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Abstract

The hard-square model, also known as the two-dimensional (1, c0)-RLL constraint,
consists of all binary arrays in which the 1’s are isolated both horizontally and vertically.
Based on a certain probability measure defined on those arrays, an efficient variable-
to-fixed encoder scheme is presented that maps unconstrained binary words into arrays
that satisfy the hard-square model. For sufficiently large arrays, the average rate of the
encoder approaches a value which is only 0.1% below the capacity of the constraint.
A second, fixed-rate encoder is presented whose rate for large arrays is within 1.2% of
the capacity value.

Keywords: Constrained codes; Enumerative coding; Hard-square model; Max-
entropic probability measure; Permutation codes; Variable-to-fixed encoders; Two-
dimensional runlength-limited constraints.

1 Introduction

In current digital optical and magnetic recording systems, such as disks and tapes, the data is
written along tracks, thus visualized as a one-dimensional long sequence. To ensure reliability,
the raw data typically undergoes lossless coding into a binary sequence that satisfies certain
constraints. One of the most commonly used constraints is the (one-dimensional) (d, k)-
runlength-limited (RLL) constraint, which consists of all finite binary words in which the
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runlengths of 0’s are at least d, and runlengths of 0’s between two consecutive 1’s do not
exceed k [18],[19],[25].

Recent developments in optical storage—especially in the area of holographic memory—
are attempting to increase the recording density by exploiting the fact that the recording
device is a surface. Under this new model, the recorded data is regarded as two-dimensional,
as opposed to the track-oriented one-dimensional recording paradigm. The new approach,
however, introduces new types of error patterns and constraints—those now become two-
dimensional rather than one-dimensional. See [2],[4],[12],[13],][22],[23].

The treatment of two-dimensional constraints seems to be much more difficult than the
one-dimensional case. This is, in part, due to the fact that in the general constrained
setting, there are problems that are easy to solve in the one-dimensional case, yet they
become undecidable when we shift to two dimensions [3],[24].

One important example of a two-dimensional constraint is the two-dimensional extension
of the (1, 00)-RLL constraint. This constraint, which is also referred to as the hard-square
model, has been treated in quite a few papers in the past several years; see, for example, [6],
[10], [11], [20], [29]. This constraint will also be the focus of this work. We define next the
hard-square model, borrowing terms from [5].

Let U be a finite subset of the integer plane Z* and let ¥ be a finite set, referred to as an
alphabet. A U-configuration is a mapping = : U — X. The value of z at location (i,7) € U
will be denoted by z; ;.

We say that a U-configuration = satisfies the hard-square model if ¥ = {0,1} and for
every two distinct locations (i, 5), (¢, 5') € U,

i—d|+j—Jj]1<1 = (2i;=0 or zyy=0).

Equivalently, if we write down the values of the U-configuration in the integer plane, then
the 1’s are isolated both horizontally and vertically (either by 0’s or by unassigned locations).
The set of all U-configurations that satisfy the hard-square model will be denoted by S(U).

The subsets U C Z* considered in this work will be either rectangles
Bpn={(,j)€Z” : 0<i<m, 0<j<n} (1)
or parallelograms
Apn=1{0G,7)€Z® : 0<i<m, 0<i+j<n} (2)

(see Figure 1). We will be mainly concentrating on the hard-square model, as the known
literature, as well as the results obtained herein, are elaborate enough already for this special
case.

The capacity, or the topological entropy, of the hard-square model is given by
log, |S(By.n . logy |S(A .
cap(S) — hm Og2 | ( 5 )| _ hm Og2 | ( s )| )
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Figure 1: Parallelogram A, ,.

The limits indeed exist and are equal [5],[16]. The value of cap(S) is known to be approxi-
mately 0.5878911162; see [6], [10], [11], [29].

Much less is known about efficient (i.e., polynomial-time, or low-complexity) high-rate
coding schemes for this constraint. In [26], the idea of two-dimensional bit-stuffing was
introduced, resulting in a variable-to-fixed encoder whose expected rate was bounded from
below in [26] by approximately 0.5515. Note that in a variable-to-fixed scheme, the set of
pre-images, denoted D), consists of binary words that are not necessarily of the same length;
still every sufficiently long binary unconstrained word has exactly one element in D as a
prefix (namely, the set D is prefix-free and complete). For the purpose of computing the
rate, we define a probability measure on D, where a pre-image w of length ¢ = ¢(w) has
probability 27¢. Indeed, by the properties of D it follows that Y,cp 274" = 1 (the Kraft
equality). The expected rate of such a coding scheme is given by

1
Rypn=—"Y 27 ¢(w) |
n=_ (w)

weD

A very simple coding scheme into S(A, ) at a fized rate 1 : 2 is implied by Lemma 1(e)
in [14]: entries (4, j) € A, such that i+ j is even are filled with the input bit stream, while
the remaining entries are set to zero. We do not know of any other published efficient fixed-
rate encoders at (significantly) higher rates for the two-dimensional (1, 00)-RLL constraint.

The main goal of this work is designing efficient coding schemes for mapping, in a one-to-
one manner, unconstrained binary words into elements of S(B,,,) or S(A,,,). Based on the
idea of two-dimensional bit-stuffing introduced in [26], we present in Section 3 a variable-
to-fixed encoder into S(A,,,). Our coding scheme attains a rate which is approximately
0.587277, namely, only 0.1% below the value of cap(S).

Our variable-to-fixed rate encoder effectively realizes a certain probability measure ji,,
on S(A,,). This measure is defined in Section 2 and its properties are proved in Section 4.
In particular, we show that the marginal probability induced by p,, , at every given row—
and respectively at every given diagonal—of a random A, ,-configuration in S(A,,,) is a
first-order Markov process.



With a slight compromise on the coding rate, we can also obtain an efficient fixed-rate
encoder into S(By,,). Such an encoder is presented in Section 5 with a rate that approaches
0.581074 for large values of m or n; this rate is within 1.2% of the value of cap(S).

2 Probability measure on parallelograms

Let Ap,n C Z? be the parallelogram defined by (2) and shown in Figure 1. Row i in JANS,
consists of all locations (7, j) such that —i < j < n—i. Diagonal d consists of all locations
(i,d—i) such that 0 < i < m. Row 0 will be denoted by A" and will be referred to as the
horizontal boundary of A, ,. Similarly, Diagonal 0, denoted A " will be referred to as the
diagonal boundary of A,,,. Those boundaries are depicted as thick lines in Figure 1. The
set Ay \ (AW UAW) (ie., the parallelogram excluding its boundaries) will be denoted by
Ay

A random A,, ,,-configuration taking values from S(A,,,,) (according to some probability
measure) will be denoted by X, and its value at location (¢, j) will be denoted by X; ;.

