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Abstract

The hard-square model, also known as the two-dimensional (1;1)-RLL constraint,

consists of all binary arrays in which the 1's are isolated both horizontally and vertically.

Based on a certain probability measure de�ned on those arrays, an e�cient variable-

to-�xed encoder scheme is presented that maps unconstrained binary words into arrays

that satisfy the hard-square model. For su�ciently large arrays, the average rate of the

encoder approaches a value which is only 0:1% below the capacity of the constraint.

A second, �xed-rate encoder is presented whose rate for large arrays is within 1:2% of

the capacity value.

Keywords: Constrained codes; Enumerative coding; Hard-square model; Max-

entropic probability measure; Permutation codes; Variable-to-�xed encoders; Two-

dimensional runlength-limited constraints.

1 Introduction

In current digital optical and magnetic recording systems, such as disks and tapes, the data is
written along tracks, thus visualized as a one-dimensional long sequence. To ensure reliability,
the raw data typically undergoes lossless coding into a binary sequence that satis�es certain
constraints. One of the most commonly used constraints is the (one-dimensional) (d; k)-
runlength-limited (RLL) constraint, which consists of all �nite binary words in which the
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runlengths of 0's are at least d, and runlengths of 0's between two consecutive 1's do not
exceed k [18],[19],[25].

Recent developments in optical storage|especially in the area of holographic memory|
are attempting to increase the recording density by exploiting the fact that the recording
device is a surface. Under this new model, the recorded data is regarded as two-dimensional,
as opposed to the track-oriented one-dimensional recording paradigm. The new approach,
however, introduces new types of error patterns and constraints|those now become two-
dimensional rather than one-dimensional. See [2],[4],[12],[13],[22],[23].

The treatment of two-dimensional constraints seems to be much more di�cult than the
one-dimensional case. This is, in part, due to the fact that in the general constrained
setting, there are problems that are easy to solve in the one-dimensional case, yet they
become undecidable when we shift to two dimensions [3],[24].

One important example of a two-dimensional constraint is the two-dimensional extension
of the (1;1)-RLL constraint. This constraint, which is also referred to as the hard-square
model, has been treated in quite a few papers in the past several years; see, for example, [6],
[10], [11], [20], [29]. This constraint will also be the focus of this work. We de�ne next the
hard-square model, borrowing terms from [5].

Let U be a �nite subset of the integer plane ZZ2 and let � be a �nite set, referred to as an
alphabet. A U-con�guration is a mapping x : U ! �. The value of x at location (i; j) 2 U

will be denoted by xi;j.

We say that a U -con�guration x satis�es the hard-square model if � = f0; 1g and for
every two distinct locations (i; j); (i0; j 0) 2 U ,

ji� i0j+ jj � j 0j � 1 =) (xi;j = 0 or xi0;j0 = 0) :

Equivalently, if we write down the values of the U -con�guration in the integer plane, then
the 1's are isolated both horizontally and vertically (either by 0's or by unassigned locations).
The set of all U -con�gurations that satisfy the hard-square model will be denoted by S(U).

The subsets U � ZZ2 considered in this work will be either rectangles

Bm;n = f(i; j) 2 ZZ2 : 0 � i < m; 0 � j < ng (1)

or parallelograms

�m;n = f(i; j) 2 ZZ2 : 0 � i < m; 0 � i + j < ng (2)

(see Figure 1). We will be mainly concentrating on the hard-square model, as the known
literature, as well as the results obtained herein, are elaborate enough already for this special
case.

The capacity, or the topological entropy, of the hard-square model is given by

cap(S) = lim
m;n!1

log2 jS(Bm;n)j

mn
= lim

m;n!1

log2 jS(�m;n)j

mn
:
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Figure 1: Parallelogram �m;n.

The limits indeed exist and are equal [5],[16]. The value of cap(S) is known to be approxi-
mately 0:5878911162; see [6], [10], [11], [29].

Much less is known about e�cient (i.e., polynomial-time, or low-complexity) high-rate
coding schemes for this constraint. In [26], the idea of two-dimensional bit-stu�ng was
introduced, resulting in a variable-to-�xed encoder whose expected rate was bounded from
below in [26] by approximately 0:5515. Note that in a variable-to-�xed scheme, the set of
pre-images, denoted D, consists of binary words that are not necessarily of the same length;
still every su�ciently long binary unconstrained word has exactly one element in D as a
pre�x (namely, the set D is pre�x-free and complete). For the purpose of computing the
rate, we de�ne a probability measure on D, where a pre-image w of length ` = `(w) has
probability 2�`. Indeed, by the properties of D it follows that

P
w2D 2�`(w) = 1 (the Kraft

equality). The expected rate of such a coding scheme is given by

Rm;n =
1

mn
�
X
w2D

2�`(w)`(w) :

A very simple coding scheme into S(�m;n) at a �xed rate 1 : 2 is implied by Lemma 1(e)
in [14]: entries (i; j) 2 �m;n such that i+ j is even are �lled with the input bit stream, while
the remaining entries are set to zero. We do not know of any other published e�cient �xed-
rate encoders at (signi�cantly) higher rates for the two-dimensional (1;1)-RLL constraint.

The main goal of this work is designing e�cient coding schemes for mapping, in a one-to-
one manner, unconstrained binary words into elements of S(Bm;n) or S(�m;n). Based on the
idea of two-dimensional bit-stu�ng introduced in [26], we present in Section 3 a variable-
to-�xed encoder into S(�m;n). Our coding scheme attains a rate which is approximately
0:587277, namely, only 0:1% below the value of cap(S).

Our variable-to-�xed rate encoder e�ectively realizes a certain probability measure �m;n

on S(�m;n). This measure is de�ned in Section 2 and its properties are proved in Section 4.
In particular, we show that the marginal probability induced by �m;n at every given row|
and respectively at every given diagonal|of a random �m;n-con�guration in S(�m;n) is a
�rst-order Markov process.
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With a slight compromise on the coding rate, we can also obtain an e�cient �xed-rate
encoder into S(Bm;n). Such an encoder is presented in Section 5 with a rate that approaches
0:581074 for large values of m or n; this rate is within 1:2% of the value of cap(S).

2 Probability measure on parallelograms

Let �m;n � ZZ2 be the parallelogram de�ned by (2) and shown in Figure 1. Row i in �m;n

consists of all locations (i; j) such that �i � j < n�i. Diagonal d consists of all locations
(i; d�i) such that 0 � i < m. Row 0 will be denoted by �(h)

n and will be referred to as the
horizontal boundary of �m;n. Similarly, Diagonal 0, denoted �(d)

m , will be referred to as the
diagonal boundary of �m;n. Those boundaries are depicted as thick lines in Figure 1. The
set �m;n n (�

(h)
n [�

(d)
m ) (i.e., the parallelogram excluding its boundaries) will be denoted by

��
m;n.

A random �m;n-con�guration taking values from S(�m;n) (according to some probability
measure) will be denoted by X, and its value at location (i; j) will be denoted by Xi;j.

