1
dm(x)

, x ∈ T,

where the denominator is given by

d1(x) = x · g3, d2(x) = x · g5, d3(x) = −x · g4.

Theorem IV.2. Let x ∈ T and let f1, f2, f3 be defined as
above. Then the maximizers over T and the corresponding
maximal values are:

1) argmax
x∈T

f1(x) = v1, and f1(g1) =
√
5.

2) argmax
x∈T

f2(x) = v1, and f2(g1) =
√
5.

3) argmax
x∈T

f3(x) = v3, and f3(v3) = 2 +
√
5.

B. Dual dodecahedral codes

We now consider the graph code derived from the regular
dodecahedron.

1) Construction: The dodecahedron has 20 vertices, 12
faces, and 30 edges. Placing its vertices on the sphere yields
10 symmetric axes {g1, . . . , g10} (each axis connects a pair of
antipodal vertices), represented by

G =

1 1 1 1 0 0 φ−1 φ−1 φ φ
1 1 −1 −1 φ φ 0 0 φ−1 −φ−1

1 −1 1 −1 φ−1 −φ−1 φ −φ 0 0

 .

2) m-height profile: Similar to the icosahedral case, sym-
metry allows us to restrict attention to a fundamental triangular
region on a single dodecahedral face, as illustrated in Fig. 3,
with vertices

xA := g1, xB :=
g1 + g5

2
, xC :=

g1 + g2 + g5 + g6 + g9
5

.

Let T ′ = conv{xA, xB , xC}, x(u, v) = uxA+ v xB +(1−
u−v)xC , where u, v ≥ 0 and u+v ≤ 1, and define βj(x) :=
|x · gj |. Let β[j](x) be the order statistics of βj(x).

Lemma IV.3. For any x ∈ T ′ we have the following
inequalities:

β1 ≥ β5 ≥ β9 ≥ max{β6, β7}, (1)
β6 ≥ β2, β6 ≥ β4, β7 ≥ β4, (2)

β4 ≥ max{β3, β8, β10}, β2 ≥ max{β3, β8, β10}, (3)
β3 ≤ β10. (4)

Corollary IV.4. Let x ∈ T ′ and let β[k](x) be the order
statistics of βj(x). Under the inequalities (1)–(4), the index
attaining rank k can only belong to:

k = 1 : {1}, k = 2 : {5}, k = 3 : {9}, k = 4 : {6, 7},

k = 5 : {2, 6, 7}, k = 6 : {2, 4, 7}, k = 7 : {2, 4},

k = 8 : {8, 10}, k = 9 : {3, 8, 10}, k = 10 : {3, 8}.

Lemma IV.5. For each j ∈ {2, 4, 5, 6, 7, 9, 10}, define

fj(u, v) :=
x(u, v) · g1
|x(u, v) · gj |

, (u, v) ∈ T ′.

Then fj has no stationary point in T ′. In fact, on T ′ we have

∂uf2 > 0, ∂vf2 > 0; ∂uf5 > 0, ∂vf5 ≤ 0;

∂uf6 > 0, ∂vf6 > 0; ∂uf7 < 0, ∂vf7 < 0;

∂uf9 > 0, ∂vf9 > 0; ∂uf10 < 0, ∂vf10 > 0;

and for j = 4, ∂vf4 < 0.



Fig. 3. Dodecahedron with a shaded triangular region indicating the funda-
mental search space used to locate the optimal directions within one face.

Corollary IV.6. Let x ∈ T ′. For m = 1, 2, the corresponding
m-height objective functions are

f5(x) :=
x · g1
x · g5

, f9(x) :=
x · g1
x · g9

.

And:

1) The maximizer of f5 over T ′ is x = xA = g1, and

f5(g1) =
3√
5
.

2) The maximizer of f9 over T ′ is x = xB = g1+g5
2 , and

f9(xB) = φ.

Theorem IV.7. For each m ∈ {3, 4, 5, 6, 7}, any maximizer of
the corresponding m-height over T ′ must lie in the candidate
set

S =
{
(u, v) ∈ T ′ : (1, 0), (0, 0), (0, 1),

(
0, 1+3

√
5

11

)
,
(
φ
3 , 0

)
,
(
0, 2

√
5− 4

)}
.

Evaluating all candidates in S and taking the maximum
yields

h3 = 4−
√
5, h4 = h5 = 3,

h6 = 2 +
3
√
5

5
, h7 = 5 + 2

√
5.

Moreover, the maxima are attained at x = xC for m ∈
{3, 6}, at x = xA = g1 for m ∈ {4, 5}, and at (u, v) =(
0, 2

√
5− 4

)
for m = 7.

C. Comparison with best-known codes

We compare our dual polyhedral codes with the best known
codes in the literature. Table II summarizes the results: the
column “Genetic” lists the smallest m-height values obtained
via the genetic search, as can be found in [12]. The comparison
shows that the proposed dual polyhedral codes outperform the
existing codes for most (n,m) parameter pairs, especially for
larger m values.