Let 7y, be a probability measure defined on S(A,,,); that is, m, ,(r) = Prob{X = z}
for every x € S(A,,n). The (measure-theoretic) entropy of m,, ., is defined by

1
H(Tpn) = —— Z T (%) 108y T () .
’ mmn 2€S(Am,n) , ,

The value H(my,,) is the largest possible expected rate of any encoder that maps, in a
one-to-one manner, a set D of input binary words into S(A, ), with a probability measure
defined on D that induces the measure 7, , on S(A,,,). This clearly implies the inequality

log, |S(Am n) |
H m,n S —_— .
() < 2220 )

Now, suppose that 7 = {7}, 1S @ (two-dimensional) sequence of probability mea-
sures, where each individual measure 7,,,, is defined on S(A,,,). For a A, ,-configuration
x € S(Apn), let AW () be the set of all A, ,-configurations in S(A,,;1,) obtained from
x by appending an (m+1)st row. Similarly, let A (z) be the set of all A,,, ,,,;-configurations
in S(A,,+1) obtained from x by appending an (n+1)st diagonal. We say that the sequence
T = { T pmn 1S nested if for every m,n > 1 and x € S(A,,.),

7rm,n(x) = Z 7Tm+1,n(z) = Z 7Tm,n+1(z) .
2z€AM)(z) 2€AD)(z)

In other words, for every m < m' and n < n’, the measure 7, ,, is the marginal distribution
on S(A,,,,) which is induced by the measure 7, v : S(Ayy ) — [0, 1]. The nesting property
allows us to regard 7 as a measure which is an infinite extension of the individual measures
Tmmn- The entropy of 7 is defined by

H(mw)= lim H(mpy,)

m,n—00
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(by subadditivity the limit exists), and from (3) we have H(m) < cap(S) [5]. An (infinite
extension) measure 7 for which H(mw) = cap(S) is called a mazentropic measure. Such a
measure indeed exists [5].

Our coding scheme effectively defines nested measures (i, : S(A,,) — [0, 1] for every
m,n > 1. As we show, the sequence pt = {fimn}mn satisfies
H(p) = m,lrlzr—I}ooH(um’n) ~ 0.587277 .
Since the limit is very close to the known bounds on cap(S), we can say that p is ‘almost

maxentropic.” The expected rate of our coding scheme approaches, through the values of
H (i), the value H(p).
For every x € S(A,), the value ju, ,(z) = Prob{X = z} takes the following form:
(h)

Mm,n(x) = Mo(l"o,o) s («730,17 Z0,2 .-+ Ton—1 |$0,0) (4)
(d)

o (5U1,71, T2,-25+yTm—1,—(m—1) | xo,o)

m—1 n—1—1

IT II 9,

i=1 j=—it1

$i,j—1,$i—1,ja$i—1,j+1) .

The components fig, u{, and p{d) define the measure on location (0,0) and on the horizontal
and diagonal boundaries, respectively, and will be specified in more detail below. The
function ¥ : {0,1}* — [0, 1] is defined through two parameters, ¢, € [0,1) and ¢; € (0, 1], as
follows: _

TR i )

T 1 otherwise ’

and J(1|w,y,v) =1 —9(0|u,y,v). The distribution ¢ on X;; can be described verbally
as follows. As dictated by the hard-square model, the value of X, ; is forced to be 0 unless
Xij—1 = Xi_1; = 0. When the latter condition is met, then X;; will be a Bernoulli random
bit whose distribution depends on the value of X;_; ;1 ;; if that value is 0, then X ; takes the
value 0 with probability go; otherwise, X; ; takes the value 0 with probability ¢;. Figure 2
shows the values that determine the distribution of Xj ;; the location (4, j) is marked by a
box.

The measures on the boundaries, defined by p" and u{? are set so that the non-
boundary values have a stationary distribution in the sense stated in Proposition 2.1 below.
Specifically, (" will take the form of a first-order Markov process

n

n—1
u%h)(wh Wz, ..., Wp-1 | wo) = H M(h) (wj | wj—l) ) (6)
Jj=1

where ™ : {0,1}2 — [0, 1] is given by

(h) _ « lf u = 0
u (0] u) { 1 otherwise (7)
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Figure 2: Location of the arguments of the function 9(- | u, y, v).

for some o € [0,1], and p™ (1 |u) =1 — M (0] u).

The values of 1 : {0,1} — [0,1] will be set to the stationary probabilities of the first-
order Markov process p™ as follows: 19(0) = o and po(1) = 1 — o, where

(8)

As for the diagonal boundary, u{9 will be a first-order Markov process of the form

m—1
wD (wi, wa, .. Wt |wo) = [T 1@ (w; | wisy) (9)
i—1
where ;4 : {0,1}2 — [0, 1] is given by
pD0v) =By, (10)
with o 7
- = and SR ¢ S— 11
b a+q —oaq ! A a+q —oaq (1)

and pD(1]|v) = 1 — p@(0|v) (since ¢; > 0, the denominators in (11) are guaranteed to
be positive). The values in (11) are consistent with the stationary distribution along the
horizontal boundary: as we show in Section 4.1, (11) implies that Prob{X; _; = 0} = ¢ and,
furthermore, Prob{X;_;,_;, = X, _; =0} = Prob{X,; = X;, 1 =0} = fyo forall1 <i<m
and 1 <7 <n.

The nesting property of the measures i, , is easily verified. Next we state other
properties of those measures that will be proved in Section 4. Hereafter, the notation
X €., S(Ap,n) will mean that the random A, ,-configuration X is taken from the sample
space S(A,,,) according to the distribution i, .

We say that row 7 in X €, . S(Ap,) forms a first-order Markov process identical to
the horizontal boundary if for every 1—¢ < j < n—i and every nonempty word ¢ = ¢i¢y ... ¢

6



of length ¢ < i+,

o ife; =0
PI’Ob{XZ',j =0 | Xi,jlei,j72 c. Xi,jfl = C} = { 1 if ¢ = 1
provided that the event we condition on has positive probability.