Let �m;n be a probability measure de�ned on S(�m;n); that is, �m;n(x) = ProbfX = xg

for every x 2 S(�m;n). The (measure-theoretic) entropy of �m;n is de�ned by

H(�m;n) = �
1

mn

X
x2S(�m;n)

�m;n(x) log2 �m;n(x) :

The value H(�m;n) is the largest possible expected rate of any encoder that maps, in a
one-to-one manner, a set D of input binary words into S(�m;n), with a probability measure
de�ned on D that induces the measure �m;n on S(�m;n). This clearly implies the inequality

H(�m;n) �
log2 jS(�m;n)j

mn
: (3)

Now, suppose that � = f�m;ng
1
m;n=1 is a (two-dimensional) sequence of probability mea-

sures, where each individual measure �m;n is de�ned on S(�m;n). For a �m;n-con�guration
x 2 S(�m;n), let �

(h)(x) be the set of all �m+1;n-con�gurations in S(�m+1;n) obtained from
x by appending an (m+1)st row. Similarly, let �(d)(x) be the set of all �m;n+1-con�gurations
in S(�m;n+1) obtained from x by appending an (n+1)st diagonal. We say that the sequence
� = f�m;ngm;n is nested if for every m;n � 1 and x 2 S(�m;n),

�m;n(x) =
X

z2�(h)(x)

�m+1;n(z) =
X

z2�(d)(x)

�m;n+1(z) :

In other words, for every m � m0 and n � n0, the measure �m;n is the marginal distribution
on S(�m;n) which is induced by the measure �m0;n0 : S(�m0;n0)! [0; 1]. The nesting property
allows us to regard � as a measure which is an in�nite extension of the individual measures
�m;n. The entropy of � is de�ned by

H(�) = lim
m;n!1

H(�m;n)
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(by subadditivity the limit exists), and from (3) we have H(�) � cap(S) [5]. An (in�nite
extension) measure � for which H(�) = cap(S) is called a maxentropic measure. Such a
measure indeed exists [5].

Our coding scheme e�ectively de�nes nested measures �m;n : S(�m;n) ! [0; 1] for every
m;n � 1. As we show, the sequence � = f�m;ngm;n satis�es

H(�) = lim
m;n!1

H(�m;n) � 0:587277 :

Since the limit is very close to the known bounds on cap(S), we can say that � is `almost
maxentropic.' The expected rate of our coding scheme approaches, through the values of
H(�m;n), the value H(�).

For every x 2 S(�m;n), the value �m;n(x) = ProbfX = xg takes the following form:

�m;n(x) = �0(x0;0) � �
(h)
n (x0;1; x0;2 : : : ; x0;n�1 j x0;0) (4)

� �(d)m (x1;�1; x2;�2; : : : ; xm�1;�(m�1) j x0;0)

�

m�1Y
i=1

n�1�iY
j=�i+1

#(xi;j j xi;j�1; xi�1;j; xi�1;j+1) :

The components �0, �
(h)
n , and �(d)m de�ne the measure on location (0; 0) and on the horizontal

and diagonal boundaries, respectively, and will be speci�ed in more detail below. The
function # : f0; 1g4 ! [0; 1] is de�ned through two parameters, q0 2 [0; 1) and q1 2 (0; 1], as
follows:

#(0 j u; y; v) =

(
qv if u = y = 0
1 otherwise

; (5)

and #(1 j u; y; v) = 1 � #(0 j u; y; v). The distribution # on Xi;j can be described verbally
as follows. As dictated by the hard-square model, the value of Xi;j is forced to be 0 unless
Xi;j�1 = Xi�1;j = 0. When the latter condition is met, then Xi;j will be a Bernoulli random
bit whose distribution depends on the value of Xi�1;j+1; if that value is 0, then Xi;j takes the
value 0 with probability q0; otherwise, Xi;j takes the value 0 with probability q1. Figure 2
shows the values that determine the distribution of Xi;j; the location (i; j) is marked by a
box.

The measures on the boundaries, de�ned by �(h)n and �(d)m , are set so that the non-
boundary values have a stationary distribution in the sense stated in Proposition 2.1 below.
Speci�cally, �(h)n will take the form of a �rst-order Markov process

�(h)n (w1; w2; : : : ; wn�1 jw0) =
n�1Y
j=1

�(h)(wj jwj�1) ; (6)

where �(h) : f0; 1g2 ! [0; 1] is given by

�(h)(0 j u) =

(
� if u = 0
1 otherwise

(7)
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Figure 2: Location of the arguments of the function #(� j u; y; v).

for some � 2 [0; 1], and �(h)(1 j u) = 1� �(h)(0 j u).

The values of �0 : f0; 1g ! [0; 1] will be set to the stationary probabilities of the �rst-
order Markov process �(h) as follows: �0(0) = � and �0(1) = 1� �, where

�0(0) = � =
1

2� �
: (8)

As for the diagonal boundary, �(d)m will be a �rst-order Markov process of the form

�(d)m (w1; w2; : : : ; wm�1 jw0) =
m�1Y
i=1

�(d)(wi jwi�1) ; (9)

where �(d) : f0; 1g2 ! [0; 1] is given by

�(d)(0 j v) = �v ; (10)

with
�0 =

�

� + q1 � �q1
and �1 =

q1

� + q1 � �q1
; (11)

and �(d)(1 j v) = 1 � �(d)(0 j v) (since q1 > 0, the denominators in (11) are guaranteed to
be positive). The values in (11) are consistent with the stationary distribution along the
horizontal boundary: as we show in Section 4.1, (11) implies that ProbfXi;�i = 0g = � and,
furthermore, ProbfXi�1;1�i = Xi;�i = 0g = ProbfX0;j = X1;j�1 = 0g = �0� for all 1 � i < m

and 1 � j < n.

The nesting property of the measures �m;n is easily veri�ed. Next we state other
properties of those measures that will be proved in Section 4. Hereafter, the notation
X 2�m;n

S(�m;n) will mean that the random �m;n-con�guration X is taken from the sample
space S(�m;n) according to the distribution �m;n.

We say that row i in X 2�m;n
S(�m;n) forms a �rst-order Markov process identical to

the horizontal boundary if for every 1�i � j < n�i and every nonempty word c = c1c2 : : : c`
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of length ` � i+j,

ProbfXi;j = 0 j Xi;j�1Xi;j�2 : : : Xi;j�` = cg =

(
� if c1 = 0
1 if c1 = 1

;

provided that the event we condition on has positive probability.

The main result in Section 4.1 is the following.

Proposition 2.1 For m;n � 2, q0 2 [0; 1), and q1 2 (0; 1], let �m;n be a measure de�ned

on S(�m;n) by (4){(11). Then the entries in each row in X 2�m;n
S(�m;n) form a �rst-order

Markov process identical to the horizontal boundary if and only if

� = �(q0; q1) =
�q1 +

q
q21 + 4q1(1� q0)

2(1� q0)
: (12)

As we show in Section 4.2, there exists a counterpart of Proposition 2.1 also for the
diagonals in X 2�m;n

S(�m;n).