TABLE II
COMPARISON BETWEEN PREVIOUS BEST CODES AND POLYHEDRAL

CODES.

n k m Genetic Polyhedral codes
6 3 1 1 2.24
6 3 2 2.87 2.24
6 3 3 7 4.24

10 3 1 1 1.34
10 3 2 1 1.62
10 3 3 2.12 1.76
10 3 4 4.36 3
10 3 5 5.97 4.24
10 3 6 17.18 4.24
10 3 7 69.44 9.47

V. CONCLUSION

In this paper, we proposed several geometric analog error-
correction codes, namely polygonal codes, polyhedral codes
and their duals. We analyzed their m-heights, a key metric
that characterizes the error correction capability of analog
codes. Through comparison with the best previously known
codes, we showed that the proposed codes outperform existing
designs for most parameter settings. A limitation of the current
constructions is that their dimensions are restricted to k = 2
and k = 3, and for k = 3 the code lengths are limited to n = 6
and n = 10. Extending these geometric constructions to more
general values of k and n remains an interesting direction for
future work.
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APPENDIX

a) Proof of Lemma III.1: : Recall that

cj(φ) = cos
(

πj
n − φ

)
, j = 0, 1, . . . , n− 1,

and by definition c(k)(φ) denotes the (k + 1)-th largest value
among

{
|cj(φ)|

}n−1

j=0
.

Since | cosx| is π-periodic and even, it is convenient to
reduce to the principal strip (−π

2 ,
π
2 ]. Define

P (x) := x− π
⌊x+ π

2

π

⌋
∈
(
−π

2 ,
π
2

]
,

so that ∣∣cosP (x)
∣∣ = ∣∣cosx∣∣ for all x ∈ R.

Let

M :=
{
−φ+ j π

n : j = 0, 1, . . . , n− 1
}
,

L := P (M) =
{
P (−φ+ j π

n ) : j = 0, 1, . . . , n− 1
}
.

Then {
|cj(φ)|

}n−1

j=0
=

{
|cosx| : x ∈ M

}
=

{
|cosx| : x ∈ L

}
=

{
cosx : x ∈ L

}
.

because L ⊂ (−π
2 ,

π
2 ] and cosx > 0 on this interval.

On [0, π
2 ] the function x 7→ cosx is strictly decreasing, and

cosx is even. Hence for |α|, |β| ≤ π
2 we have

cosα ≥ cosβ ⇐⇒ |α| ≤ |β|.

Therefore, within L, ordering the values {cosx : x ∈ L}
in nonincreasing order is equivalent to ordering the absolute
values {|x| : x ∈ L} in nondecreasing order.

We now describe L explicitly. First, for j = 0, 1, . . . , ⌊n
2 ⌋

we have
−φ+ j π

n ∈
(
−π

2 ,
π
2

]
,

P
(
−φ+ j π

n

)
= −φ+ j π

n .

These contribute the points

−φ, π
n − φ, 2π

n − φ, 3π
n − φ, . . .

up to the last j for which the expression stays in (−π
2 ,

π
2 ].

Next, consider j = n
2 + r (if n is even) or j = n−1

2 +1+ r
(if n is odd); in either case we can write

j = n− r, r = 1, 2, . . . ,
⌊
n−1
2

⌋
.

Then

−φ+ j π
n = −φ+ (n− r)πn = π −

(
πr
n + φ

)
,

which lies in (π2 , π) for the relevant r. Applying P gives

P
(
−φ+ (n− r)πn

)
= −

(
πr
n + φ

)
,

so these contribute the points

−
(

π
n + φ

)
, −

(
2π
n + φ

)
, −

(
3π
n + φ

)
, . . . .

Collecting both parts, the elements of L in (−π
2 ,

π
2 ] can be

written as

−φ, π
n−φ, 2π

n −φ, . . . and −
(

π
n+φ

)
, −

(
2π
n +φ

)
, . . .

hence their absolute values form the interleaving sequence

φ, π
n − φ, π

n + φ, 2π
n − φ, 2π

n + φ, 3π
n − φ, 3π

n + φ, . . . ,

because for every integer r ≥ 1 and every φ ∈ [0, π
n ],

r π
n − φ ≤ r π

n + φ ≤ (r + 1)πn − φ.

We now map these distances back to indices j. By construc-
tion,

• The smallest distance φ corresponds to j = 0.
• The next distance π

n − φ corresponds to j = 1.
• The distance π

n + φ corresponds to j = n− 1.
• The distance 2π

n − φ corresponds to j = 2.
• The distance 2π

n + φ corresponds to j = n− 2.
and so on. In general, the interleaving pattern of distances
yields the index sequence

0, 1, n− 1, 2, n− 2, 3, n− 3, . . . ,

i.e.,

jk =


0, k = 0,

k + 1

2
, k odd,

n− k

2
, k even and k ≥ 2.