The main result in Section 4.1 is the following.

Proposition 2.1 Form,n > 2, ¢y € [0,1), and ¢, € (0,1], let fimn be a measure defined
on S(Amn) by (4)-(11). Then the entries in each row in X €, . S(An) form a first-order
Markov process identical to the horizontal boundary if and only if

—q + /¢ + 40 (1 — qo)

a=alq,q) = (12)

As we show in Section 4.2, there exists a counterpart of Proposition 2.1 also for the
diagonals in X €, . S(Ann).

Remark. The definition of /i, , through a ‘local’ conditional measure J(- | u, y, v) on Ay
as given by (5) somewhat resembles the Pickard random fields defined in [21], except that
columns therein are replaced here by diagonals. Note, however, that Pickard fields assume
that the measure is invariant under all the symmetries of the square, whereas we require
less: the distribution along rows may (and will) differ from the distribution along diagonals.
Thus, the result in Proposition 2.1 is different than the first-order Markov property of Pickard
fields. (]

We now turn to the measure-theoretic entropy of fi,,,. Define the real-valued function
h:[0,1] — [0,1] by
h(t) = —tlogyt — (1—t) logy(1—t) ,

where h(0) = h(1) = 0.
We show in Section 4.1 the following lower and upper bounds on H (g »)-

Proposition 2.2 Form,n > 2, ¢y € [0,1), and ¢, € (0,1], let fimn be a measure defined
on S(An.n) by (4)-(11) and (12). Then

=)0 (o hlg) + (1 - a) - hg)) < "L

0< H(Nm,n) -
mn mn

By Proposition 2.2 we have

H(p) = lim H(pmp) = Boo - (- h(q) + (1 —a) - h(q)),

m,n— 00



which, with (8) and (11) yields

a-(a-hlg)+ (1 —a)- hia))
2—a)la+q —aq)

where a = a(qo, ¢1) is given by (12). The numerator and denominator can be made linear

in a by observing that (12) implies that o? = (1 — a)q; /(1 — qo). This yields

(1 = )gih(qo) + (a(1 — go + q1) — q1)h(q1)

2—-2q1 — ¢ —2q0 + 3q0q1) + @1 (1 + @1 — 2q0)

To obtain the largest rate, we maximize H (u(qo, ¢1)) with respect to ¢p and ¢;. The maximum
is attained for gy ~ .671833 and ¢; ~ 0.566932, and the maximum value is H (u(qo,q1)) =~
0.587277.

H(p) = H(p(qo, 1)) =

H(p(qo, q1)) = ol (13)

Our analysis depends strongly on the particular structure of the measure ji,,,—in par-
ticular, on conditioning the probability of the event X; ; = 0 only on the values of the three
entries X;_; ;, X;_1 41, and X, ; 1, as shown in Figure 2. We note that such conditioning
is causal in that we can select—according to the measure /i, ,—an element of S(A,,,) by
determining the values of its entries consecutively row-by-row or diagonal-by-diagonal: in
such a process, the distribution of values of the next entry to be determined is well-defined
as this distribution depends on values that have already been set. Such a feature enables
using the measure f,,, for encoding, as we show in Section 3.

Clearly, we may maintain causality and still approach capacity by conditioning the value
of X;; on more entries in the ‘past.” However, it appears that the analysis thus becomes
much more complex. For example, when X ; is conditioned also on X;_; j,», we no longer
have even a second-order Markov process along rows.

3 Variable-rate encoding scheme

We describe how the estimate on H(fiy,,), given in Proposition 2.2, can be approached by
a variable-to-fixed rate coding scheme. The objective is to realize the probability measure
P O S(A,, ) in the output of the encoder.

The encoder consists of the following components:

1. A distribution transformer & that maps, in a one-to-one manner, sequences of fair coin
flips (i.e., independent Bernoulli random bits, each equaling 0 with probability 1/2),
into sequences of independent Bernoulli random bits such that each bit equals 0 with
probability ¢y. There are known methods [8, Section 5.12] to implement variable-to-
fixed rate transformers &, such that, for € — 0 as the code length goes to infinity, the
following holds:

(a) the expected rate (i.e., expected number of input bits per each output bit) of &
is at least h(qo)(1 — €);



(b) all the words of the original Bernoulli source, except for a fraction whose prob-
ability is less than €, are generated by & with probability that differs from the
original probability by a factor within 1 4+ ¢. Namely, the typical words of the
original source are generated by & with virtually the same probability.

2. A distribution transformer &, similar to &y, except that the output is 0 with probability
¢1. The rate of £ can get arbitrarily close to h(qy).

3. Probabilistic boundary generator &, to be explained below.

4. Constrained coder &3, to be explained below.

The raw input bits are fed into the transformers £ and &, each input bit entering exactly
one of the transformers. The coder £ then queries the outputs of & and £; throughout the
encoding process. The order of queries determines which transformer is fed by any given
input bit.

The encoding procedure starts by generating the entry Xy, at the origin, the entries
Xo,;, 1 < j < n, along the horizontal boundary, and the entries X; _;, 1 < i < m, along
the diagonal boundary. Those entries are generated by £ probabilistically, using (internal)
sources of Bernoulli random trials (i.e., internal coin flips), with probabilities of success «,
o, Bo, and (3, as given by (12), (8), and (11). Note that these coin flips can be driven by
external sources (as is done in & and &;), thus contributing to the rate; however, since the
boundaries occupy only m+4n—1 bits out of the mn bits of A, ,, such a rate contribution
becomes marginal when m and n are large.

