
1

Multi-Erasure Locally Recoverable Codes over
Small Fields: A Tensor Product Approach

Pengfei Huang, Member, IEEE, Eitan Yaakobi, Senior Member, IEEE,
and Paul H. Siegel, Life Fellow, IEEE

Abstract—Erasure codes play an important role in storage
systems to prevent data loss. In this work, we study a class
of erasure codes called Multi-Erasure Locally Recoverable
Codes (ME-LRCs) for storage arrays. Compared to previous
related works, we focus on the construction of ME-LRCs over
small fields. Our main contribution is a general construction
of ME-LRCs based on generalized tensor product codes, and
an analysis of their erasure-correcting properties. A decoding
algorithm tailored for erasure recovery is given, and correctable
erasure patterns are identified. We then prove that our
construction yields optimal ME-LRCs with a wide range of code
parameters, and present some explicit ME-LRCs over small
fields. Next, we show that generalized integrated interleaving
(GII) codes can be treated as a subclass of generalized tensor
product codes, thus defining the exact relation between these
codes. Finally, ME-LRCs are investigated in a probabilistic
setting. We prove that ME-LRCs based upon a generalized
tensor product construction can achieve the capacity of a
compound erasure channel consisting of a family of erasure
product channels.

Index Terms—Locally recoverable codes, small fields, tensor
product codes, capacity-achieving, compound channel.

I. INTRODUCTION

Recently, erasure codes with both local and global erasure-
correcting properties have received considerable attention [5],
[13], [25]–[27], [29], thanks to their promising application
in storage systems. The idea behind them is that when only
a few erasures occur, these erasures can be corrected fast
using only local parities. If the number of erasures exceeds
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the local erasure-correcting capability, then the global parities
are invoked.

In this paper, we consider erasure codes with both local
and global erasure-correcting capabilities for a ρ× n0 storage
array [5], where each row contains some local parities, and
additional global parities are distributed in the array. The
array structure is suitable for many storage applications.
For example, a storage array can represent a large-scale
distributed storage system consisting of a large number of
storage nodes spread over different geographical locations.
The storage nodes that are placed in the same location can
form a local storage cluster. Thus, each row of the storage
array can represent such a local storage cluster. Another
example is a redundant array of independent disks (RAID)
type of architecture for solid-state drives (SSDs) [5], [12].
In this scenario, a ρ× n0 storage array can represent a total
of ρ SSDs, each of which contains n0 flash memory chips.
Within each SSD, an erasure code is applied to these n0 chips
for local protection. In addition, erasure coding is also done
across all the SSDs for global protection of all the chips.
More specifically, let us give the formal definition of this
class of erasure codes as follows.

Definition 1. Consider a code C over a finite field Fq
consisting of ρ× n0 arrays such that:

1) Each row in each array in C belongs to a linear local code
C0 with length n0 and minimum distance d0 over Fq.

2) Reading the symbols of C row-wise, C is a linear code
with length ρn0, dimension k, and minimum distance d
over Fq.

Then, we say that C is a (ρ, n0, k; d0, d)q Multi-Erasure
Locally Recoverable Code (ME-LRC).

Thus, a (ρ, n0, k; d0, d)q ME-LRC can locally correct
d0 − 1 erasures in each row, and is guaranteed to correct
a total of d − 1 erasures anywhere in the array.

Our work is motivated by a recent work by Blaum
and Hetzler [5]. In their work, the authors studied ME-
LRCs where each row is a maximum distance separable
(MDS) code, and gave code constructions with field size
q > max{ρ, n0} using generalized integrated interleaving
(GII) codes [15], [32], [35]. Our Definition 1 follows from
and generalizes the definition of the codes in [5] by not
requiring each row to be an MDS code. There exist other
related works. The ME-LRCs in Definition 1 can be seen
as (r, δ) LRCs with disjoint repair sets. A code C is called
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an (r, δ) LRC [27] if for every coordinate there exists
a punctured code (i.e., a repair set) of C, with support
containing this coordinate, whose length is at most r+δ− 1,
and whose minimum distance is at least δ. Although the
existing constructions [27], [29] for (r, δ) LRCs with disjoint
repair sets can generate ME-LRCs as in Definition 1, they
use MDS codes as local codes and require a field size that is
at least as large as the code length. A recent work [3] gives
explicit constructions of (r, δ) LRCs over field Fq derived
from algebraic curves. These codes have disjoint repair sets
with size r + δ − 1 =