Since c(k)(φ) is, by definition, the (k + 1)-th largest
element of {|cj(φ)|}n−1

j=0 , and we have just shown that the
corresponding indices appear in the order j0, j1, j2, . . . given
above, which proves the lemma.

b) Proof of Theorem III.2: :
From Lemma III.1, the ordered term for 0 < m ≤ n − 2

satisfies
c(m)(φ) = cos

(
A(m) + s(m)φ

)
,

where
A(m) =

π

n

⌈m
2

⌉
, s(m) = (−1)m,

and therefore

hm(φ) =
cosφ

cos
(
A(m) + s(m)φ

) .
Taking a derivative and simplifying,

h′
m(φ) =

s(m) sinA(m)

cos2
(
A(m) + s(m)φ

) .
Since A(m) ∈ (0, π

2 ], the numerator has the same sign as s(m),
and the denominator is strictly positive. Thus,

sgn h′
m(φ) = sgn(s(m)) =

{
+1, m even,
−1, m odd.

Hence hm(φ) is strictly increasing when m is even and strictly
decreasing when m is odd, proving

argmaxhm =

{
φ = π

n , m even,
φ = 0, m odd.



Finally, evaluating at the maximizing point:

hm(C) =


cos π

2n

cos
(
(m+ 1) π

2n

) , m even,

1

cos
(
(m+ 1) π

2n

) , m odd.

This completes the proof.
c) Proof of Lemma IV.1: : A direct computation with the

parametrization x(u, v) yields

x · g1 =
4u+ v

3
+

√
5

2
+

7

6
,

x · g3 =
−2u+ v

3
+

√
5

2
+

7

6
,

x · g5 =
−2u− 2v

3
+

√
5

2
+

7

6
,

and

x · g2 = −ϕ

3
(2u− v + 1),

x · g4 = −ϕ

3
(2u+ 2v + 1),

x · g6 = −ϕ

3
(4u+ v − 1).

From these expressions we first obtain, for all (u, v) ∈ T ,

x ·g1 > 0, x ·g3 > 0, x ·g5 > 0, x ·g4 < 0, x ·g2 ≤ 0,

and x · g6 changes sign across the line 4u+ v = 1.
For g1, g3, g5, we have

x · g1 − x · g3 = 2u ≥ 0, x · g3 − x · g5 = v ≥ 0,

with equality only on the edges u = 0 and v = 0, respectively.
Since these three quantities are always positive, this implies

|x · g1| ≥ |x · g3| ≥ |x · g5|

for all x ∈ T .
To compare |x · g5| with |x · g4|, note that x · g5 > 0 and

x · g4 < 0, so

|x · g5| ≥ |x · g4| ⇐⇒ x · g5 + x · g4 ≥ 0.

Using the formulas above, one finds

x · g5 + x · g4 =

√
5 + 3

3
(1− u− v),

which is nonnegative on T and vanishes exactly when u+v =
1. Similarly, since x · g2 ≤ 0 and x · g4 < 0, we compare

|x · g4| ≥ |x · g2| ⇐⇒ x · g4 − x · g2 ≤ 0,

and a direct computation shows

x · g4 − x · g2 = −ϕ v,

which is nonpositive on T , with equality only when v = 0.
For |x · g2| and |x · g6|,

|x · g2| ≥ |x · g6| ⇐⇒ 2u− v + 1 ≥ | 4u+ v − 1 |.

Split into two cases:

(i) If 4u+ v ≥ 1, then |4u+ v − 1| = 4u+ v − 1 and

2u− v+1 ≥ 4u+ v− 1 ⇐⇒ 2 ≥ 2u+2v ⇐⇒ 1 ≥ u+ v,

which holds on T , with equality exactly on the edge u+v = 1.
(ii) If 4u+ v ≤ 1, then |4u+ v − 1| = 1− 4u− v and

2u− v + 1 ≥ 1− 4u− v ⇐⇒ 6u ≥ 0,

always true, with equality exactly on the edge u = 0.
Combining (i)–(ii), we obtain |x·g2| ≥ |x·g6| for all (u, v) ∈

T , and equality holds only on u = 0 or u+ v = 1.
Combining these comparisons yields the global chain

|x · g1| ≥ |x · g3| ≥ |x · g5| ≥ |x · g4| ≥ |x · g2| ≥ |x · g6|

for all x ∈ T , with equalities only in the boundary cases listed
above.

d) Proof of Theorem IV.2: : We prove each claim by
analyzing the monotonicity of the corresponding objective on
the domain D.

(1) For f1. For (u, v) ∈ D,

f1(u, v) =
4u+ v + 3

√
5

2 + 7
2

−2u− 2v + 3
√
5

2 + 7
2

.

A direct differentiation simplifies to

∂uf1(u, v) =
−6v + 9

√
5 + 21(

−2u− 2v + 3
√
5

2 + 7
2

)2 > 0,

∂vf1(u, v) =
6u+ 9

√
5

2 + 21
2(

−2u− 2v + 3
√
5

2 + 7
2

)2 > 0.

Hence f1 is increasing in both u and v on D, so the maximum
must lie on the edge u+ v = 1. Restricting to this edge,

f1(u, 1− u) =
3u+ 1 + 3

√
5

2 + 7
2

−2 + 3
√
5

2 + 7
2

,

which is strictly increasing in u. Therefore the unique max-
imizer is u = 1, i.e., (u, v) = (1, 0), corresponding to
x = v1 = g1. Evaluating yields f1(g1) =

√
5.