The main coding task is performed by &£;, which is fed by the outputs of & and &;. At
each encoding step, €3 generates a value X ; in a new location (7, j) in A}, . The value of
X, ; depends on the values X;_ j, X;_1 41, and Xy (which are assumed to have already
been generated), and also on at most one output bit of & or £;. To this end, there are two
natural orders in which the values X; ; can be computed: they can be generated row by row,
or diagonal by diagonal. The encoding of each value Xj ; is done as follows.

if Xz'fl,j = Xiyjfl - 0 {
if Xi—l,j—l—l = 0
X;; is the output bit of &py;
else /* X; 111 =1 */
X, is the output bit of &;; }
else /* Xz'fl,j =1 or Xiyjfl =1 %/
Xi,j = 0

As we show in Corollary 4.3 in Section 4.1, when i, , satisfies (4)—(11) and (12) we have
Prob{X;;, = X;_1 41 = 0} = Byo for all (i,j) € A\ AM . Hence, the expected number of
locations (i,j) € Ay, for which Xj; = X; ;4 =0, is N = (m—1)(n—1)fyo. This is the
expected number of times that & or & are queried by £3. The expected number of times
that & (respectively, &) is queried is aN (respectively, (1 — «)N). Therefore, the expected



rate of the overall coding scheme is

(o hlgo) + (1 = @) - Pfgr)) - (1 = €mm) - N

Rm,n mn
— % - Boo - (a . h(qo) + (1 — Oé) : h(‘]l))(l - em,n)
_ % (1= emn) - H(p)

where lim,,, ;, s €m,, = 0. Namely, for b € {0,1}, we bound from below the rates of &, by
h(gs)(1 — €y.n); the factor 1 — €,,,, also incorporates the ratio between the probability with
which a typical word is generated by &,, compared to the probability with which such a word
is generated by an ideal Bernoulli source (defined by gj).

Simulations suggest that the rate R,,, is attained regardless of the boundary values set
by &;; yet we have not proved this. On the other hand, there is clearly a fixed assignment
for the boundaries that yields expected rate at least R,,,. If we knew such an assignment,
we could hard-wire it into the decoder, in which case it would be sufficient to transmit only
the (m—1)(n—1) non-boundary values of X, making &, redundant.

Decoding is carried out as follows: Bits are read from the received A,, ,-configuration in
the order they were generated by the encoder, disregarding each 0 that immediately follows
a 1 horizontally or vertically. The remaining bits are then divided into two bit streams
according to the transformer &, that generated each individual bit. The bit streams are then
fed into the decoders (i.e., inverse mappings) of the respective transformers.

Our coding scheme can be simplified by combining the distribution transformers &, and
&1, in which case our encoder becomes the bit-stuffing encoder in [26] (except that the
analysis here takes into account that stuffed 0’s overlap, thereby improving on the lower
bound of [26] on the expected rate). In such a case, we maximize H (u(qo,¢1)) in (13) under
the restriction ¢y = ¢;. The maximum is attained for ¢y = ¢; &~ .644400, and the maximum
value is H (p(qo, qo)) =~ 0.583056, which is within 1% of the capacity cap(S). We mention
that this latter rate can be attained also by tuning the parameters in the method presented
recently and independently in [15].

4 First-order Markov properties of u

4.1 Horizontal first-order Markov process

In this section, we provide proofs for Proposition 2.1 and Proposition 2.2.

We start by verifying that the value of ¢ in (8) is the stationary probability of the
first-order Markov process along the horizontal and diagonal boundaries. It is easy to see
that

o=pM0]0)0+pM0|1)(1-0)=ac+1—0,

10



thus implying that o is indeed the stationary probability of Prob{X,; = 0} along the hori-
zontal boundary. Similarly, by the choice of 3y and ; in (11) we also have

o=@ 0[0)0 +u V0 1)(1 —0) = foo + (1 —0),
making o also the stationary probability of Prob{X; _; = 0} along the diagonal boundary.

Denote by ®, the set of all binary words of length < ¢, and by ®; the set of all nonempty
binary words of length < /.

For (i,7) € Apn and w = wyws ... wy € @441, denote by A; ;(w) the event
Ai:j (w) = {Xi,in,j—lXi,j—Q “e Xi,j—f-i—l = w} .
Also, for (i,7) € Apn \ A® and v € {0,1}, define the event
AEUJ)(U’) = A j(w) N {Xi1 41 = v}

(see Figure 3). We also define the vectors

e o o o o o
e o o o o o
e o o o o
Wy - -+ Wl @

|
—

m

Figure 3: Event A,(j’j’ (w).

B Prob{Az(-?j) (w)}
Aiy(w) = ( Prob{A;}) (w)} ) |

Note that by the way we set the diagonal boundary we have

i Prob{Xiy,Z- = O,XZ', 11— = 0} o ﬂ o
Ai-i(0) = ( Prob{X; ; = o,X,-,ij,,- =1} ) - ( 51(10— o) )
— 1 . 1 . a
C 2—a atq —oaq ((1—@)(]1) (14)
and
A (1) = Prob{X; i=1,X; 1, =0} \ _ (1—fo)o
Z’il( ) o PI’Ob{XZ",i = 17Xi71,17i = 1} o (1 — ﬁl)(l — 0')
-« . 1 . 1
 2—a a+q —aq (a(l—(h)> ' (15)

11



Given qg, q1,« € [0, 1], we define the following 2 X 2 matrices:

P°’°:<(1gq;)q1 (1)> POJ:(&@ (1)> PLO:((J(O{)@(JE)%) 8)

and P;; = 0. The notations I and 1 will stand for the 2 x 2 identity matrix and the row
vector (1 1), respectively.

Recall that we say that row i in X €, . S(A,,,) forms a first-order Markov process
identical to the horizontal boundary if for every 1—: < j7 < n—i and every word ¢ =
C1Cy...Cp € <I>;?‘+j,

(0% if01:0

1 ife =1 " (16)

Prob{Xi,j =0 | Xi,j—lXi,j—Z PN Xi’j_g = C} = {
provided that the event we condition on has positive probability. The following lemma is
easily verified.

Lemma 4.1 For m,n > 2, qo € [0,1), and ¢ € (0,1], let piy,, be a measure defined
on S(Amn) by (4)-(11). Suppose that for some i in the range 1 < i < m, row i—1 in
X € S(Apn) forms a first-order Markov process identical to the horizontal boundary.
Then

A, j(bc) =P, A j1(c) for all 1—i < j <n—i and c € 9], .

Proof of Proposition 2.1. We start with the “if” part and prove by induction on 7 > 1
that row ¢ forms a first-order Markov process identical to the horizontal boundary. We do
this by showing that (16) holds for every 1—i < j < n—i and every word ¢ of length ezactly
i+7 (which clearly implies that it holds for all shorter words).

First note that the sample space S(A,, ;) of X forces (16) to hold whenever the first bit
inecisc =1.

We now consider words ¢ with ¢; = 0. Our induction proof for row ¢ assumes that row
1—1 forms a first-order Markov process identical to the horizontal boundary. Clearly, this
trivially holds for the induction base i = 1. Write ¢ = 0w where w € {0,1}**7~  in which
case (16) becomes

Prob{A; ;(00w)} = a - Prob{4; ;_1(0w)} .