√
q or r + δ − 1 =

√
q + 1. Partial

MDS (PMDS) codes [4] are also related to but different from
ME-LRCs in Definition 1. In general, PMDS codes need
to satisfy stricter requirements than ME-LRCs. A ρ × n0
array code is called an (r; s) PMDS code if each row is an
[n0, n0 − r, r + 1]q MDS code and whenever any r locations
in each row are punctured, the resulting code is also an MDS
code with minimum distance s + 1. A construction of (r; s)
PMDS codes for all r and s with field size O(nρn0

0 ) was
given in [8]. More recently, a family of PMDS codes with
field size O(max{ρ, nr+s

0 }s) was presented in [10].
To the best of our knowledge, however, the construction

of optimal ME-LRCs over any small field (e.g., over a field
size less than the length of the local code, such as the
binary field) has not been fully explored and solved. The
goal of this paper is to study ME-LRCs over small fields.
We propose a general construction based on generalized
tensor product codes [20], [34], which were first utilized
in [19] to construct binary single-erasure LRCs that had been
considered in [13], [14], [17], [18], [26], [29], [31]. More
specifically, the contributions of this paper are as follows:

1) We extend our previous construction in [19] to the
scenario of multi-erasure LRCs over any field. As a result,
the construction in [19] can be seen as a special case of the
construction presented in this paper. In contrast to [5], our
construction does not require field size q > max{ρ, n0}, and
it can even generate binary ME-LRCs. We derive an upper
bound on the minimum distance of ME-LRCs. For 2d0 > d,
we show that our construction can produce ME-LRCs that
are optimal with respect to (w.r.t.) the upper bound on the
minimum distance.

2) We present an erasure decoding algorithm and its
corresponding correctable erasure patterns, which include the
pattern of any d − 1 erasures. We show that the ME-LRCs
from our construction based on Reed-Solomon (RS) codes
are optimal w.r.t. certain correctable erasure patterns.

3) So far the exact relation between GII codes [5], [32],
[35] and generalized tensor product codes has not been fully
investigated. We prove that GII codes are a subclass of
generalized tensor product codes. As a result, the parameters
of a GII code can be obtained by using the known properties
of generalized tensor product codes.

4) We present a new interpretation of ME-LRCs from
an information-theoretic perspective. Thanks to the locality
property of ME-LRCs, it is quite natural to speculate that a
(ρ, n0, k; d0, d)q ME-LRC might be suitable for an erasure
product channel that has ρ parallel local erasure channels.

Indeed, we show that the generalized tensor product structure
with some appropriate component codes (e.g., Reed-Muller
codes and Bose-Chaudhuri-Hocquenghem (BCH) codes) can
be used to obtain a sequence of ME-LRCs that achieve the
capacity of a compound erasure channel which comprises a
family of erasure product channels.

The remainder of the paper is organized as follows. In
Section II, We introduce notation used in the paper and
present bounds on the minimum distance of ME-LRCs.
In Section III, we present a general construction of ME-
LRCs. The erasure-correcting properties of these codes are
studied and an erasure decoding algorithm is described.
In Section IV, we present an optimal code construction
and give several explicit optimal ME-LRCs over different
fields. In Section V, we prove that GII codes are a subclass
of generalized tensor product codes. In Section VI, we
study capacity-achieving ME-LRCs for a compound erasure
channel. Section VII concludes the paper.

II. PRELIMINARIES

In this section, we first introduce some notation that will
be used throughout this paper, and then we derive field-size
dependent bounds on the minimum distance of ME-LRCs.
The upper bound obtained here will be used to prove the
optimality of our construction for ME-LRCs in the following
sections.