Remark. The de�nition of �m;n through a `local' conditional measure #(� j u; y; v) on �2;2

as given by (5) somewhat resembles the Pickard random �elds de�ned in [21], except that
columns therein are replaced here by diagonals. Note, however, that Pickard �elds assume
that the measure is invariant under all the symmetries of the square, whereas we require
less: the distribution along rows may (and will) di�er from the distribution along diagonals.
Thus, the result in Proposition 2.1 is di�erent than the �rst-order Markov property of Pickard
�elds.

We now turn to the measure-theoretic entropy of �m;n. De�ne the real-valued function
h : [0; 1]! [0; 1] by

h(t) = �t log2 t� (1�t) log2(1�t) ;

where h(0) = h(1) = 0.

We show in Section 4.1 the following lower and upper bounds on H(�m;n).

Proposition 2.2 For m;n � 2, q0 2 [0; 1), and q1 2 (0; 1], let �m;n be a measure de�ned

on S(�m;n) by (4){(11) and (12). Then

0 � H(�m;n)�
(m�1)(n�1)

mn
� �0� � (� � h(q0) + (1� �) � h(q1)) �

m+n�1

mn
:

By Proposition 2.2 we have

H(�) = lim
m;n!1

H(�m;n) = �0� � (� � h(q0) + (1� �) � h(q1)) ;
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which, with (8) and (11) yields

H(�) = H(�(q0; q1)) =
� � (� � h(q0) + (1� �) � h(q1))

(2� �)(�+ q1 � �q1)
;

where � = �(q0; q1) is given by (12). The numerator and denominator can be made linear
in � by observing that (12) implies that �2 = (1� �)q1=(1� q0). This yields

H(�(q0; q1)) =
(1� �)q1h(q0) + (�(1� q0 + q1)� q1)h(q1)

�(2� 2q1 � q21 � 2q0 + 3q0q1) + q1(1 + q1 � 2q0)
: (13)

To obtain the largest rate, we maximizeH(�(q0; q1)) with respect to q0 and q1. The maximum
is attained for q0 � :671833 and q1 � 0:566932, and the maximum value is H(�(q0; q1)) �
0:587277.

Our analysis depends strongly on the particular structure of the measure �m;n|in par-
ticular, on conditioning the probability of the event Xi;j = 0 only on the values of the three
entries Xi�1;j, Xi�1;j+1, and Xi;j�1, as shown in Figure 2. We note that such conditioning
is causal in that we can select|according to the measure �m;n|an element of S(�m;n) by
determining the values of its entries consecutively row-by-row or diagonal-by-diagonal: in
such a process, the distribution of values of the next entry to be determined is well-de�ned
as this distribution depends on values that have already been set. Such a feature enables
using the measure �m;n for encoding, as we show in Section 3.

Clearly, we may maintain causality and still approach capacity by conditioning the value
of Xi;j on more entries in the `past.' However, it appears that the analysis thus becomes
much more complex. For example, when Xi;j is conditioned also on Xi�1;j+2, we no longer
have even a second-order Markov process along rows.

3 Variable-rate encoding scheme

We describe how the estimate on H(�m;n), given in Proposition 2.2, can be approached by
a variable-to-�xed rate coding scheme. The objective is to realize the probability measure
�m;n on S(�m;n) in the output of the encoder.

The encoder consists of the following components:

1. A distribution transformer E0 that maps, in a one-to-one manner, sequences of fair coin

ips (i.e., independent Bernoulli random bits, each equaling 0 with probability 1=2),
into sequences of independent Bernoulli random bits such that each bit equals 0 with
probability q0. There are known methods [8, Section 5.12] to implement variable-to-
�xed rate transformers E0 such that, for �! 0 as the code length goes to in�nity, the
following holds:

(a) the expected rate (i.e., expected number of input bits per each output bit) of E0
is at least h(q0)(1� �);
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(b) all the words of the original Bernoulli source, except for a fraction whose prob-
ability is less than �, are generated by E0 with probability that di�ers from the
original probability by a factor within 1 � �. Namely, the typical words of the
original source are generated by E0 with virtually the same probability.

2. A distribution transformer E1, similar to E0, except that the output is 0 with probability
q1. The rate of E1 can get arbitrarily close to h(q1).

3. Probabilistic boundary generator E2, to be explained below.

4. Constrained coder E3, to be explained below.

The raw input bits are fed into the transformers E0 and E1, each input bit entering exactly
one of the transformers. The coder E3 then queries the outputs of E0 and E1 throughout the
encoding process. The order of queries determines which transformer is fed by any given
input bit.

The encoding procedure starts by generating the entry X0;0 at the origin, the entries
X0;j, 1 � j < n, along the horizontal boundary, and the entries Xi;�i, 1 � i < m, along
the diagonal boundary. Those entries are generated by E2 probabilistically, using (internal)
sources of Bernoulli random trials (i.e., internal coin 
ips), with probabilities of success �,
�, �0, and �1, as given by (12), (8), and (11). Note that these coin 
ips can be driven by
external sources (as is done in E0 and E1), thus contributing to the rate; however, since the
boundaries occupy only m+n�1 bits out of the mn bits of �m;n, such a rate contribution
becomes marginal when m and n are large.

The main coding task is performed by E3, which is fed by the outputs of E0 and E1. At
each encoding step, E3 generates a value Xi;j in a new location (i; j) in ��

m;n. The value of
Xi;j depends on the values Xi�1;j, Xi�1;j+1, and Xi;j�1 (which are assumed to have already
been generated), and also on at most one output bit of E0 or E1. To this end, there are two
natural orders in which the values Xi;j can be computed: they can be generated row by row,
or diagonal by diagonal. The encoding of each value Xi;j is done as follows.

if Xi�1;j = Xi;j�1 = 0 f
if Xi�1;j+1 = 0

Xi;j is the output bit of E0;

else /* Xi�1;j+1 = 1 */

Xi;j is the output bit of E1; g

else /* Xi�1;j = 1 or Xi;j�1 = 1 */

Xi;j = 0.

As we show in Corollary 4.3 in Section 4.1, when �m;n satis�es (4){(11) and (12) we have
ProbfXi;j = Xi�1;j+1 = 0g = �0� for all (i; j) 2 �m;n n�

(h)
n . Hence, the expected number of

locations (i; j) 2 ��
m;n for which Xi;j = Xi�1;j+1 = 0, is N = (m�1)(n�1)�0�. This is the

expected number of times that E0 or E1 are queried by E3. The expected number of times
that E0 (respectively, E1) is queried is �N (respectively, (1� �)N). Therefore, the expected
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rate of the overall coding scheme is

Rm;n =
(� � h(q0) + (1� �) � h(q1)) � (1� �m;n) �N

mn

=
(m�1)(n�1)

mn
� �0� � (� � h(q0) + (1� �) � h(q1))(1� �m;n)

=
(m�1)(n�1)

mn
� (1� �m;n) �H(�) ;

where limm;n!1 �m;n = 0. Namely, for b 2 f0; 1g, we bound from below the rates of Eb by
h(qb)(1� �m;n); the factor 1� �m;n also incorporates the ratio between the probability with
which a typical word is generated by Eb, compared to the probability with which such a word
is generated by an ideal Bernoulli source (de�ned by qb).