This, in turn, is equivalent to
lAZ,](OO’LU) = Q- lAi,j,l(Ow) . (17)
By Lemma 4.1 and the induction hypothesis we have

Aw(()Ow) = ngoAiyjfl(O’LU) .

12



Hence, (17) can be rewritten as
1(P0’0 - O[[)Ai,j_l(OUJ) =0.

It follows that in order to show (16), it suffices to prove that for 1—i < j < n—i and
w € {0,1}*771 the vector A;;_1(0w) is either the zero vector or a (right) eigenvector of
Py associated with the eigenvalue a.

Now, it is easy to see that (12) implies that « is a nonnegative eigenvalue of P, p; indeed,
« is the nonnegative root of the quadratic equation

@*(1—qo) +aq —q =0 (18)

obtained from the equality

B . agyp — « 1 B
det(P0,0 Of]) = det ( (1 . Of)ql o ) =0.

We now distinguish between two cases for the value of the word w. Hereafter 0, stands
for the all-zero word of length ¢.

Case 1: w = 0;1;_1. By (14) it follows that A; ,;(0) is an eigenvector of P associated
with the eigenvalue a. Hence, by Lemma 4.1 and the induction hypothesis we have

Aij 1(0iyg) = Pog’ " Ai (0) = o1 A; 4(0), 1—i < < n—i;
namely, A;;_1(0;1;) is also an eigenvector of P associated with the eigenvalue .

Case 2: w # 0;4;—1. Write w = 0,_;1w. If s < i+j—1 then w starts with a 0, or else we
are in the trivial case in which the event we are conditioning on in (16) has zero probability
(i.e., A;;_s_1(1w) is zero). By Lemma 4.1 and the induction hypothesis we obtain

Aijos1 (1) = PioAyjgo(w) = AY - ( (1 g(olé)zlqi)ql) ) =7 ( a(lqi @) ) (19)

for some real ~y, where A©) ig the first coordinate of A, j_so(w) and where the last equality
in (19) follows from (18). In fact, (19) also applies to s = i+j—1, in which case w is the
empty word and A, ;_,_1(lw) = A; _;(1), which, in turn, is given by (15).

Combining (19) with Lemma 4.1 we obtain

Apjs(01w) = Py Ajjsr (lw) =7 ( g (1) ) < oz(lqi @) > - ( (1 —aa)ql ) '

That is, A;;_s(01lw), if nonzero, is an eigenvector of Py associated with the eigenvalue a.
Now, by Lemma 4.1 we have

A; ;1 (0w) = Pyt Ay j—(0lw) = o' A, j_(01) .

13



We thus conclude that A; ;_;(0w), if nonzero, is an eigenvector of P, associated with the
eigenvalue o for every 1—i < j < n—i and w € {0,1}**/~L. This establishes the induction
step.

We now turn to the “only if” part. We show that the equality
Prob{XLO =1 | Xl,fl = 0} =1—-« (20)
implies that « satisfies (18). Indeed,

Prob{X; 1 X = 01}
= Prob{ XX, 1 X1, =001}
= Prob{ XX, X1 _1X1, = 0001} + Prob{ X 0 Xo1X1,_1 X1 0 = 0101}
= foo((1—go)a+ (1 —-q)(1l-a).

Combining this with (20), we obtain
o(1 = a) = foo((1 = go)o+ (1 —q)(l -a)),
which, with (8) and (11), yields (18). L

Corollary 4.2 For m,n > 2, ¢ € [0,1), and ¢1 € (0,1], let pin be a measure defined
on S(Amn) by (4)-(11) and (12). Then for every (i,j) € A}, ,, and w € ®,;_;, the vector

m,n

A, j_1(0w), if nonzero, is an eigenvector of Py associated with the eigenvalue a.

Proof. By (16) we have
14, ;(00w) = a- 1A, ;1 (0w)
for every (i,7) € Ay, ,, and w € ®;;;_1; so, by Lemma 4.1,
1(Pop —al)A;j—1(0w) =0. (21)

Now, the matrix Fyo — ol is singular since « is an eigenvalue of Fyy. On the other hand,
¢o < 1 implies that a # 1; so, the vector 1(Pp—al) is nonzero. Hence, that vector spans the
rows of P o — ad, thus implying by (21) that A; ;_;(0w) is an eigenvector of Py associated
with the eigenvalue a. []

Corollary 4.3 For m,n > 2, ¢ € [0,1), and ¢1 € (0,1], let pin be a measure defined
on S(Apn) by (4)-(11) and (12). If X €, S(Ap) then
Prob{Xi,j = Xi—l,j—l—l = 0} = 500'

for every (i, ) € Apn \ AW,
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Proof. Recall that for a A, ,-configuration = € S(A,,,), we denote by A (z) the set
of all A, ,+1-configurations in S(A, ,+1) obtained from = by appending another diagonal.
By the nesting property of p,, we have

Hm,n (IL‘) = Z ,U/m,n—l—l(z)
zeAd)(z)

for every x € S(A, ). Hence, it suffices to show that when Z €, . S(A.,,41), then
Prob{Ziyj = 4di1,j+1 = 0} = 500'
for every (i,j) € Ay \ Al or—equivalently—for every (i, j+1) € A% ;.

By Proposition 2.1 and Corollary 4.2, when applied to Z €, .., S(Apnq1), it follows
that for every (i,j+1) € A}, ., the vectors A;;(0) are eigenvectors of Py associated with
the eigenvalue «; namely,

o o Prob{Zi,j = 0, Zifl,j+1 = 0} o (0%
AZ’](O) o ( PrOb{ZZ‘,j = 0, Zifl,j+1 = 1} = Yi,j (1 — CY)Q1 (22)
for some constants 7; ;. On the other hand, we also have

lAlJ(O) = Prob{Zi,j = 0} =0 .