We use the notation [n] to denote the set {1, . . . , n}. For
a length-n vector v over Fq and a set I ⊆ [n], the vector vI
denotes the restriction of the vector v to the coordinates in
the set I , and wq(v) represents the Hamming weight of the
vector v over Fq. The transpose of a matrix H is written as
HT . For a set S , |S| represents the cardinality of the set. A
linear code C over Fq of length n, dimension k, and minimum
distance d will be denoted by C = [n, k, d]q. For a code with
only one codeword, the minimum distance is defined as ∞.

Now, we give an upper bound on the minimum distance
of a (ρ, n0, k; d0, d)q ME-LRC by extending the shortening
bound for LRCs in [7]. Bounds for other generalizations of
LRCs can be found in [1], [3], [30].

Let d(q)opt[n, k] denote the largest possible minimum distance
of a linear code of length n and dimension k over Fq, and let

k(q)opt[n, d] denote the largest possible dimension of a linear
code of length n and minimum distance d over Fq. Note
that for large enough field size q, from the Singleton bound,
d(q)opt[n, k] = n − k + 1 and k(q)opt[n, d] = n − d + 1.

Lemma 2. For any (ρ, n0, k; d0, d)q ME-LRC C, the
minimum distance d satisfies

d 6 min
06x6⌈ k

k∗ ⌉−1, x∈Z

{
d(q)opt[ρn0 − xn0, k − xk∗]

}
, (1)

and the dimension satisfies

k 6 min
06x6⌈ k

k∗ ⌉−1, x∈Z

{
xk∗ + k(q)opt[ρn0 − xn0, d]

}
, (2)

where k∗ = k(q)opt[n0, d0].
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Proof: The proof is based on the shortening argument
used in [7]. See Appendix A.

An asymptotic lower bound for ME-LRCs with local MDS
codes was given in [3]. Here, by simply adapting the Gilbert-
Varshamov (GV) bound [28], we derive the following GV-
like lower bound on ME-LRCs of finite length without
specifying local codes.

Lemma 3. A (ρ, n0, k;> d0,> d)q ME-LRC C exists if

d−2

∑
i=0

(
ρ(n0 − ⌈logq

(
∑d0−2

j=0 (n0−1
j )(q − 1) j)⌉)− 1

i

)
(q − 1)i

< qρ(n0−⌈logq

(
∑

d0−2
j=0 (

n0−1
j )(q−1) j

)
⌉)−k .

(3)

Proof: See Appendix B.

III. ME-LRCS FROM GENERALIZED TENSOR PRODUCT
CODES: CONSTRUCTION AND DECODING

Tensor product codes, first proposed by Wolf in [34],
are a family of binary error-correcting codes defined by
a parity-check matrix that is the tensor product of the
parity-check matrices of two constituent codes. Later, they
were generalized in [20]. In this section, we first introduce
generalized tensor product codes over a finite field Fq. Then,
we give a general construction of ME-LRCs from generalized
tensor product codes. We determine the minimum distance
of the constructed ME-LRCs, describe a decoding algorithm
tailored for erasure correction, and study the corresponding
correctable erasure patterns.

A. Generalized Tensor Product Codes over Fq

We start by presenting the tensor product operation of two
matrices H

′
and H

′′
. Let H

′
be the parity-check matrix of

a code with length n′ and dimension n′ − v over Fq. The
matrix H

′
can be considered as a v × n′ matrix over Fq or

as a 1× n′ matrix of elements from Fqv . Let H
′

be the vector
H

′
= [h

′
1 h

′
2 · · · h

′
n′ ], where h

′
j, 1 6 j 6 n′, are elements of

Fqv . Let H
′′

be the parity-check matrix of a code of length
ℓ and dimension ℓ− λ over Fqv . We denote H

′′
by

H
′′
=

 h
′′
11 · · · h

′′
1ℓ

...
. . .

...
h
′′
λ1 · · · h

′′
λℓ

 ,

where h
′′
i j, 1 6 i 6 λ and 1 6 j 6 ℓ, are elements of Fqv .

The tensor product of the matrices H
′′

and H
′

is defined
as

HTP = H
′′ ⊗

H
′
=

 h
′′
11H

′ · · · h
′′
1ℓH

′

...
. . .