(2) For f2. For (u, v) ∈ D,

f2(u, v) =
8u+ 2v + 3

√
5 + 7

−4u+ 2v + 3
√
5 + 7

.

Differentiation gives ∂uf2(u, v) > 0 and ∂vf2(u, v) ≤ 0 on
D. Thus, for any (u, v) ∈ D we have f2(u, 0) ≥ f2(u, v), and
then f2(1, 0) ≥ f2(u, 0). Hence the maximum is attained at
(u, v) = (1, 0), i.e., x = v1 = g1, and f2(g1) =

√
5.

(3) For f3. For (u, v) ∈ D,

f3(u, v) =
8u+ 2v + 3

√
5 + 7

(1 +
√
5)(2u+ 2v + 1)

.

Since (1 +
√
5)−1 > 0, it suffices to maximize

g(u, v) =
8u+ 2v + 3

√
5 + 7

2u+ 2v + 1
.

One checks that ∂ug(u, v) < 0 and ∂vg(u, v) < 0 on D.
Hence g (and thus f3) is strictly decreasing as either u or



v increases, so the maximum over D is attained at (u, v) =
(0, 0), corresponding to x = v3. Evaluating yields f3(v3) =
2 +

√
5.

This completes the proof.
e) Proof of Lemma IV.3: : We first compute

x · g1 =
(
2− 2

√
5

5

)
u+

(1
2
+

√
5

10

)
v +

(
1 +

2
√
5

5

)
,

x · g5 =
(
−1 +

3
√
5

5

)
u+

(1
2
+

√
5

10

)
v +

(
1 +

2
√
5

5

)
,

x · g9 =
(
−1 +

3
√
5

5

)
u+

(
−1

2
+

√
5

10

)
v +

(
1 +

2
√
5

5

)
.

x · g2 =
(
−2

√
5

5

)
u+

(
−2

√
5

5

)
v +

(
1 +

2
√
5

5

)
,

x · g6 =
(
−2

√
5

5

)
u+

(
−2

√
5

5
+

√
5− 1

2

)
v +

(
1 +

2
√
5

5

)
,

x · g7 =
(4√5

5

)
u+

(5 + 3
√
5

10

)
v +

√
5

5
.

x · g4 =
(
−1 +

√
5

5

)
u−

(1
2
+

3
√
5

10

)
v −

√
5

5
,

x · g10 =
(
1−

√
5

5

)
u−

√
5

5
v +

√
5

5
.

x · g3 =
(
1 +

√
5

5

)
u+

√
5

5
v −

√
5

5
.

x · g8 =

√
5

5
−
(
1 +

√
5

5

)
(u+ v).

On T ′, one checks that x · g4 ≤ 0 everywhere, while

x · gj ≥ 0 for j ∈ {1, 2, 5, 6, 7, 9, 10}.

The only inner products that may change sign on T ′ are x ·g3
and x · g8. Therefore, we may drop absolute values for x · gj
with j ∈ {1, 2, 5, 6, 7, 9, 10}, keep a minus sign for |x · g4| =
−(x · g4), and retain absolute values for |x · g3| and |x · g8|.
Proof of (1). Compute the differences:

(x·g1)−(x·g5) = (3−
√
5)u ≥ 0, (x·g5)−(x·g9) = v ≥ 0,

(x · g9)− (x · g6) =
(5−√

5

5

)
u+

√
5− 1

2
v ≥ 0,

(x · g9)− (x · g7) =
(
1 +

√
5

5

)(
1− u− v

)
≥ 0.

which gives β1 ≥ β5 ≥ β9 ≥ max{β6, β7}.

Proof of (2). First,

(x · g6)− (x · g2) =
√
5− 1

2
v ≥ 0 =⇒ β6 ≥ β2.

Next,

β6−β4 = (x·g6)+(x·g4) = 1+

√
5

5
−
(
1+

√
5

5

)
(u+v) ≥ 0,

so β6 ≥ β4. Also,

β7 − β4 = (x · g7) + (x · g4) = (
√
5− 1)u ≥ 0.

so β7 ≥ β4.

Proof of (3). We show |x · gj | ≤ β4 and |x · gj | ≤ β2 for
j ∈ {3, 8, 10}. For j = 10 (no absolute needed):

β4 − β10 = −(x · g4)− (x · g10) =
1 +

√
5

2
v ≥ 0,

β2 − β10 = 1 +

√
5

5
−

(
1 +

√
5

5

)
u−

√
5

5
v ≥ 0.

For j = 3, it suffices to check β4 ± (x · g3) ≥ 0 and β2 ± (x ·
g3) ≥ 0:

β4 − (x · g3) =
2
√
5

5
(1− u) +

5 +
√
5

10
v ≥ 0,

β4 + (x · g3) = 2u+
(1
2
+

√
5

2

)
v ≥ 0,

β2 − (x · g3) = 1 +
3
√
5

5
−

(
1 +

3
√
5

5

)
u− 3

√
5

5
v ≥ 0,

β2 + (x · g3) = 1 +

√
5

5
+
(
1−

√
5

5

)
u−

√
5

5
v ≥ 0.