Combining the latter equation with (22) we thus obtain

A;;(0) = M' ( (1 —aa)fh ) B ( 51(?5 o) )

for every (i,j+1) € A}, ., (compare with (14)). m
Proof of Proposition 2.2. By (4) and Corollary 4.3 we have

mnH (pmn) = hlo)+ (ﬂ—l) co-h(a)+ (m=1)-(o-h(B) + (1 —0) - h(H1))

+ Z Z Prob{Xi’j,l = Xiflyj = 0}

T PrOb{Xi_17j+1 =0 | Xi,j—l = Xi—l,j = 0} . h(qO)
+ Prob{Xi_l,jH =1 | Xi,j—l = Xi—l,j = 0} ’ h(ql))
= h(o)+ (n—1)-0-h(a)+ (m—1) (o -h(B) + (1 —0) - h(H1))
+ (m=1)(n=1) - foo - (a - h(go) + (1 = @) - hlq1)) -

Therefore,
0 < Hipim) — 220D 0 (0 hg) + (1 - 0) - hlay)) < 22
= Hmn i 00 * (& qo « qi)) > .
as claimed. O

15



4.2 Diagonal first-order Markov process

In this section, we present a counterpart of Proposition 2.1 for the diagonals of X €, ,
S(A,.). We state the respective claims and point out the difference in proofs compared to
those in Section 4.1.

For (i,d—i) € A,,,, and w = wywy ... w; € P;, denote by By;(w) the event
Bd,i(w) = {Xz',dfin'f1,d7(i71)Xi72,d7(i72) .- -Xz'fl+1,d7(z'fl+1) = w} .
Also, for (i,d—i) € App \ A and u € {0, 1}, define the event
B (w) = Buy(w) N { X1 = u}

(see Figure 4). We also define the vectors

oo..wgo

° ow2.
UWie e

|
—

m

Figure 4: Event B((fz-) (w).

)

Prob B(OZ-) w
Bustuy - [ PR @)} )
(w)}
The counterparts of (14) and (15) take the form
By (0) = Prob{Xys=0,X041 =0} \ _ oo _ a
GOV Prob{Xpy=0,X041=1} ) \1-0 ) 2-a \1-a
and

Buyo(1) = Prob{Xo4=1,X001=0} \ ([ (1-a)c ) 1-« (1
4.0 - Prob{XO’d = ]-7X0,d—1 = ]_} - - 2 _ o )

and the counterparts of the matrices P, . are

_ | Pog s _ Pogi 0
aw = (P17 ) e = (M 0)
T ) R R O
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where 3y and 3; are given by (11).

We say that diagonal d in X €, . S(An,,) forms a first-order Markov process identical
to the diagonal boundary if for every 1 < i < m and every word ¢ = cics...c € P,

Prob{X;s_i =0 | Xi_1a—-1)Xi—2,d—(i—2) - - - Xi—t,a—(i—t) = €} = B, (23)

provided that the event we condition on has positive probability.

Lemma 4.4 For m,n > 2, qo € [0,1), and ¢ € (0,1], let piy,, be a measure defined
on S(Ann) by (4)-(11). Suppose that for some d in the range 1 < d < n, diagonal d—1
in X €, S(Ap,y) forms a first-order Markov process identical to the diagonal boundary.
Then

Bi(be) = Qe Bai1(c) forall 1 <i<m and c € P} .

Proposition 4.5 Form,n > 2, ¢y € [0,1), and ¢, € (0,1], let fimn be a measure defined
on S(Apn) by (4)-(11). Then the entries in each diagonal X €, S(An,) form a first-
order Markov process identical to the diagonal boundary if and only (12) holds.

Proof. The proof follows along the lines of the proof of Proposition 2.1, with a notable
difference in the treatment of the case ¢; = 1 in (23). Specifically, in the “if” part, we also
need to show that

Prob{B,;(01w)} = 1 - Prob{By,;_1(1w)} for all (i,d—i) € A}, ,, and w € ®;_; . (24)

The proof is carried out by induction on d, and the induction step assumes that (23)
holds for diagonal d—1. Defining 7 = Prob{Bfi?i)_l(lw)}, we have

By, (1w) = ( S ) .

By the induction hypothesis and Lemma 4.4 we obtain

del(()lw) = ngle,i,l(lw) =T- ( 1/83(];0 > .

Now, by (11) we have
p1=bBoqi +1—fo -

Hence,
1B,;(0lw) = 1Qo1Bg;—1(1w) = (foqs + 1 — Bo)7 = 7 = 1 - 1By (1w) ,
thus implying (24).

The case ¢; = 0 in (23) is treated by showing through the induction on d that for every
(i,d—i) € Ay, and w € {0,1}'7, the vector Bg; 1(0w), if nonzero, is an eigenvector of

(o0 associated with the eigenvalue () given in (11). ]
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5 Fixed-rate encoding scheme

Let B,,, be the rectangle defined by (1). A B,,,-configuration = (x;;) € S(By,,) is
called circular if for every 0 < i < m, the entries z;y and x;,_; are not both 1. The set of
all B, ,-configurations in S(B,,,,) that are circular will be denoted by S°(B,,,). Note also
that if x € §°(B, ) and if we define the A,, ,-configuration y = (y; ;) by

) Ty if 7>0 o R
yl’] a { xi,n+]‘ Otherwise ) (27]) - mn

then y € S(An).

In this section, we present a fixed-rate coding scheme into S°(B,,,) with a rate that
approaches 0.581074 for large values of n (or m). Our scheme borrows ideas from permutation
codes [27], [30] combined with enumerative coding [9]. Even though the circular property
is not necessary for the coding, it will make the analysis simpler. The B,, ,-configurations
generated by the encoder will have the additional property that all rows in them have the
same (Hamming) weight on for a value ¢ € [0, 1] that will be determined in the sequel.

Let = be in 8°(B,,,) and assume that for some ¢ in the range 1 < i < m, row i—1 in
has weight ¢. Let ji, ja,...,j: be the indexes j for which z;_;; = 1. Clearly, we must have
x; . = 0 for every 1 < k <t. Define the words

(k) _
Ti' = Tig+1Tijp+2 - - - Tigpg—1 1<k<t R

and
(t)

T, = Tij+1---Tin—1Li0---Lig—1 -
The word xl(k) is called the kth phrase of row ¢ in . Note that row ¢ in = is obtained by
shifting the word
0zM 02?0 ... 02"

cyclically j; entries to the right. The length of xgk) is called the kth phrase length in row i
of . Denoting that length by ¢, the list (¢1,0s,...,¢;) is called the phrase profile of row i
in x. Clearly, {; = jri1 — Jr — 1, where j; 1 is defined to be n+ j;. Hence, the phrase profile
of row i is completely determined by row i—1. Note also that 3t _, ¢, = n—t. We mention
that a (somewhat different) definition of phrases is used also in one-dimensional permutation
codes [27], [30].