...
h
′′
λ1H

′ · · · h
′′
λℓH

′

 ,

where h
′′
i jH

′
= [h

′′
i jh

′
1 h

′′
i jh

′
2 · · · h

′′
i jh

′
n′ ], 1 6 i 6 λ and

1 6 j 6 ℓ, and the products of elements are calculated

according to the rules of multiplication for elements over Fqv .
The matrix HTP will be considered as a vλ× n′ℓ matrix of
elements from Fq, thus defining a tensor product code over
Fq.

Lemma 4. The rank of the matrix HTP over Fq is vλ.

Proof: Without loss of generality, assume that the first
λ columns of H

′′
are linearly independent. Thus, we can

transform H
′′

into the form:

Ĥ
′′
=


1 0 · · · 0 ĥ

′′
1,λ+1 · · · ĥ

′′
1ℓ

0 1 · · · 0 ĥ
′′
2,λ+1 · · · ĥ

′′
2ℓ

...
...

. . .
...

...
. . .

...
0 0 · · · 1 ĥ

′′
λ,λ+1 · · · ĥ

′′
λℓ

 ,

where the first λ columns form the identity matrix. Then, by
elementary row operations, the matrix HTP = H

′′ ⊗
H

′
can

be transformed into the form:

ĤTP =


H

′
0 · · · 0 ĥ

′′
1,λ+1H

′ · · · ĥ
′′
1ℓH

′

0 H
′ · · · 0 ĥ

′′
2,λ+1H

′ · · · ĥ
′′
2ℓH

′

...
...

. . .
...

...
. . .

...
0 0 · · · H

′
ĥ
′′
λ,λ+1H

′ · · · ĥ
′′
λℓH

′

 .

Since the left part of ĤTP is a block diagonal matrix, the
rank of ĤTP is vλ. The matrices HTP and ĤTP have the
same rank, so the rank of HTP is vλ.

We provide an example to illustrate the tensor product
operations described above.

Example 1. (cf. [34]) Let α be a primitive element of F4.
Let H

′′
be the following parity-check matrix over F4 for a

[5, 3, 3]4 code,

H
′′
=

[
α0 0 α0 α0 α0

0 α0 α0 α1 α2

]
.

Let H
′

be the following parity-check matrix over F2 for a
[3, 1, 3]2 Hamming code,

H
′
=

[
1 0 1
0 1 1

]
.

Representing the elements of F4 as α0 =

[
1
0

]
, α1 =[

0
1

]
, α2 =

[
1
1

]
, and 0 =

[
0
0

]
, we have

HTP = H
′′ ⊗

H
′

=

[
α0 α1 α2 0 0 0 α0 α1 α2 α0 α1 α2 α0 α1 α2

0 0 0 α0 α1 α2 α0 α1 α2 α1 α2 α0 α2 α0 α1

]
.

Using the same symbol-to-binary vector mapping, we
represent HTP over F2 as

HTP =

 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1
0 1 1 0 0 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 1 1 0 1 1 1 1 0 1 0 1

 ,

which defines a binary [15, 11, 3]2 code. �



4

Our construction of ME-LRCs is based on generalized
tensor product codes [20]. Define the matrices H

′
i and H

′′
i for

i = 1, 2, . . . ,µ as follows. The matrix H
′
i is a vi × n′ matrix

over Fq such that the (v1 + v2 + · · ·+ vi)× n′ matrix

Bi =


H

′
1

H
′
2...

H
′
i

 (4)

is a parity-check matrix of an [n′, n′ − v1 − v2 − · · · −
vi , d′i]q code C ′

i , where d′1 6 d′2 6 · · · 6 d′i. The matrix
H

′′
i is a λi × ℓ matrix over Fqvi , which is a parity-check

matrix of an [ℓ, ℓ− λi , δi]qvi code C ′′
i .

We define a µ-level generalized tensor product code over
Fq as a linear code having a parity-check matrix over Fq in
the form of the following µ-level tensor product structure

H =


H

′′
1
⊗

H
′
1

H
′′
2
⊗

H
′
2...

