Flash Memory: A Multi-User Perspective

Pengfei Huang

University of California San Diego pehuang@eng.ucsd.edu

November 4, 2015

Outline

- System Model
 - Baseline System
 - Joint Decoding System
- 2 Channel Model
 - Small P/E cycles
 - Large P/E cycles
- Capacity Region Analysis
 - A 3-Reads Example
 - Multiple Reads

Baseline System

- Input: X_1 (upper page) and X_2 (lower page)
- Noise: z
- Received analog signal: y
- Quantization: Q_1 (one read) and Q_2 (two reads).
- Independent decoding performance: $R_1 \leq I(X_1; Y_1)$ and $R_2 \leq I(X_2; Y_2)$.

Joint Decoding System

$$\begin{array}{c|c}
 & x_1 \\
\hline
 & x_2 \\
\hline
 & x_2
\end{array}
\qquad
\begin{array}{c}
 & 11 \\
 & 10 \\
 & 00 \\
 & 01
\end{array}
\qquad
\begin{array}{c}
 & x_1 \\
 & y \\
\hline
 & y \\
\hline
 & Q \\
\hline
 & Y \\
\end{array}$$

- Input: X_1 (upper page) and X_2 (lower page)
- Noise: z
- Received analog signal: y
- Quantization: Q
- Joint decoding performance:

Joint Decoding System

$$\begin{array}{c|c}
 & x_1 \\
\hline
 & x_2 \\
\hline
 & x_2
\end{array}$$

$$\begin{array}{c|c}
 & 11 \\
10 \\
00 \\
01
\end{array}$$

$$+ z = y \longrightarrow \boxed{Q} \xrightarrow{Y}$$

- Input: X_1 (upper page) and X_2 (lower page)
- Noise: z
- Received analog signal: y
- Quantization: Q
- Joint decoding performance:
 - Treating interference as noise: $R_1 \leq I(X_1; Y)$ and $R_2 \leq I(X_2; Y)$.

Joint Decoding System

$$\begin{array}{c|c}
 & x_1 \\
\hline
 & x_2 \\
\hline
 & x_2
\end{array}$$

$$\begin{array}{c|c}
 & 11 \\
10 \\
00 \\
01
\end{array}$$

$$+ z = y \longrightarrow \boxed{Q} \xrightarrow{Y}$$

- Input: X_1 (upper page) and X_2 (lower page)
- Noise: z
- Received analog signal: y
- Quantization: Q
- Joint decoding performance:
 - Treating interference as noise: $R_1 \leq I(X_1; Y)$ and $R_2 \leq I(X_2; Y)$.
 - Capacity region of this 2-user system with given input distribution:
 - 1) $R_1 \leq I(X_1; Y|X_2)$,
 - 2) $R_2 \leq I(X_2; Y|X_1)$,
 - 3) $R_1 + R_2 \leq I(X_1, X_2; Y)$.

Outline

- System Model
 - Baseline System
 - Joint Decoding System
- 2 Channel Model
 - Small P/E cycles
 - Large P/E cycles
- 3 Capacity Region Analysis
 - A 3-Reads Example
 - Multiple Reads

Channel Model

- Four states: E(11), A(10), B(00), and C(01)
- **2** Model the noise z using Normal-Laplace distribution $NL(\mu_x, \sigma_x, \alpha_x, \beta_x)$, $x \in \{E, A, B, C\}$.

The Normal-Laplace Distribution

- An $NL(\mu, \sigma^2, \alpha, \beta)$ random variable can be expressed as $Y = \mu + \sigma W + \alpha^{-1} E_1 \beta^{-1} E_2$.
- ② PDF: $f(y) = \frac{\alpha\beta}{\alpha+\beta}\phi(\frac{y-\mu}{\sigma})[R(\alpha\sigma-(y-\mu)/\sigma)+R(\beta\sigma+(y-\mu)/\sigma)],$ where $R(x) = \frac{1-\Phi(x)}{\phi(x)}$
- **3** CDF: $F(y) = \Phi(\frac{y-\mu}{\sigma}) \phi(\frac{y-\mu}{\sigma}) \frac{\beta R(\alpha \sigma (y-\mu)/\sigma) \alpha R(\beta \sigma + (y-\mu)/\sigma)}{\alpha + \beta}$.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · か९○

The Normal-Laplace Distribution

An $NL(\mu, \sigma^2, \alpha, \beta)$ distribution with various α .

Figure:
$$\mu = 0$$
, $\sigma = 2$, $\beta = 1$

Channel model: small P/E cycles

- **1** State *E*: shifted exponential distribution, $Y_E = \mu_E + \alpha_E^{-1} E_1$.
- ② State A: Normal-Laplace distribution, $Y_A = \mu_A + \sigma_A W + \alpha_A^{-1} E_1 \beta^{-1} E_2$.
- **3** State *B*: Normal-Laplace distribution, $Y_B = \mu_B + \sigma_B W + \alpha_B^{-1} E_1 \beta^{-1} E_2$.
- **3** State C: shifted exponential distribution, $Y_C = \mu_C \beta^{-1} E_1$.
- **1** Ten parameters: μ_E , μ_A , μ_B , μ_C , α_E , α_A , α_B , σ_A , σ_B , β .