For a positive integer ¢, let Sy = S(By,) denote the set of all words of length ¢ that
satisfy the one-dimensional (1, 00)-RLL constraint. Similarly, we define S§ = S§°(B;,). Also,
denote by Sy, (respectively, S7,) the set of words in S; (respectively, S7,) of weight r. It is
easy to see that a By, ,-configuration © € S(By,,) is in 8°(By,,,) if and only if every row in
xisin S;.

18



Lemma 5.1 For every two positive integers a and b such that a + b > 3, there is a

mapping
Gap - Sy X Soqp2 — S X S

that is one-to-one and weight-preserving.

Proof. Since a +b > 3 and a and b play symmetrical roles, we can assume that a > 2.
For 129 € S and 4192 . .. Yayb—2 € Saqp—2, We define ¢a,b($1$2,y1yz . --ya+b—2) = (waw,)a
where w and w' are determined as follows: if x5 = 0 or y; = 0, then we set

W= T ToY1Y2 .. . Yoo and W' = yo_1Ys. .. Yaro—2 ; (25)

otherwise (if zy25 =01 and y; = 1),

W = Ypp1Ypt2 - - - Yarb2T1T2  and  w' =yys...yp . (26)

It is easy to see that the mapping ¢,y is into S, x S, and is weight-preserving. To
show that it is one-to-one, we need to verify that we can distinguish pairs (w, w') generated
by (25) from those that are generated by (26). Indeed, only in the latter, the last entry of
w and the first entry of w’ are both equal to 1. (]

Let  and y be two words in §,,. We say that x is consistent with y if x and y form the
rows of an array in S(Bs,,). In other words,  and y do not have 1’s in the same position.

Define
t—1

K= (-

> : |Sn73t+2,tfs| . (27)

Lemma 5.2 For every word x € Sy, there are at least K(n,t) words y € Sy, that are
consistent with x.

Proof. The proof is based on the observation that the number of possible assignments
for y depends only on the phrase profile of y, and only through the multiplicity (but not the
order) with which each phrase length appears in that phrase profile. This phrase profile, in
turn, is completely determined by z.

Assume first that z induces on y the phrase profile (¢, /s, ..., ¢;), where {1 =/ly = ... =
¢, 1 =2 (and, so, ¢; = n—3t+2). We refer to this profile as the worst profile for length n and
weight ¢. Each of the phrases of length 2 in y can take a value from {00, 01, 10}. It follows
that for 0 < s < ¢, there are 2° (tgl) ways to assign values to the phrases of length 2 in y so
that their overall weight is s. If the overall weight of y is £, then the remaining phrase, of
length n—3t+2, in y must have weight t—s. This proves the lemma assuming that x induces
the worst profile on y.

It remains to establish that the worst profile is indeed the worst, in the sense that it leads
to the smallest possible number of assignments for y. We show this by descending induction
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on the number of phrases in y whose lengths equal 2. Clearly, if at least ¢—1 phrase lengths
equal 2, then, up to permutation of phrase lengths, the phrase profile is a worst profile and
the claim immediately follows.

Turning to the induction step, suppose that z induces on y a phrase profile L =
(01,05, ...,0;) in which ¢; # 2 and f5 # 2. We can further assume that ¢; > 3; indeed,
if all phrase lengths in L were less than 3, then we would have n < 3t—2, in which case
K(n,t) = 0. We denote by Y the set of all words in S}, that are consistent with z.

Let 2’ be a word in Sp ; that induces the phrase profile L' = (2, {1+0y—2, (3, {4, ..., {;) on
every word y' that is consistent with 2’. The set of all such words ' in Sy, will be denoted
by Y'. Observe that L' has more phrase lengths equaling 2 than L does. So, by the induction
hypothesis on Y’ we have |Y'| > K(n,t).

We next define a mapping f : Y — Y as follows. Given y’ € Y, the first two phrases of
f(y') are obtained by applying the mapping ¢y, s, of Lemma 5.1 to the first two phrases of /.
The remaining ¢t—2 phrases in f(y') are identical to their counterparts in 3’. By Lemma 5.1,
the mapping f is one-to-one and weight-preserving and, so, |Y| > [Y'| > K (n, ). ]

Let tmax = tmax(n) be the value of a nonnegative integer ¢ for which K (n,t) is maximized.
Given n, m, and ¢ (e.g., t = tmax(n)), Lemma 5.2 suggests a coding scheme at a fixed rate
|mlog, K(n,t)]/(mn) into the set S°(B,,,) as follows. For i = 0,1,...,m—1, we select
row ¢ from Sy ; so that it is consistent with row i—1 (for the case i = 0, we can assume a
particular word from S; ; to serve as a ‘phantom’ row —1). Lemma 5.2 guarantees that we
have at least K (n,t) words in S;; that can be selected for row 7. This, in turn, implies the
following result.

Proposition 5.3

log, |S°(Bm.n)| S logy K (1, tmax)
mn - n ’

The effective computation of row ¢ in the suggested coding scheme can be done by enu-
merative coding, as we describe next [7],[25, p. 117],[28]. Let ({1, 4,...,¢;) be the phrase
profile of row 7 as induced by row i—1. For this particular phrase profile, denote by A}, ; the
number of possible assignments for the first k£ phrases of row ¢ so that their overall weight is
s, 0 < s <t. We have

S

Mk,s - Z |Slk,r

r=0

' Mkfl,sfr ) 1 S k S 13 ) (28)

where My =1 and My = 0 for s > 0. The values |S,|, in turn, can be computed by the
recurrence

|Sl,r
where |S[)70| = 1, |S(),r| =0 for r 7£ 0, |8170| = |Sl,1

= Se 10|+ [Se-201], €22, (29)
=1, and |S;,| =0 for r ¢ {0, 1}.
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We can rewrite (28) and (29) in polynomial notation as follows. Let z be an indeterminate,
and define the polynomials

14 l
Tg(z):ZTg,r'zr:Z|Sg,r 'Zr, ZZl,
r=0 r=0

and

t
My(z) => My,-2°, 1<k<t.
s=0

Then (29) becomes
To(z) =Tp1(2) +2-Tp2(2), £>2, (30)

where Ty(z) = 1 and Ti(z) = 1 + z. The recurrence (28), in turn, can be written as
Mi(2) =Ty, (2) - My_1(2) (mod 2Y), 1<k<t,
where Mj(z) = 1. So,

My(z) = ﬁ Ty, (2) (mod 21, 1<k<t. (31)

The latter formula can be used to accelerate the computation of the values M, ; through
fast techniques of polynomial multiplication [1]. Note also that the polynomials T,(z) need
to be computed for 1 < ¢ < n—2¢+1 only once for the whole array.