H
′′
µ

⊗
H

′
µ

 . (5)

As with the matrix HTP, each level in the matrix H is
obtained by tensor product operations over the extension field
Fqvi . In general, the tensor product computational complexity
varies from one level to another, and the computational
complexity is higher for the level with a larger field size qvi .
As a result, a smaller vi is preferred in practice. The rank
of H over Fq is ∑µ

i=1 viλi, with level i contributing viλi.
This can be shown similarly by using the proof technique
of Lemma 4 for each level of H. We denote this code
by CµGTP. Its length is nt = n′ℓ and the dimension is
kt = nt − ∑µ

i=1 viλi.
By adapting Theorem 2 in [20] from the field F2 to Fq,

we directly obtain the following theorem on the minimum
distance of CµGTP over Fq.

Theorem 5. The minimum distance dt of a generalized tensor
product code CµGTP over Fq satisfies

dt > min{δ1, δ2d′1, δ3d′2, . . . , δµd′µ−1, d′µ}.

Proof: The proof is given in Appendix C for
completeness.

B. Construction of ME-LRCs

Now, we present a general construction of ME-LRCs based
on generalized tensor product codes, and also determine the
corresponding code parameters.

Construction A

Step 1: Choose vi × n′ matrices H
′
i over Fq and λi × ℓ

matrices H
′′
i over Fqvi , for i = 1, 2, . . . ,µ, which satisfy

the following two properties:
1) The parity-check matrix H

′′
1 = Iℓ×ℓ, i.e., the ℓ× ℓ identity

matrix.

2) The matrices H
′
i (equivalently, Bi), 1 6 i 6 µ, and H

′′
j ,

2 6 j 6 µ, are chosen such that d′µ 6 δ jd′j−1, for j =
2, 3, . . . ,µ.
Step 2: Generate a parity-check matrix H over Fq according
to (5) with the matrices H

′
i and H

′′
i , for i = 1, 2, . . . ,µ. The

constructed code corresponding to the parity-check matrix H
is referred to as CA.

Note that in Construction A, the parity-check matrix H
′′
1 is

chosen to be the identity matrix to endow the code CA with
local erasure-correcting capability.

Theorem 6. The code CA is a (ρ, n0, k; d0, d)q ME-LRC with
parameters ρ = ℓ, n0 = n′, k = n′ℓ− ∑µ

i=1 viλi, d0 = d′1,
and d = d′µ .

Proof: The code parameters ρ, n0, k, and d0 can be
easily determined directly from Construction A. We now
prove that d = d′µ .

Since δ1 = ∞ (H
′′
1 is the identity matrix) and d′µ 6 δid′i−1

for all i = 2, 3, . . . ,µ, Theorem 5 implies d > d′µ .

Now, we show that d 6 d′µ . For i = 1, 2, . . . ,µ, let H
′
i =

[h
′
1(i), . . . , h

′
n′(i)] over Fqvi , and let [h

′′
11(i), . . . , h

′′
λi1

(i)]T

over Fqvi be the first column of H
′′
i . Since the code

with the parity-check matrix Bµ has minimum distance d′µ ,
there exist d′µ columns of Bµ , say in the set of positions
J = {b1, b2, . . . , bd′µ}, which are linearly dependent; that

is, ∑ j∈J α jh
′
j(i) = 0, for some α j ∈ Fq, for all

i = 1, 2, . . . ,µ. Thus, we have ∑ j∈J α jh
′′
p1(i)h

′
j(i) =

h
′′
p1(i)

(
∑ j∈J α jh

′
j(i)

)
= 0, for p = 1, 2, . . . , λi and i =

1, 2, . . . ,µ. That is, the columns in positions b1, b2, . . . , bd′µ
of H are linearly dependent.

The following example illustrates Construction A.