For j = 8, similarly check β4 ± (x · g8) ≥ 0 and β2 ± (x ·
g8) ≥ 0:

β4 − (x · g8) = 2u+
(1
2
+

3
√
5

10

)
v +

√
5

5
≥ 0,

β4 + (x · g8) =
2
√
5

5
− 2

√
5

5
u− 5−

√
5

10
v ≥ 0,

β2 − (x · g8) = 1 +
3
√
5

5
−
(
1−

√
5

5

)
u−

(
1− 3

√
5

5

)
v ≥ 0,

β2 + (x · g8) = 1 +

√
5

5
+

(
1 +

√
5

5

)
u+

3
√
5

5
v ≥ 0.

Thus β4 ≥ max{β3, β8, β10} and β2 ≥ max{β3, β8, β10}.
Proof of (4). Since β10 = x · g10 ≥ 0, it suffices to show
β10 ± (x · g3) ≥ 0:

β10 − (x · g3) =
2
√
5

5
(1− u− v) ≥ 0,

β10 + (x · g3) = 2u ≥ 0.

hence |x · g3| ≤ x · g10, i.e., β3 ≤ β10.
f) Proof of Corollary IV.4: : From (1)–(4), we know that

ranks 1, 2, 3 are attained uniquely by {1}, {5}, {9}, and the re-
maining ranks are determined by {β2, β3, β4, β6, β7, β8, β10}.

From (3), we have

max{β3, β8, β10} ≤ min{β2, β4},

so {3, 8, 10} must occupy the bottom three ranks k = 8, 9, 10,
and {2, 4, 6, 7} must occupy ranks k = 4, 5, 6, 7.

Within {2, 4, 6, 7}, inequality (2) gives

β6 ≥ β2, β6 ≥ β4, β7 ≥ β4.

Hence β2 cannot be the largest among {β2, β4, β6, β7} since
β6 ≥ β2, and β4 cannot be the largest since β6 ≥ β4; therefore
the largest must be attained at index 6 or 7, i.e., k = 4 :
{6, 7}. Moreover, since both β6 and β7 dominate β4, index
4 cannot be the second-largest, so the second-largest must lie
in {2, 6, 7}, i.e., k = 5 : {2, 6, 7}. Next, because β6 ≥ β2



and β6 ≥ β4, index 6 cannot be the third- or fourth-largest
within this subset; thus the third-largest must lie in {2, 4, 7},
i.e., k = 6 : {2, 4, 7}. Finally, since β7 ≥ β4, index 7 cannot
be the smallest among the four, so the smallest must lie in
{2, 4}, i.e., k = 7 : {2, 4}.

Within the bottom group {3, 8, 10}, inequality (4) gives
β3 ≤ β10, so index 3 cannot be the largest among {3, 8, 10}
and index 10 cannot be the smallest among {3, 8, 10}. Hence

k = 8 : {8, 10}, k = 9 : {3, 8, 10}, k = 10 : {3, 8}.

g) Proof of Lemma IV.5: : On T ′, we have x ·g4 < 0 and
x · gj > 0 for j ∈ {2, 5, 6, 7, 9, 10}. Hence |x · g4| = −(x · g4)
and |x · gj | = x · gj for j ∈ {2, 5, 6, 7, 9, 10}.

Write N := x · g1 = a1u + b1v + c1 and Dj := |x · gj | =
aju+ bjv + cj . We have

∂ufj =
a1Dj − ajN

D2
j

, ∂vfj =
b1Dj − bjN

D2
j

.

Substituting the explicit formulas of x ·g1 and x ·gj yields the
following:

∂uf2 =
(10 + 4

√
5) + (5− 3

√
5)v

5D2
2

> 0,

∂vf2 =
(15 + 7

√
5) + (−10 + 6

√
5)u

10D2
2

> 0;

∂uf5 =
(5 +

√
5) + (5−

√
5)v

5D2
5

> 0,

∂vf5 =
(
√
5− 5)u

5D2
5

< 0;

∂uf6 =
(10 + 4

√
5) + (−5 + 3

√
5)v

5D2
6

> 0,

∂vf6 =
(5 + 2

√
5) + (5− 3

√
5)u

5D2
6

> 0;

∂uf7 = −2(5 +
√
5)

5D2
7

< 0,

∂vf7 = −5 + 2
√
5

5D2
7

< 0;

∂uf9 =
(5 +

√
5) + (−5 +

√
5)v

5D2
9

> 0,

∂vf9 =
(5 + 2

√
5) + (5−

√
5)u

5D2
9

> 0;

∂uf10 = − (5−
√
5) + 2

√
5 v

5D2
10

< 0,

∂vf10 =
(5 + 3

√
5) + 4

√
5u

10D2
10

> 0.

For j = 4 we use D4 = |x · g4| = −(x · g4) =
(
1−

√
5
5

)
u+(

1
2 + 3

√
5

10

)
v +

√
5
5 , and obtain

∂vf4 = −2
√
5u+ (5 + 2

√
5)

5D2
4

< 0.