The enumerative coding algorithm of row ¢ is presented in Figure 5. The unconstrained
input stream to be coded into row i is regarded as an integer p in the range 0 < p < K(n,1),
and the phrase profile of row ¢ is also assumed to be available. The main loop of the algorithm
computes the phrases of row 7, in reverse order, starting with the tth phrase. In each iteration
of the main loop, the variable 1 determines the weight of the kth phrase, and s equals the
overall weight of the first k—1 phrases. It can be easily verified by descending induction on
k that each loop iteration starts with a value of p in the range 0 < p < M, ,, the induction
base following from 0 < p < K(n,t) < M,;;. Similarly, the value of # at the end of each
loop iteration lies in the range 0 < 0 < T}, , = |Sy, 4| The mapping from € into a word
in Sy, , assumes an ordering on the elements of each set S;,. If the standard lexicographic
ordering is used, then such a mapping can be efficiently implemented by (a second level of)
enumerative coding, using the recurrence (29) (or (30)).

We next obtain an asymptotic estimate for K (n,¢) which will enable us to compute
an asymptotic lower bound on (log, K(n,tmax))/n. The following lemma is a well-known
asymptotic estimate for the binomial coefficients (see [17, p. 309]).

Lemma 5.4 For{>r >0 and ¢ >0,
14
o8, 1) = £ (00 = etor).
where limy_, » maxo<,</ |€(¢,7)| = 0.
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input: integer p in the range 0 < p < K(n,t), phrase profile ({1,0s,...,4;);

output: ¢ phrases (in descending order) of a row of an array in §; ,;
initialize:
compute 7Ty(z) = Efzo Ty - 2" by (30) for 1</ < maxy/l;
compute My(2) = 3L ) My -2° by (31) for 1<k <t;
s t;
for k < t downto 1 do {
N+ largest integer such that >~ Lo Mi—1,6—r < p;
P =00 Thr My 15 15
sS4 S5—n;
0 Lp/My 1,];
set the kth phrase in the row to be the word indexed by 6 in S, ,;
pp—0-Mp_1s;

Figure 5: Enumerative coding into a row of an array in S°(By,,).
Lemma 5.5 For (> 2r >0 and ¢ > 0,

o8, 157, =gy 1) = (€=1)- (e (0-) = et

where limy_, o, maxo<,<¢ [e(¢,7)| = 0.

Proof. A word z is in Sy, if and only if it can be written as a sequence of /—r nonover-
lapping blocks, 7 of which equaling 10 and the remaining equaling 0 (if the last entry in z is
1, then the last block will also include the first entry in x). Hence, |S7, | equals the number
of combinations of r elements (being the indexes of the blocks 10 within z) out of {—r. [

It follows from Lemma 5.5 and the continuity of the function ¢ — h(t) that for every real
p € [0,1/2] we have

Jim (1/€) -1ogy |5y 1,0 = (1=p) - h(p/(1=p)) ,

where [t]| stands for the smallest integer not greater than ¢. (Indeed, (1—p)h(p/(1—p)) is
the entropy of a first-order Markov process defined on the (1,00)-RLL constraint, in which
the probability of having 1 following 0 is p/(1—p); the stationary probability of 1 is then p.)

Observing that

|S7273t+3,r| > |5n—3t+2,r > |Sn—3t,r| > |87273t,r|
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and that (tgl) =Lt (2), we get from (27) the lower bound

logy K (n,t) > gfglsaéit {S + log, (z) + log, t_Ts + log, |Sz—3t,t—s|} (32)
and the upper bound

logy K (n,t) < poax {5 + log, (z) + log, (t—5) + log, |S7273t+3,t75|} : (33)

Write § = t/n, w = s/n, and p = (t—s)/(n—3t). Assuming that n—3t = (1-30)n > 0
and p < 1/2, we can incorporate Lemmas 5.4 and 5.5 into the lower bound (32) to yield
that, whenever wn is a nonnegative integer less than dn,

logy K(n,6n) > wn + log, (ZZ) + log, (PTW + 1085 |S{1_35yn,(1-35)pm |
= (w+0d-h(w/d)+ (1=35) - (1=p) - h(p/(1=p)) — 0(1)) - 1,

where o(1) stands for an expression that goes to zero as n goes to infinity. We now observe
that w = 6 — (1—30)p and that w > 0 implies p < 6/(1—35). Hence, for every fixed rational
d € [0,1/3] and every n such that dn is an integer,

(1/n) -logy K (n,on) > sgp F(6,p) —o(1), (34)

where

F(6,p) =0-[L+h((1/6 = 3)p)] + (1=30) - [(1=p) - h(p/(1=p)) — 0] ,
and the supremum in the right-hand side of (34) is taken over all rational p in the range 0 <
p < min{d/(1-36),1/2}. In fact, from the upper bound (33) it follows that the inequality
in (34) can be replaced by an equality. Furthermore, since the function F'(4, p) is continuous
we have

liminf (1/n) - log, K (n, [5n]) = ma (5, ) ,
where the maximum is taken over all real p € [0, min{d/(1—-37),1/2}].

We now maximize the expression F(0,p) over real values of 6 € [0,1/3] and p €
[0, min{d/(1—36),1/2}]. By taking partial derivatives of F'(d,p) with respect to ¢ and p,
we get the equations

(236 — 4)(296 — 4)(83576° — 83575 + 3098° — 5185 + 385 — 1) =0

and
5 (36962 — 1016 + 4)
P = 14690% — 63202 + 956 — 4 °

The maximum is attained for (dmax, Pmax) ~ (0.216594, 0.248986), in which case

lim inf (1/n) -logy K (1, tmax(n))
= ligr_l)gl)gfmﬁax (1/n) -log, K(n, [dn])
> supliminf (1/n) -log, K(n, [dn])
§ n—oo

= I(réa§<F(5, p) = F(Omax, Pmax) = 0.581074
P
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(in fact, one can easily show that in the third step—where we change the order between
maximizing over ¢ and taking the limit over n—the inequality can be replaced by an equality).
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