Example 2. Let H
′
1 = [1 1 1 1 1 1 1] over F2, and

H
′
2 =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


over F2. The corresponding code C ′

1 is the [7, 6, 2]2 single
parity-check code, and C ′

2 is the even subcode of the [7, 4, 3]2
Hamming code. We also choose

H
′′
1 =

 1 0 0
0 1 0
0 0 1


over F2 and H

′′
2 = [1 1 1] over F8. Hence, in this

construction, we use the following parameters: n′ = 7,
ℓ = 3, v1 = 1, v2 = 3, λ1 = 3, λ2 = 1, d′1 = 2, d′2 = 4,
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and δ2 = 2. The binary parity-check matrix H from (5) is

H =

[
H

′′
1
⊗

H
′
1

H
′′
2
⊗

H
′
2

]

=


1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1
1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1

 .

According to Construction A, the constructed binary code
CA corresponding to the parity-check matrix H is a
(3, 7, 15; 2, 4)2 ME-LRC. �

The multi-level structure of Construction A endows fine
granularity and provides flexible code parameters. The
following example shows that the three-level construction is
more flexible than the two-level one.

Example 3. First, let us consider the three-level construction
(i.e., µ = 3). Consider a chain of nested binary extended
BCH codes: C ′

3 = [32, 16, 8]2 ⊂ C ′
2 = [32, 26, 4]2 ⊂ C ′

1 =

[32, 31, 2]2. Choose H
′′
1 to be the 5 × 5 identity matrix. To

satisfy the condition in Construction A that d′3 6 δ jd′j−1,

for j = 2, 3, we have δ2 > 4 and δ3 > 2. Choose H
′′
2

to be a parity-check matrix of a [5, 2, 4]25 code and H
′′
3

to be a parity-check matrix of a [5, 4, 2]210 code. From
Construction A, the resulting code CA is a (ρ = 5, n0 =
32, k = 130; d0 = 2, d = 8)2 ME-LRC.

Now, for the two-level construction (i.e., µ = 2), consider
two nested binary extended BCH codes: C ′

2 = [32, 16, 8]2 ⊂
C ′

1 = [32, 31, 2]2. Note that here C ′
2 is the same as C ′

3 in the
three-level construction above. Choose H

′′
1 to be the 5 × 5

identity matrix. To satisfy the condition in Construction A
that d′2 6 δ2d′1, we have δ2 > 4. Choose H

′′
2 to be a parity-

check matrix of a [5, 2, 4]215 code. The resulting code CA
from Construction A is a (ρ = 5, n0 = 32, k = 110; d0 =
2, d = 8)2 ME-LRC.

The codes from the three-level construction and the two-
level construction have the same code parameters except that
the dimension of the latter one is smaller. However, in the
three-level construction, if we replace H

′′
3 with a parity-check

matrix of a [5, 2, 4]210 code, then the resulting code CA
becomes a (ρ = 5, n0 = 32, k = 110; d0 = 2, d = 8)2
ME-LRC which has the same code parameters as the one
obtained from the two-level construction. �

C. Erasure Decoding and Correctable Erasure Patterns

We present a decoding algorithm for the ME-LRC CA
obtained from Construction A, tailored for erasure correction.

Let the symbol ? represent an erasure and “e” denote a
decoding failure. The erasure decoder DA : (Fq ∪{?})n′ℓ →
CA ∪ {“e”} for an ME-LRC CA consists of two kinds of
component decoders D′

i and D′′
i for i = 1, 2, . . . ,µ described

below.

1) The decoder for a coset of the code C ′
i with parity-check

matrix Bi, i = 1, 2, . . . ,µ, is denoted by

D′
i :(Fq ∪ {?})n′ × (Fq ∪ {?})∑i

j=1 v j → (Fq ∪ {?})n′
.

It uses the following decoding rule: for a length-n′ input
vector y′, and a length-∑i

j=1 v j syndrome vector s′ without

erasures, if y′ agrees with exactly one codeword c′ ∈ C ′
i + e

on the non-erased entries with values in Fq, where the vector
e is a coset leader determined by both the code C ′

i and the
syndrome vector s′, i.e., s′ = eBT

i , then D′
i(y′, s′) = c′;

otherwise, D′
i(y′, s′) = y′. Therefore, if the length-n′ input

vector y′ is a codeword in C ′
i + e with no more than d′i − 1

erasures and the syndrome vector s′ contains no erasures,
then the decoder D′

i can return the correct codeword.
2) The decoder for the code C ′′

i with parity-check matrix
H

′′
i , i = 1, 2, . . . ,µ, is denoted by

D′′
i : (Fqvi ∪ {?})ℓ → (Fqvi ∪ {?})ℓ.