In each case, ∇fj cannot vanish on T ′ (indeed, at least one
partial derivative has a fixed nonzero sign), so fj has no
stationary point in T ′.

h) Proof of Corollary IV.6: : (1) Case m = 1. From the
proof of Lemma IV.5, we have

∂uf5(u, v) > 0, ∂vf5(u, v) < 0.

Hence f5 is increasing in u and decreasing in v on T , so the
maximizer is attained at (u, v) = (1, 0), i.e., x = xA = g1.
Evaluating gives

f5(g1) =
g1 · g1
g1 · g5

=
3√
5
.

(2) Case m = 2. We have

∂uf9(u, v) > 0, ∂vf9(u, v) > 0.

Thus f9 is increasing in both u and v, and by monotonicity
the maximizer lies on the edge u+ v = 1. Along this edge,

f9(u, 1− u) =
(3−

√
5)u+ (3 +

√
5)

(
√
5− 1)u+ (1 +

√
5)

is strictly decreasing in u, so the unique maximizer is (u, v) =
(0, 1), i.e., x = xB = g1+g5

2 . Evaluating gives

f9(xB) =
xB · g1
xB · g9

= φ.

This completes the proof.
i) Proof of Theorem IV.7: : We treat the three cases m ∈

{3, 4}, m ∈ {5, 6}, and m = 7 separately.
Case I: m = 3, 4 (the denominator is in {g2, g6, g7}). By

Corollary IV.4, for m = 3, 4, the (m+1)-st largest projection
must be attained at index 2, 6, or 7.

Define

Li,j := {x ∈ T ′ : |x · gi| = |x · gj |}.

Since x·g2, x·g6, x·g7 ≥ 0 on T ′, we drop the absolute values
and write Li,j = {x ∈ T ′ : x · gi = x · gj} for i, j ∈ {2, 6, 7}.
The switching boundaries among these three denominators are
given by (we do not need to consider the switching boundary
L2,6 since by Lemma IV.3, x · g6 ≥ x · g2)

L2,7 : x · g2 = x · g7 ⇐⇒ 12
√
5u+ (7

√
5 + 5) v = 10 + 2

√
5,

L6,7 : x · g6 = x · g7 ⇐⇒ 6
√
5u+ (5 +

√
5) v = 5 +

√
5.

By Lemma IV.5, none of f2, f6, or f7 has a stationary
point in T ′. The switching boundaries partition T ′ into three
subregions, as illustrated in Fig. 4. Within each subregion, the
ordering among the denominators is fixed, and the relevant
denominator is gj for some j ∈ {2, 6, 7}. Consequently, the
m-height optimization reduces to maximizing a single ratio
fj(u, v) over that subregion. We thus analyze the three sub-
regions separately, maximizing f2(u, v), f6(u, v), or f7(u, v)
on the corresponding region.
(A) Maximizers in T1. From Lemma IV.5, both ∂uf2 and
∂vf2 are strictly positive. Hence f2 is strictly increasing in
both u and v, and its maximum over T1 must be attained on
the edge L2,7. Evaluating f2 along this edge shows that

f2

(
u,

10 + 2
√
5− 12

√
5u

7
√
5 + 5

)
=

(13− 5
√
5)u+ (13 + 6

√
5)

(4
√
5− 6)u+ (5 + 4

√
5)

,



C A

B

L
6
,7

L
2,7

T1

T2

T3

Fig. 4. Triangle T ′ in (u, v)-coordinates and switching lines L2,7 and L6,7,
partitioning T ′ into three subregions.

with derivative

d

du
(·) = 11(

√
5− 7)(

(4
√
5− 6)u+ (5 + 4

√
5)
)2 < 0.

Hence the maximum is attained at u = 0, i.e.,

(u, v) =
(
0,

1 + 3
√
5

11

)
.

For f6, both ∂uf6 and ∂vf6 are strictly positive. Evaluating
f6 along L2,7 shows that

f6
(
u, v(u)

)
=

(6
√
5− 10)u+ (25 + 11

√
5)

(4
√
5− 20)u+ (15 + 9

√
5)

.

Differentiating yields

d

du
f6
(
u, v(u)

)
=

40(10 + 3
√
5)(

(4
√
5− 20)u+ (15 + 9

√
5)
)2 > 0.

Hence f6 is strictly increasing along L2,7 inside T ′, so its
maximum on this segment is attained at the endpoint with
largest u, namely where v = 0:

(u, v) =
(10 + 2

√
5

12
√
5

, 0
)
=

(1 +√
5

6
, 0

)
.

For f7, both partial derivatives satisfy ∂uf7 < 0 and ∂vf7 <
0 on T ′, so f7 is strictly decreasing in both variables. Hence
its maximum over T1 is attained at the vertex (u, v) = (0, 0).

(B) Maximizers in T2.
For f2, both ∂uf2 and ∂vf2 are strictly positive. Evaluating

f2 along L6,7 shows that

f2

(
u, 1 + 3

2 (1−
√
5)u

)
=

(4− 2
√
5)u+ (3 +

√
5)

2
(
(3−

√
5)u+ 1

) .