Simulations suggest that the rate Rm;n is attained regardless of the boundary values set
by E2; yet we have not proved this. On the other hand, there is clearly a �xed assignment
for the boundaries that yields expected rate at least Rm;n. If we knew such an assignment,
we could hard-wire it into the decoder, in which case it would be su�cient to transmit only
the (m�1)(n�1) non-boundary values of X, making E2 redundant.

Decoding is carried out as follows: Bits are read from the received �m;n-con�guration in
the order they were generated by the encoder, disregarding each 0 that immediately follows
a 1 horizontally or vertically. The remaining bits are then divided into two bit streams
according to the transformer Eb that generated each individual bit. The bit streams are then
fed into the decoders (i.e., inverse mappings) of the respective transformers.

Our coding scheme can be simpli�ed by combining the distribution transformers E0 and
E1, in which case our encoder becomes the bit-stu�ng encoder in [26] (except that the
analysis here takes into account that stu�ed 0's overlap, thereby improving on the lower
bound of [26] on the expected rate). In such a case, we maximize H(�(q0; q1)) in (13) under
the restriction q0 = q1. The maximum is attained for q0 = q1 � :644400, and the maximum
value is H(�(q0; q0)) � 0:583056, which is within 1% of the capacity cap(S). We mention
that this latter rate can be attained also by tuning the parameters in the method presented
recently and independently in [15].

4 First-order Markov properties of �

4.1 Horizontal �rst-order Markov process

In this section, we provide proofs for Proposition 2.1 and Proposition 2.2.

We start by verifying that the value of � in (8) is the stationary probability of the
�rst-order Markov process along the horizontal and diagonal boundaries. It is easy to see
that

� = �(h)(0 j 0)� + �(h)(0 j 1)(1� �) = �� + 1� � ;

10



thus implying that � is indeed the stationary probability of ProbfX0;j = 0g along the hori-
zontal boundary. Similarly, by the choice of �0 and �1 in (11) we also have

� = �(d)(0 j 0)� + �(d)(0 j 1)(1� �) = �0� + �1(1� �) ;

making � also the stationary probability of ProbfXi;�i = 0g along the diagonal boundary.

Denote by �` the set of all binary words of length � `, and by ��
` the set of all nonempty

binary words of length � `.

For (i; j) 2 �m;n and w = w1w2 : : : w` 2 �i+j+1, denote by Ai;j(w) the event

Ai;j(w) = fXi;jXi;j�1Xi;j�2 : : : Xi;j�`+1 = wg :

Also, for (i; j) 2 �m;n n�
(h)
n and v 2 f0; 1g, de�ne the event

A
(v)
i;j (w) = Ai;j(w) \ fXi�1;j+1 = vg

(see Figure 3). We also de�ne the vectors

�
�

�
�

�
�

�
�

r r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r r r r r r v r r

r r r r r r w1w2: : :w`
r r

j n�10

i

m�1

Figure 3: Event A
(v)
i;j (w).

Ai;j(w) =

 
ProbfA

(0)
i;j (w)g

ProbfA
(1)
i;j (w)g

!
:

Note that by the way we set the diagonal boundary we have

Ai;�i(0) =

 
ProbfXi;�i = 0; Xi�1;1�i = 0g
ProbfXi;�i = 0; Xi�1;1�i = 1g

!
=

 
�0�

�1(1� �)

!

=
1

2� �
�

1

�+ q1 � �q1
�

 
�

(1� �)q1

!
(14)

and

Ai;�i(1) =

 
ProbfXi;�i = 1; Xi�1;1�i = 0g
ProbfXi;�i = 1; Xi�1;1�i = 1g

!
=

 
(1� �0)�

(1� �1)(1� �)

!

=
1� �

2� �
�

1

� + q1 � �q1
�

 
q1

�(1� q1)

!
: (15)
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Given q0; q1; � 2 [0; 1], we de�ne the following 2� 2 matrices:

P0;0 =

 
�q0 1

(1� �)q1 0

!
; P0;1 =

 
� 1

1� � 0

!
; P1;0 =

 
�(1� q0) 0

(1� �)(1� q1) 0

!
;

and P1;1 = 0. The notations I and 1 will stand for the 2 � 2 identity matrix and the row
vector (1 1), respectively.

Recall that we say that row i in X 2�m;n
S(�m;n) forms a �rst-order Markov process

identical to the horizontal boundary if for every 1�i � j < n�i and every word c =
c1c2 : : : c` 2 ��

i+j,

ProbfXi;j = 0 j Xi;j�1Xi;j�2 : : : Xi;j�` = cg =

(
� if c1 = 0
1 if c1 = 1

; (16)

provided that the event we condition on has positive probability. The following lemma is
easily veri�ed.

Lemma 4.1 For m;n � 2, q0 2 [0; 1), and q1 2 (0; 1], let �m;n be a measure de�ned

on S(�m;n) by (4){(11). Suppose that for some i in the range 1 � i < m, row i�1 in

X 2�m;n
S(�m;n) forms a �rst-order Markov process identical to the horizontal boundary.

Then

Ai;j(bc) = Pb;c1Ai;j�1(c) for all 1�i � j < n�i and c 2 ��
i+j :

Proof of Proposition 2.1. We start with the \if" part and prove by induction on i � 1
that row i forms a �rst-order Markov process identical to the horizontal boundary. We do
this by showing that (16) holds for every 1�i � j < n�i and every word c of length exactly

i+j (which clearly implies that it holds for all shorter words).

First note that the sample space S(�m;n) of X forces (16) to hold whenever the �rst bit
in c is c1 = 1.

We now consider words c with c1 = 0. Our induction proof for row i assumes that row
i�1 forms a �rst-order Markov process identical to the horizontal boundary. Clearly, this
trivially holds for the induction base i = 1. Write c = 0w where w 2 f0; 1gi+j�1, in which
case (16) becomes

ProbfAi;j(00w)g = � � ProbfAi;j�1(0w)g :

This, in turn, is equivalent to

1Ai;j(00w) = � � 1Ai;j�1(0w) : (17)

By Lemma 4.1 and the induction hypothesis we have

Ai;j(00w) = P0;0Ai;j�1(0w) :

12



Hence, (17) can be rewritten as

1(P0;0 � �I)Ai;j�1(0w) = 0 :

It follows that in order to show (16), it su�ces to prove that for 1�i � j < n�i and
w 2 f0; 1gi+j�1, the vector Ai;j�1(0w) is either the zero vector or a (right) eigenvector of
P0;0 associated with the eigenvalue �.