◆ロ > ◆園 > ◆豆 > ◆豆 > 豆 のQで

Channel model: large P/E cycles

For example, $E(11) \rightarrow C(01)$.

Use mixed Normal-Laplace distribution to model each state.

- **1** PDF of each state: $g_X(z) = \sum_{Y \in \{E,A,B,C\}} \lambda_{X,Y} f_Y(z)$, where $X \in \{E,A,B,C\}$

Outline

- System Model
 - Baseline System
 - Joint Decoding System
- Channel Model
 - Small P/E cycles
 - Large P/E cycles
- Capacity Region Analysis
 - A 3-Reads Example
 - Multiple Reads

A 3-Reads Example

Table: Transition matrix between different states

	11	10	00	01
11	0.99	0.01	0	0
10	0	0.98	0.02	0
00	0	0	0.99	0.01
01	0	0	0	1

Table: Different decoding schemes

Capacity region	$I(X_1, X_2; Y)$	$I(X_1; Y/X_2)$	$I(X_2; Y/X_1)$
	1.9242	0.9646	0.9596
Treating interference as noise		$I(X_1, Y)$	$I(X_2, Y)$
		0.9646	0.9596
Baseline system		$I(X_1, Y_1)$	$I(X_2, Y_2)$
		0.9595	0.9571

A 3-Reads Example

Table: Different decoding schemes

Capacity region	$I(X_1, X_2; Y)$	$I(X_1; Y/X_2)$	$I(X_2; Y/X_1)$
	1.9242	0.9646	0.9596
Treating interference as noise		$I(X_1, Y)$	$I(X_2, Y)$
		0.9646	0.9596
Baseline system		$I(X_1, Y_1)$	$I(X_2, Y_2)$
		0.9595	0.9571

Observation:

- $I(X_1; Y/X_2) = I(X_1, Y) > I(X_1, Y_1).$
- $I(X_2; Y/X_1) = I(X_2, Y) > I(X_2, Y_2).$
- Gray mapping is good.

A 3-Reads Example

Table: Another transition matrix

	11	10	00	01
11	0.98	0.01	0	0.01
10	0	0.97	0.03	0
00	0	0	0.98	0.02
01	0	0	0	1

Table: Different decoding schemes

Capacity region	$I(X_1, X_2; Y)$	$I(X_1; Y/X_2)$	$I(X_2; Y/X_1)$
	1.8754	0.9311	0.9444
Treating interference as noise		$I(X_1, Y)$	$I(X_2, Y)$
		0.9310	0.9443
Baseline system		$I(X_1, Y_1)$	$I(X_2, Y_2)$
		0.9290	0.9417

- $I(X_1; Y/X_2) > I(X_1, Y) > I(X_1, Y_1)$
- $I(X_2; Y/X_1) > I(X_2, Y) > I(X_2, Y_2)$

Multiple Reads

Continuous Channel

Parameters:

- $\mu_E = 0$, $\mu_A = 10$, $\mu_B = 20$, and $\mu_C = 30$.
- $\alpha_E = 1/2$, $\alpha_A = 1/3$, and $\alpha_B = 1/3$.
- $\sigma_A = 1.5$ and $\sigma_B = 1.5$.
- $\beta = 1$.

Multiple Reads

• 3 reads: Q[5, 15, 25].

• 9 reads: Q[5-d,5,5+d,15-d,15,15+d,25-d,25,25+d].

Table: Different decoding schemes

Capacity region	$I(X_1, X_2; Y)$	$I(X_1; Y/X_2)$	$I(X_2; Y/X_1)$
3 reads	1.5259	0.8242	0.7060
9 reads, <i>d</i> = 1	1.6079	0.8521	0.7594
9 reads, <i>d</i> = 2	1.6444	0.8661	0.7816
9 reads, d = 3	1.6410	0.8678	0.7765
9 reads, <i>d</i> = 4	1.6084	0.8609	0.7513
30 reads	1.6707	0.8771	0.7967
Treating interference as noise		$I(X_1, Y)$	$I(X_2, Y)$
3 reads		0.8199	0.7017
9 reads, $d=1$		0.8485	0.7559
9 reads, <i>d</i> = 2		0.8629	0.7784
9 reads, <i>d</i> = 3		0.8645	0.7732
9 reads, <i>d</i> = 4		0.8571	0.7475
30 reads		0.8740	0.7936
Baseline system		$I(X_1, Y_1)$	$I(X_2, Y_2)$
		0.7806	0.6869

Conclusion

- Presented a multi-user model to study fundamental limits of the flash memory.
- Calculated capacity region of the MLC flash memory.
- Compared the performance of the joint decoding scheme to the one of the baseline system.
- Extend to TLC flash memory, i.e., three-user system.

Thanks