Differentiating gives

d

du
(·) = −4

√
5(

2((3−
√
5)u+ 1)

)2 < 0,

hence the maximum is attained at u = 0, i.e., at (u, v) =
(0, 1).

For f6, both ∂uf6 and ∂vf6 are strictly positive. Evaluating
f6 along L6,7 shows that

f6

(
u, 1 + 3

2 (1−
√
5)u

)
=

(4− 2
√
5)u+ (3 +

√
5)

(
√
5− 3)u+ (1 +

√
5)

.

with derivative

d

du
(·) = 10(1 +

√
5)(

(
√
5− 3)u+ (1 +

√
5)
)2 > 0.

Thus the maximum on L6,7 is attained at the largest feasible
u, which occurs at v = 0, i.e.,

(u, v) =
(1 +√

5

6
, 0

)
.

For f7, both ∂uf7 and ∂vf7 are strictly negative. Evaluating
f7 along L2,7 shows that

f7

(
u,

10 + 2
√
5− 12

√
5u

7
√
5 + 5

)
=

(6
√
5− 10)u+ (25 + 11

√
5)

(10− 2
√
5)u+ (15 + 5

√
5)

.

Its derivative is

d

du
(·) = − 20(7 +

√
5)(

(10− 2
√
5)u+ (15 + 5

√
5)
)2 < 0.

Hence the maximum on this segment is attained at the endpoint
with smallest u, i.e.,

(u, v) =
(
0,

1 + 3
√
5

11

)
.

(C) Maximizers in T3.
For f2, both ∂uf2 and ∂vf2 are strictly positive. Evaluating

f2 along edge AB shows that

f2(u, 1− u) =
(3
2
−

√
5

2

)
u+

(3
2
+

√
5

2

)
.

Differentiating yields

d

du
(·) = 3

2
−

√
5

2
> 0,

so f2 is strictly increasing along AB. Hence the maximum on
AB is attained at u = 1, i.e., at the vertex A = (1, 0).

For f6, both ∂uf6 and ∂vf6 are strictly positive. Evaluating
f6 along edge AB shows that

f6(u, 1− u) =
(3−

√
5)u+ (3 +

√
5)

(1−
√
5)u+ (1 +

√
5)

.

Its derivative is

d

du
f6(u, 1− u) =

4
√
5(

(1−
√
5)u+ (1 +

√
5)
)2 > 0,

so f6(u, 1−u) is strictly increasing on u. Therefore the max-
imum on edge AB is attained at u = 1 (i.e., (u, v) = (1, 0),
the vertex A).



For f7, both ∂uf7 and ∂vf7 are strictly negative. Evaluating
f7 along edge L6,7 shows that

f7

(
u, 1 + 3

2 (1−
√
5)u

)
=

(2−
√
5)u+ 3+

√
5

2√
5−3
2 u+ 1+

√
5

2

.

Its derivative is

d

du
f7

(
u, 1 + 3

2 (1−
√
5)u

)
=

√
5−1
2(√

5−3
2 u+ 1+

√
5

2

)2 > 0.

so f7 is strictly increasing along L6,7.
Therefore, the maximum on this segment is attained at the

endpoint with largest u, namely

(u, v) =
(1 +√

5

6
, 0

)
.

Case II: m = 5, 6 (the denominator is in {g2, g4, g7}).
For m = 5 or m = 6, the (m+1)-st largest magnitude must
be attained at index 2, 4, or 7. On T , x ·g2 ≥ 0 and x ·g7 ≥ 0,
while x · g4 < 0, so |x · g2| = x · g2, |x · g7| = x · g7, and
|x · g4| = −(x · g4). The switching interfaces are

L2,4 : 2(5 +
√
5)u+ (5 + 7

√
5) v = 10 + 2

√
5,

L2,7 : 12
√
5u+ (7

√
5 + 5) v = 10 + 2

√
5.

Similar to Case I, the corresponding subregion partition is
illustrated in Fig. 5.

C A

B

L
2,4

L
2,7

T1
T2

T3

Fig. 5. Triangle T ′ in (u, v)-coordinates and switching lines L2,4 and L2,7,
partitioning T ′ into three subregions.

(A) Maximizers in T1. Maximizing f2 and f7 in T1 is already
done in case I, thus we skip them.

For f4, From Lemma IV.5, ∂vf4 < 0. Thus the maximizer
is on v = 0, which is edge CA

f4(u, 0) =
(10− 2

√
5)u+ (5 + 2

√
5)

(5−
√
5)u+

√
5

.

Its derivative is

d

du
f4(u, 0) =

5(
√
5− 5)(

(5−
√
5)u+

√
5
)2 < 0.

Therefore f4(u, 0) is strictly decreasing on u ∈ [0, 1], and the
maximum on the edge v = 0 is attained at u = 0.
(B) Maximizers in T2.