Now, it is easy to see that (12) implies that � is a nonnegative eigenvalue of P0;0; indeed,
� is the nonnegative root of the quadratic equation

�2(1� q0) + �q1 � q1 = 0 (18)

obtained from the equality

det(P0;0 � �I) = det

 
�q0 � � 1
(1� �)q1 ��

!
= 0 :

We now distinguish between two cases for the value of the word w. Hereafter 0` stands
for the all-zero word of length `.

Case 1: w = 0i+j�1. By (14) it follows that Ai;�i(0) is an eigenvector of P0;0 associated
with the eigenvalue �. Hence, by Lemma 4.1 and the induction hypothesis we have

Ai;j�1(0i+j) = P
i+j�1
0;0 Ai;�i(0) = �i+j�1Ai;�i(0) ; 1�i � j < n�i ;

namely, Ai;j�1(0i+j) is also an eigenvector of P0;0 associated with the eigenvalue �.

Case 2: w 6= 0i+j�1. Write w = 0s�11 ~w. If s < i+j�1 then ~w starts with a 0, or else we
are in the trivial case in which the event we are conditioning on in (16) has zero probability
(i.e., Ai;j�s�1(1 ~w) is zero). By Lemma 4.1 and the induction hypothesis we obtain

Ai;j�s�1(1 ~w) = P1;0Ai;j�s�2( ~w) = A(0)
�

 
�(1� q0)

(1� �)(1� q1)

!
= 
 �

 
q1

�(1� q1)

!
(19)

for some real 
, where A(0) is the �rst coordinate of Ai;j�s�2( ~w) and where the last equality
in (19) follows from (18). In fact, (19) also applies to s = i+j�1, in which case ~w is the
empty word and Ai;j�s�1(1 ~w) = Ai;�i(1), which, in turn, is given by (15).

Combining (19) with Lemma 4.1 we obtain

Ai;j�s(01 ~w) = P0;1Ai;j�s�1(1 ~w) = 
 �

 
� 1

1� � 0

! 
q1

�(1� q1)

!
= 
 �

 
�

(1� �)q1

!
:

That is, Ai;j�s(01 ~w), if nonzero, is an eigenvector of P0;0 associated with the eigenvalue �.
Now, by Lemma 4.1 we have

Ai;j�1(0w) = P s�1
0;0 Ai;j�s(01 ~w) = �s�1Ai;j�s(01 ~w) :

13



We thus conclude that Ai;j�1(0w), if nonzero, is an eigenvector of P0;0 associated with the
eigenvalue � for every 1�i � j < n�i and w 2 f0; 1gi+j�1. This establishes the induction
step.

We now turn to the \only if" part. We show that the equality

ProbfX1;0 = 1 j X1;�1 = 0g = 1� � (20)

implies that � satis�es (18). Indeed,

ProbfX1;�1X1;0 = 01g

= ProbfX0;0X1;�1X1;0 = 001g

= ProbfX0;0X0;1X1;�1X1;0 = 0001g+ ProbfX0;0X0;1X1;�1X1;0 = 0101g

= �0�((1� q0)�+ (1� q1)(1� �)) :

Combining this with (20), we obtain

�(1� �) = �0�((1� q0)� + (1� q1)(1� �)) ;

which, with (8) and (11), yields (18).

Corollary 4.2 For m;n � 2, q0 2 [0; 1), and q1 2 (0; 1], let �m;n be a measure de�ned

on S(�m;n) by (4){(11) and (12). Then for every (i; j) 2 ��
m;n and w 2 �i+j�1, the vector

Ai;j�1(0w), if nonzero, is an eigenvector of P0;0 associated with the eigenvalue �.

Proof. By (16) we have

1Ai;j(00w) = � � 1Ai;j�1(0w)

for every (i; j) 2 ��
m;n and w 2 �i+j�1; so, by Lemma 4.1,

1(P0;0 � �I)Ai;j�1(0w) = 0 : (21)

Now, the matrix P0;0 � �I is singular since � is an eigenvalue of P0;0. On the other hand,
q0 < 1 implies that � 6= 1; so, the vector 1(P0;0��I) is nonzero. Hence, that vector spans the
rows of P0;0��I, thus implying by (21) that Ai;j�1(0w) is an eigenvector of P0;0 associated
with the eigenvalue �.

Corollary 4.3 For m;n � 2, q0 2 [0; 1), and q1 2 (0; 1], let �m;n be a measure de�ned

on S(�m;n) by (4){(11) and (12). If X 2�m;n
S(�m;n) then

ProbfXi;j = Xi�1;j+1 = 0g = �0�

for every (i; j) 2 �m;n n�
(h)
n .
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Proof. Recall that for a �m;n-con�guration x 2 S(�m;n), we denote by �(d)(x) the set
of all �m;n+1-con�gurations in S(�m;n+1) obtained from x by appending another diagonal.
By the nesting property of �m;n we have

�m;n(x) =
X

z2�(d)(x)

�m;n+1(z)

for every x 2 S(�m;n). Hence, it su�ces to show that when Z 2�m;n+1
S(�m;n+1), then

ProbfZi;j = Zi�1;j+1 = 0g = �0�

for every (i; j) 2 �m;n n�
(h)
n , or|equivalently|for every (i; j+1) 2 ��

m;n+1.

By Proposition 2.1 and Corollary 4.2, when applied to Z 2�m;n+1
S(�m;n+1), it follows

that for every (i; j+1) 2 ��
m;n+1, the vectors Ai;j(0) are eigenvectors of P0;0 associated with

the eigenvalue �; namely,

Ai;j(0) =

 
ProbfZi;j = 0; Zi�1;j+1 = 0g
ProbfZi;j = 0; Zi�1;j+1 = 1g

!
= 
i;j �

 
�

(1� �)q1

!
(22)

for some constants 
i;j. On the other hand, we also have

1Ai;j(0) = ProbfZi;j = 0g = � :

Combining the latter equation with (22) we thus obtain

Ai;j(0) =
�

� + (1� �)q1
�

 
�

(1� �)q1

!
=

 
�0�

�1(1� �)

!

for every (i; j+1) 2 ��
m;n+1 (compare with (14)).

Proof of Proposition 2.2. By (4) and Corollary 4.3 we have

mnH(�m;n) = h(�) + (n�1) � � � h(�) + (m�1) � (� � h(�0) + (1� �) � h(�1))

+
m�1X
i=1

n�1�iX
j=�i+1

ProbfXi;j�1 = Xi�1;j = 0g

�

�
ProbfXi�1;j+1 = 0 j Xi;j�1 = Xi�1;j = 0g � h(q0)

+ ProbfXi�1;j+1 = 1 j Xi;j�1 = Xi�1;j = 0g � h(q1)
�

= h(�) + (n�1) � � � h(�) + (m�1) � (� � h(�0) + (1� �) � h(�1))

+ (m�1)(n�1) � �0� � (� � h(q0) + (1� �) � h(q1)) :

Therefore,

0 � H(�m;n)�
(m�1)(n�1)

mn
� �0� � (� � h(q0) + (1� �) � h(q1)) �

m+n�1

mn
;

as claimed.
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4.2 Diagonal �rst-order Markov process

In this section, we present a counterpart of Proposition 2.1 for the diagonals of X 2�m;n

S(�m;n). We state the respective claims and point out the di�erence in proofs compared to
those in Section 4.1.