It uses the following decoding rule: for a length-ℓ input vector
y′′, if y′′ agrees with exactly one codeword c′′ ∈ C ′′

i on the
non-erased entries with values in Fqvi , then D′′

i (y′′) = c′′;
otherwise, D′′

i (y′′) = y′′. Therefore, if the length-ℓ input
vector y′′ is a codeword in C ′′

i with no more than δi − 1
erasures, then the decoder D′′

i can successfully return the
correct codeword.

Note that the decoders D′
i and D′′

i introduced above are
maximum-likelihood (ML) decoders.

The erasure decoder DA for the code CA is summarized in
Algorithm 1 below. Let the input word of length n′ℓ for the
decoder DA be y = (y1, y2, . . . , yℓ), where each component
yi ∈ (Fq ∪ {?})n′

, i = 1, . . . , ℓ. The vector y is an erased
version of a codeword c = (c1, c2, . . . , cℓ) ∈ CA.

Algorithm 1: Decoding Procedure of Decoder DA

Input: received word y = (y1, y2, . . . , yℓ).
Output: codeword c ∈ CA or a decoding failure “e”.
1. Let s1

j = 0, for j = 1, 2, . . . , ℓ.

2. ĉ = (ĉ1, . . . , ĉℓ) =
(
D′

1(y1, s1
1), . . . ,D′

1(yℓ, s1
ℓ )
)

.
3. Let F = { j ∈ [ℓ] : ĉ j contains ?}.
4. for i = 2, . . . ,µ

• If F ̸= ∅, do the following steps; otherwise go to step 5.
• (si

1, . . . , si
ℓ) = D′′

i

(
ĉ1H

′T
i , . . . , ĉℓH

′T
i

)
.

• ĉ j = D′
i

(
ĉ j, (s1

j , . . . , si
j)
)

for j ∈ F ; ĉ j remains the
same for j ∈ [ℓ]\F .

• Update F = { j ∈ [ℓ] : ĉ j contains ?}.
end

5. If F = ∅, let c = ĉ and output c; otherwise return “e”.

In Algorithm 1, we use the following rules for the
operations which involve the symbol ?:

1) Addition +: for any element γ ∈ Fq ∪ {?}, γ+? =?.
2) Multiplication ×: for any element γ ∈ Fq ∪ {?}\{0},

γ×? =?, and 0×? = 0.
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3) If a length-n vector x, x ∈ (Fq ∪ {?})n, contains an
entry ?, then x is considered as the symbol ? in the set Fqn ∪
{?}. Similarly, the symbol ? in the set Fqn ∪ {?} is treated
as a length-n vector whose entries are all ?.

In Algorithm 1, lines 1 to 3 correspond to correcting
erasures locally, while the “for loop” at line 4 (i.e., when
i > 2) corresponds to global erasure correction. We refer to
the ith loop in the “for loop” as the ith level of decoding.

To describe correctable erasure patterns, we use the
following notation. Let we(v) denote the number of erasures
? in the vector v. For a received word y = (y1, y2, . . . , yℓ),
let Nτ = |{ym : we(ym) > d′τ , 1 6 m 6 ℓ}| for
1 6 τ 6 µ.

Theorem 7. The decoder DA for the (ρ, n0, k; d0, d)q ME-
LRC CA can correct any received word y that satisfies the
following condition:

Nτ 6 δτ+1 − 1, ∀ 1 6 τ 6 µ, (6)

where δµ+1 is defined to be 1.

Proof: See Appendix D.
The following corollary follows from Theorem 7.

Corollary 8. The decoder DA for the (ρ, n0, k; d0, d)q ME-
LRC CA can correct any received word y with less than d
erasures.