For f2, both ∂uf2 and ∂vf2 are strictly positive. Evaluating
f2 along edge L2,4 shows that

f2

(
u,

10 + 2
√
5− 2(5 +

√
5)u

5 + 7
√
5

)
=

(−10 + 10
√
5)u+ (25 + 11

√
5)

(−10 + 2
√
5)u+ (15 + 5

√
5)

.

Its derivative is

d

du
f2(u, v(u)) =

240 + 160
√
5(

(−10 + 2
√
5)u+ (15 + 5

√
5)
)2 > 0.

Therefore, the maximum is attained at the endpoint with the
largest u, i.e., at the vertex A.

For f4, we have ∂vf4 < 0. Hence any maximizer must lie
on CA∩T2 or on L2,7. From the previous calculation, along
CA we also have ∂uf4 < 0. Therefore, if the maximizer lies
on CA ∩ T2, it must occur at the endpoint where CA ∩ T2

meets L2,7. Consequently, it suffices to restrict attention to
L2,7. Evaluating f4 along edge L2,7 shows that

f4

(
u,

10 + 2
√
5− 12

√
5u

7
√
5 + 5

)
=

(13− 5
√
5)u+ (13 + 6

√
5)

(5− 7
√
5)u+ (5 + 4

√
5)

.

Its derivative is

d

du
f4 =

110 + 88
√
5(

(5− 7
√
5)u+ (5 + 4

√
5)
)2 > 0.

Therefore the maximum of f4 over L2,7 is attained at the
endpoint where v = 0, i.e.,

(u, v) =
(1 +√

5

6
, 0

)
.

For f7, both ∂uf7 and ∂vf7 are strictly negative. Thus the
maximum is on edge L2,7, which has already been calculated
in Case I.
(C) Maximizers in T3.

The maximuzer for f2 in T3 is on edge AB, maximizing
f2 along AB is already done in previous case.

For f4, since ∂vf4 < 0, the mazimizer is on edge L2,4.
Since on that edge, f2 = f4, it is equivalent as evaluating f2
along L2,4, which is already done in previous case.

For f7, since ∂vf7 < 0, the mazimizer is on edge L2,4.

f7

(
u,

10 + 2
√
5− 2(5 +

√
5)u

5 + 7
√
5

)
=

(10
√
5− 10)u+ (25 + 11

√
5)

20u+ (15 + 5
√
5)

.

Differentiating gives

d

du
f7 = − 40(10 + 3

√
5)(

20u+ (15 + 5
√
5)
)2 < 0.

Therefore, the maximum of f7 over L2,4 is attained at u = 0,
i.e.,

(u, v) =
(
0,

1 + 3
√
5

11

)
.

Case III: m = 7 (the denominator is in {g8, g10}).



C A

B

L −
8,10

L
8 T1

T2

Fig. 6. Triangle T ′ in (u, v)-coordinates, the switching line L−
8,10, and the

zero line L8 : x · g8 = 0.

The switching condition |x · g8| = |x · g10| splits into

L+
8,10 : x · g8 = x · g10, L−

8,10 : x · g8 = −x · g10,

which reduce to

L+
8,10 : v = −2u, L−

8,10 : v = (2
√
5− 4)(1− u).

The switching line L+
8,10 : v = −2u intersects T ′ only at

the vertex C = (0, 0). Hence, it suffices to consider the two
subregions partitioned by

L−
8,10 : v = (2

√
5− 4)(1− u),

as illustrated in Fig. 6. We further denote by L8 the zero line
of x · g8, i.e., x · g8 = 0.

In subregion T1, the ordering satisfies

|x · g10| ≥ |x · g8|.

Moreover, since x · g10 ≥ 0 throughout T′, the m-height
function for m = 7 reduces to

f10(u, v) =
x · g1
x · g10

.

By Lemma IV.5, we have

∂uf10 < 0, ∂vf10 > 0 on T ′.

Therefore, the maximum of f10 over T1 is attained at the ver-
tex with minimal u and maximal v, namely at the intersection
of L−

8,10 and the edge BC, which is

(u, v) = (0, 2
√
5− 4).

In subregion T2, the ordering is reversed and the m-height
function is

f8(u, v) =
x · g1
−x · g8

.

Then direct differentiation yields

∂uf8 =

(
1−

√
5
5

)
v − (1 +

√
5)

D(u, v)2
< 0,

∂vf8 =

(√
5
5 − 1

)
u−

(
3
2 + 7

√
5

10

)
D(u, v)2

< 0.

Hence f8 is strictly decreasing in both variables, and its
maximum over T2 must be attained on the boundary L−

8,10.
Evaluating f8 along L−

8,10 : v = (2
√
5− 4)(1− u) gives

f8

(
u, (2

√
5− 4)(1− u)

)
=

(3−
√
5)u+

√
5

(3−
√
5)u+ (

√
5− 2)

.

Differentiating,

d

du
f8

(
u, (2

√
5−4)(1−u)

)
=

2(
√
5− 3)(

(3−
√
5)u+ (

√
5− 2)

)2 < 0,

so this restriction is strictly decreasing in u. Consequently, the
maximum of f8 on T2 is attained at the endpoint u = 0, i.e.,

(u, v) = (0, 2
√
5− 4).