For (i; d�i) 2 �m;n and w = w1w2 : : : w` 2 �i, denote by Bd;i(w) the event

Bd;i(w) = fXi;d�iXi�1;d�(i�1)Xi�2;d�(i�2) : : :Xi�`+1;d�(i�`+1) = wg :

Also, for (i; d�i) 2 �m;n n�
(d)
m and u 2 f0; 1g, de�ne the event

B
(u)
d;i (w) = Bd;i(w) \ fXi;d�1�i = ug

(see Figure 4). We also de�ne the vectors

�
�

�
�

�
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�
�

r
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r
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r

r
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r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r
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r
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r

r
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r
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r
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r
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r

r
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r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

u
r

r

r

r

w1

w2

��
�
w`

r

r

d�i n�10

i

m�1

Figure 4: Event B
(u)
d;i (w).

Bd;i(w) =

0
@ ProbfB

(0)
d;i (w)g

ProbfB
(1)
d;i (w)g

1
A :

The counterparts of (14) and (15) take the form

Bd;0(0) =

 
ProbfX0;d = 0; X0;d�1 = 0g
ProbfX0;d = 0; X0;d�1 = 1g

!
=

 
��

1� �

!
=

1

2� �
�

 
�

1� �

!

and

Bd;0(1) =

 
ProbfX0;d = 1; X0;d�1 = 0g
ProbfX0;d = 1; X0;d�1 = 1g

!
=

 
(1� �)�

0

!
=

1� �

2� �
�

 
1
0

!
;

and the counterparts of the matrices Pb;c are

Q0;0 =

 
�0q0 �1
1� �0 1� �1

!
; Q0;1 =

 
�0q1 0
1� �0 0

!
;

Q1;0 =

 
�0(1� q0) 0

0 0

!
; Q1;1 =

 
�0(1� q1) 0

0 0

!
;
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where �0 and �1 are given by (11).

We say that diagonal d in X 2�m;n
S(�m;n) forms a �rst-order Markov process identical

to the diagonal boundary if for every 1 � i < m and every word c = c1c2 : : : c` 2 ��
i ,

ProbfXi;d�i = 0 j Xi�1;d�(i�1)Xi�2;d�(i�2) : : :Xi�`;d�(i�`) = cg = �c1 ; (23)

provided that the event we condition on has positive probability.

Lemma 4.4 For m;n � 2, q0 2 [0; 1), and q1 2 (0; 1], let �m;n be a measure de�ned

on S(�m;n) by (4){(11). Suppose that for some d in the range 1 � d < n, diagonal d�1
in X 2�m;n

S(�m;n) forms a �rst-order Markov process identical to the diagonal boundary.

Then

Bd;i(bc) = Qb;c1Bd;i�1(c) for all 1 � i < m and c 2 ��
i :

Proposition 4.5 For m;n � 2, q0 2 [0; 1), and q1 2 (0; 1], let �m;n be a measure de�ned

on S(�m;n) by (4){(11). Then the entries in each diagonal X 2�m;n
S(�m;n) form a �rst-

order Markov process identical to the diagonal boundary if and only (12) holds.

Proof. The proof follows along the lines of the proof of Proposition 2.1, with a notable
di�erence in the treatment of the case c1 = 1 in (23). Speci�cally, in the \if" part, we also
need to show that

ProbfBd;i(01w)g = �1 � ProbfBd;i�1(1w)g for all (i; d�i) 2 ��
m;n and w 2 �i�1 : (24)

The proof is carried out by induction on d, and the induction step assumes that (23)

holds for diagonal d�1. De�ning � = ProbfB
(0)
d;i�1(1w)g, we have

Bd;i�1(1w) =

 
�

0

!
:

By the induction hypothesis and Lemma 4.4 we obtain

Bd;i(01w) = Q0;1Bd;i�1(1w) = � �

 
�0q1
1� �0

!
:

Now, by (11) we have
�1 = �0q1 + 1� �0 :

Hence,

1Bd;i(01w) = 1Q0;1Bd;i�1(1w) = (�0q1 + 1� �0)� = �1� = �1 � 1Bd;i�1(1w) ;

thus implying (24).

The case c1 = 0 in (23) is treated by showing through the induction on d that for every
(i; d�i) 2 ��

m;n and w 2 f0; 1gi�1, the vector Bd;i�1(0w), if nonzero, is an eigenvector of
Q0;0 associated with the eigenvalue �0 given in (11).
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5 Fixed-rate encoding scheme

Let Bm;n be the rectangle de�ned by (1). A Bm;n-con�guration x = (xi;j) 2 S(Bm;n) is
called circular if for every 0 � i < m, the entries xi;0 and xi;n�1 are not both 1. The set of
all Bm;n-con�gurations in S(Bm;n) that are circular will be denoted by S�(Bm;n). Note also
that if x 2 S�(Bm;n) and if we de�ne the �m;n-con�guration y = (yi;j) by

yi;j =

(
xi;j if j � 0
xi;n+j otherwise

; (i; j) 2 �m;n ;

then y 2 S(�m;n).

In this section, we present a �xed-rate coding scheme into S�(Bm;n) with a rate that
approaches 0:581074 for large values of n (orm). Our scheme borrows ideas from permutation
codes [27], [30] combined with enumerative coding [9]. Even though the circular property
is not necessary for the coding, it will make the analysis simpler. The Bm;n-con�gurations
generated by the encoder will have the additional property that all rows in them have the
same (Hamming) weight �n for a value � 2 [0; 1] that will be determined in the sequel.

Let x be in S�(Bm;n) and assume that for some i in the range 1 � i < m, row i�1 in x

has weight t. Let j1; j2; : : : ; jt be the indexes j for which xi�1;j = 1. Clearly, we must have
xi;jk = 0 for every 1 � k � t. De�ne the words

x
(k)
i = xi;jk+1xi;jk+2 : : : xi;jk+1�1 ; 1 � k < t ;

and
x
(t)
i = xi;jt+1 : : : xi;n�1xi;0 : : : xi;j1�1 :

The word x
(k)
i is called the kth phrase of row i in x. Note that row i in x is obtained by

shifting the word
0 x

(1)
i 0 x

(2)
i 0 : : : 0 x(t)

cyclically j1 entries to the right. The length of x
(k)
i is called the kth phrase length in row i

of x. Denoting that length by `k, the list (`1; `2; : : : ; `t) is called the phrase pro�le of row i

in x. Clearly, `k = jk+1� jk� 1, where jt+1 is de�ned to be n+ j1. Hence, the phrase pro�le
of row i is completely determined by row i�1. Note also that

Pt
k=1 `k = n�t. We mention

that a (somewhat di�erent) de�nition of phrases is used also in one-dimensional permutation
codes [27], [30].

For a positive integer `, let S` = S(B1;`) denote the set of all words of length ` that
satisfy the one-dimensional (1;1)-RLL constraint. Similarly, we de�ne S�` = S

�(B1;`). Also,
denote by S`;r (respectively, S

�
`;r) the set of words in S` (respectively, S

�
`;r) of weight r. It is

easy to see that a Bm;n-con�guration x 2 S(Bm;n) is in S
�(Bm;n) if and only if every row in

x is in S�n.

18



Lemma 5.1 For every two positive integers a and b such that a + b � 3, there is a

mapping

�a;b : S2 � Sa+b�2 ! Sa � Sb

that is one-to-one and weight-preserving.

Proof. Since a + b � 3 and a and b play symmetrical roles, we can assume that a � 2.
For x1x2 2 S2 and y1y2 : : : ya+b�2 2 Sa+b�2, we de�ne �a;b(x1x2; y1y2 : : : ya+b�2) = (w;w0),
where w and w0 are determined as follows: if x2 = 0 or y1 = 0, then we set

w = x1x2y1y2 : : : ya�2 and w0 = ya�1ya : : : ya+b�2 ; (25)

otherwise (if x1x2 = 01 and y1 = 1),

w = yb+1yb+2 : : : ya+b�2x1x2 and w0 = y1y2 : : : yb : (26)

It is easy to see that the mapping �a;b is into Sa � Sb and is weight-preserving. To
show that it is one-to-one, we need to verify that we can distinguish pairs (w;w0) generated
by (25) from those that are generated by (26). Indeed, only in the latter, the last entry of
w and the �rst entry of w0 are both equal to 1.

Let x and y be two words in Sn. We say that x is consistent with y if x and y form the
rows of an array in S(B2;n). In other words, x and y do not have 1's in the same position.

De�ne

K(n; t) =
t�1X
s=0

2s �

 
t�1

s

!
� jSn�3t+2;t�sj : (27)

Lemma 5.2 For every word x 2 S�n;t there are at least K(n; t) words y 2 S�n;t that are
consistent with x.

Proof. The proof is based on the observation that the number of possible assignments
for y depends only on the phrase pro�le of y, and only through the multiplicity (but not the
order) with which each phrase length appears in that phrase pro�le. This phrase pro�le, in
turn, is completely determined by x.

Assume �rst that x induces on y the phrase pro�le (`1; `2; : : : ; `t), where `1 = `2 = : : : =
`t�1 = 2 (and, so, `t = n�3t+2). We refer to this pro�le as the worst pro�le for length n and
weight t. Each of the phrases of length 2 in y can take a value from f00; 01; 10g. It follows

that for 0 � s < t, there are 2s
�
t�1

s

�
ways to assign values to the phrases of length 2 in y so

that their overall weight is s. If the overall weight of y is t, then the remaining phrase, of
length n�3t+2, in y must have weight t�s. This proves the lemma assuming that x induces
the worst pro�le on y.

It remains to establish that the worst pro�le is indeed the worst, in the sense that it leads
to the smallest possible number of assignments for y. We show this by descending induction
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on the number of phrases in y whose lengths equal 2. Clearly, if at least t�1 phrase lengths
equal 2, then, up to permutation of phrase lengths, the phrase pro�le is a worst pro�le and
the claim immediately follows.

Turning to the induction step, suppose that x induces on y a phrase pro�le L =
(`1; `2; : : : ; `t) in which `1 6= 2 and `2 6= 2. We can further assume that `1 � 3; indeed,
if all phrase lengths in L were less than 3, then we would have n � 3t�2, in which case
K(n; t) = 0. We denote by Y the set of all words in S�n;t that are consistent with x.

Let x0 be a word in S�n;t that induces the phrase pro�le L
0 = (2; `1+`2�2; `3; `4; : : : ; `t) on

every word y0 that is consistent with x0. The set of all such words y0 in S�n;t will be denoted
by Y 0. Observe that L0 has more phrase lengths equaling 2 than L does. So, by the induction
hypothesis on Y 0 we have jY 0j � K(n; t).

We next de�ne a mapping f : Y 0 ! Y as follows. Given y0 2 Y 0, the �rst two phrases of
f(y0) are obtained by applying the mapping �`1;`2 of Lemma 5.1 to the �rst two phrases of y

0.
The remaining t�2 phrases in f(y0) are identical to their counterparts in y0. By Lemma 5.1,
the mapping f is one-to-one and weight-preserving and, so, jY j � jY 0j � K(n; t).

Let tmax = tmax(n) be the value of a nonnegative integer t for which K(n; t) is maximized.
Given n, m, and t (e.g., t = tmax(n)), Lemma 5.2 suggests a coding scheme at a �xed rate
bm log2K(n; t)c=(mn) into the set S�(Bm;n) as follows. For i = 0; 1; : : : ; m�1, we select
row i from S�n;t so that it is consistent with row i�1 (for the case i = 0, we can assume a
particular word from S�n;t to serve as a `phantom' row �1). Lemma 5.2 guarantees that we
have at least K(n; t) words in S�n;t that can be selected for row i. This, in turn, implies the
following result.

Proposition 5.3
log2 jS

�(Bm;n)j

mn
�

log2K(n; tmax)

n
:

The e�ective computation of row i in the suggested coding scheme can be done by enu-
merative coding, as we describe next [7],[25, p. 117],[28]. Let (`1; `2; : : : ; `t) be the phrase
pro�le of row i as induced by row i�1. For this particular phrase pro�le, denote by Mk;s the
number of possible assignments for the �rst k phrases of row i so that their overall weight is
s, 0 � s � t. We have

Mk;s =
sX

r=0

jS`k;rj �Mk�1;s�r ; 1 � k � t ; (28)

where M0;0 = 1 and M0;s = 0 for s > 0. The values jS`;rj, in turn, can be computed by the
recurrence

jS`;rj = jS`�1;rj+ jS`�2;r�1j ; ` � 2 ; (29)

where jS0;0j = 1, jS0;rj = 0 for r 6= 0, jS1;0j = jS1;1j = 1, and jS1;rj = 0 for r 62 f0; 1g.
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We can rewrite (28) and (29) in polynomial notation as follows. Let z be an indeterminate,
and de�ne the polynomials

T`(z) =
X̀
r=0

T`;r � z
r =

X̀
r=0

jS`;rj � z
r ; ` � 1 ;

and

Mk(z) =
tX

s=0

Mk;s � z
s ; 1 � k � t :

Then (29) becomes
T`(z) = T`�1(z) + z � T`�2(z) ; ` � 2 ; (30)

where T0(z) = 1 and T1(z) = 1 + z. The recurrence (28), in turn, can be written as

Mk(z) � T`k(z) �Mk�1(z) (mod zt+1) ; 1 � k � t ;

where M0(z) = 1. So,

Mk(z) �
kY

u=1

T`u(z) (mod zt+1) ; 1 � k � t : (31)

The latter formula can be used to accelerate the computation of the values Mk;s through
fast techniques of polynomial multiplication [1]. Note also that the polynomials T`(z) need
to be computed for 1 � ` � n�2t+1 only once for the whole array.

The enumerative coding algorithm of row i is presented in Figure 5. The unconstrained
input stream to be coded into row i is regarded as an integer p in the range 0 � p < K(n; t),
and the phrase pro�le of row i is also assumed to be available. The main loop of the algorithm
computes the phrases of row i, in reverse order, starting with the tth phrase. In each iteration
of the main loop, the variable � determines the weight of the kth phrase, and s equals the
overall weight of the �rst k�1 phrases. It can be easily veri�ed by descending induction on
k that each loop iteration starts with a value of p in the range 0 � p < Mk;s, the induction
base following from 0 � p < K(n; t) � Mt;t. Similarly, the value of � at the end of each
loop iteration lies in the range 0 � � < T`k;� = jS`k;�j. The mapping from � into a word
in S`k;� assumes an ordering on the elements of each set S`;r. If the standard lexicographic
ordering is used, then such a mapping can be e�ciently implemented by (a second level of)
enumerative coding, using the recurrence (29) (or (30)).

We next obtain an asymptotic estimate for K(n; t) which will enable us to compute
an asymptotic lower bound on (log2K(n; tmax))=n. The following lemma is a well-known
asymptotic estimate for the binomial coe�cients (see [17, p. 309]).

Lemma 5.4 For ` � r � 0 and ` > 0,

log2

 
`

r

!
= ` � (h(r=`)� �(`; r)) ;

where lim`!1max0�r�` j�(`; r)j = 0.
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input: integer p in the range 0 � p < K(n; t), phrase profile (`1; `2; : : : ; `t);

output: t phrases (in descending order) of a row of an array in S�m;n;

initialize:

compute T`(z) =
P`

r=0 T`;r � z
r by (30) for 1 � ` � maxk `k;

compute Mk(z) =
Pt

s=0Mk;s � z
s by (31) for 1 � k � t;

s t;

for k  t downto 1 do f

�  largest integer such that
P��1

r=0 T`k;r �Mk�1;s�r � p;

p p�
P��1

r=0 T`k;r �Mk�1;s�r;

s s� �;

�  bp=Mk�1;sc;

set the kth phrase in the row to be the word indexed by � in S`k;�;

p p� � �Mk�1;s;

g

Figure 5: Enumerative coding into a row of an array in S�(Bm;n).

Lemma 5.5 For ` � 2r � 0 and ` > 0,

log2 jS
�
`;rj = log2

 
`�r

r

!
= (`�r) � (h(r=(`�r))� �(`�r; r)) ;

where lim`!1max0�r�` j�(`; r)j = 0.

Proof. A word x is in S�`;r if and only if it can be written as a sequence of `�r nonover-
lapping blocks, r of which equaling 10 and the remaining equaling 0 (if the last entry in x is
1, then the last block will also include the �rst entry in x). Hence, jS�`;rj equals the number
of combinations of r elements (being the indexes of the blocks 10 within x) out of `�r.

It follows from Lemma 5.5 and the continuity of the function t 7! h(t) that for every real
� 2 [0; 1=2] we have

lim
`!1

(1=`) � log2 jS
�
`;d�`ej = (1��) � h(�=(1��)) ;

where dte stands for the smallest integer not greater than t. (Indeed, (1��)h(�=(1��)) is
the entropy of a �rst-order Markov process de�ned on the (1;1)-RLL constraint, in which
the probability of having 1 following 0 is �=(1��); the stationary probability of 1 is then �.)

Observing that
jS

�
n�3t+3;rj � jSn�3t+2;rj � jSn�3t;rj � jS

�
n�3t;rj
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and that
�
t�1

s

�
= t�s

t
�

�
t

s

�
, we get from (27) the lower bound

log2K(n; t) � max
0�s<t

n
s+ log2

�
t

s

�
+ log2

t�s
t
+ log2 jS

�
n�3t;t�sj

o
(32)

and the upper bound

log2K(n; t) � max
0�s<t

n
s+ log2

�
t

s

�
+ log2(t�s) + log2 jS

�
n�3t+3;t�sj

o
: (33)

Write � = t=n, ! = s=n, and � = (t�s)=(n�3t). Assuming that n�3t = (1�3�)n � 0
and � � 1=2, we can incorporate Lemmas 5.4 and 5.5 into the lower bound (32) to yield
that, whenever !n is a nonnegative integer less than �n,

log2K(n; �n) � !n+ log2
�
�n

!n

�
+ log2

��!
�

+ log2 jS
�
(1�3�)n;(1�3�)�nj

= (! + � � h(!=�) + (1�3�) � (1��) � h(�=(1��))� o(1)) � n ;

where o(1) stands for an expression that goes to zero as n goes to in�nity. We now observe
that ! = � � (1�3�)� and that ! � 0 implies � � �=(1�3�). Hence, for every �xed rational
� 2 [0; 1=3] and every n such that �n is an integer,

(1=n) � log2K(n; �n) � sup
�
F (�; �)� o(1) ; (34)

where
F (�; �) = � � [1 + h((1=� � 3)�)] + (1�3�) � [(1��) � h(�=(1��))� �] ;

and the supremum in the right-hand side of (34) is taken over all rational � in the range 0 �
� � minf�=(1�3�); 1=2g. In fact, from the upper bound (33) it follows that the inequality
in (34) can be replaced by an equality. Furthermore, since the function F (�; �) is continuous
we have

lim inf
n!1

(1=n) � log2K(n; d�ne) = max
�

F (�; �) ;

where the maximum is taken over all real � 2 [0;minf�=(1�3�); 1=2g].

We now maximize the expression F (�; �) over real values of � 2 [0; 1=3] and � 2

[0;minf�=(1�3�); 1=2g]. By taking partial derivatives of F (�; �) with respect to � and �,
we get the equations

(23� � 4)(29� � 4)(8357�5 � 8357�4 + 3098�3 � 518�2 + 38� � 1) = 0

and

� =
� � (369�2 � 101� + 4)

1469�3 � 682�2 + 95� � 4
:

The maximum is attained for (�max; �max) � (0:216594; 0:248986), in which case

lim inf
n!1

(1=n) � log2K(n; tmax(n))

= lim inf
n!1

max
�

(1=n) � log2K(n; d�ne)

� sup
�

lim inf
n!1

(1=n) � log2K(n; d�ne)

= max
(�;�)

F (�; �) = F (�max; �max) � 0:581074
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(in fact, one can easily show that in the third step|where we change the order between
maximizing over � and taking the limit over n|the inequality can be replaced by an equality).
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