Proof: See Appendix E.
We use the following example to illustrate Algorithm 1.

Example 4. Consider the binary (ρ = 3, n0 = 7, k =
15; d0 = 2, d = 4)2 ME-LRC CA constructed in Example 2.
It consists of three sub-blocks, each of length 7. It can locally
correct 1 erasure in each sub-block, and is guaranteed to
correct 3 erasures globally.

Moreover, some erasure patterns with more than 3 (i.e.,
d − 1) erasures can be corrected with Algorithm 1.
For instance, consider the codeword c of CA:
c = (1 1 0 0 0 0 0, 0 0 0 0 1 1 0, 0 0 0 0 0 0 0).
The erased word y = (y1, y2, y3) =
(1 ? 0 0 0 0 0, ? 0 ? 0 ? 1 0, 0 0 ? 0 0 0 0)
with 5 erasures can be decoded by Algorithm 1. More
specifically, in Algorithm 1, in step 1, we have s1

j = 0
for all j = 1, 2, 3. In step 2, we locally correct y1 and
y3, but y2 cannot be recovered and is left for global
correction. Thus, F = {2} in step 3. In step 4, we first
obtain s2

2 = (0 1 1) due to s2
1 = (0 1 1), s2

3 = (0 0 0), and
s2

1 + s2
2 + s2

3 = 0. Then, using s1
2 = 0 and s2

2 = (0 1 1),
we can correct y2 which has 3 erasures. �

IV. OPTIMAL CONSTRUCTION AND EXPLICIT ME-LRCS
OVER SMALL FIELDS

In this section, we study the optimality of Construction A,
and also present several explicit ME-LRCs that are optimal
over different fields.

A. Optimal Construction

We show how to construct ME-LRCs which are optimal
w.r.t. the bound (1) by adding more constraints to
Construction A. To this end, we specify the choice of the
matrices in Construction A. This specification, referred to as
Design I, is as follows.

Design I: Matrix Specifications

1) H
′
1 is the parity-check matrix of an [n′, n′ − v1, d′1]q code

which satisfies k(q)opt[n
′, d′1] = n′ − v1.

2) Bµ is the parity-check matrix of an [n′, n′ − ∑µ
i=1 vi , d′µ ]q

code with d(q)opt[n
′, n′ − ∑µ

i=1 vi] = d′µ .
3) The minimum distances satisfy d′µ 6 2d′1.
4) H

′′
i is an all-one vector of length ℓ over Fqvi , i.e., the

parity-check matrix of a linear code with minimum distance
δi = 2, for all i = 2, . . . ,µ.

Theorem 9. The code CA from Construction A with Design I
is a (ρ = ℓ, n0 = n′, k = n′ℓ − v1ℓ − ∑µ

i=2 vi ; d0 =
d′1, d = d′µ)q ME-LRC, which is optimal with respect to the
bound (1).

Proof: From Theorem 6, the code parameters ρ, n0, k,
d0, and d can be determined. We have k∗ = k(q)opt[n

′, d′1] =
n′ − v1. Setting x = ℓ− 1, we get

d 6 min
06x6⌈ k

k∗ ⌉−1

{
d(q)opt[ρn0 − xn0, k − xk∗]

}
6d(q)opt[ℓn′ − (ℓ− 1)n′, k − (ℓ− 1)k∗]

=d(q)opt[n
′, n′ −

µ

∑
i=1

vi] = d′µ .

This proves that CA achieves the bound (1).
Theorem 9 shows that by properly specifying the (short)

component codes used in Construction A, the optimality of
the resulting (long) ME-LRC can be guaranteed.

B. Explicit ME-LRCs from Construction A

Our construction is very flexible and can generate many
ME-LRCs over different fields. In the following, we present
several examples.
1) ME-LRCs with local extended BCH codes over F2

From the structure of BCH codes [28], there exists a chain
of nested binary extended BCH codes: C3 = [2m, 2m − 1 −
3m, 8]2 ⊂ C2 = [2m, 2m − 1 − 2m, 6]2 ⊂ C1 = [2m, 2m −
1 − m, 4]2, for m > 5.

Let the matrices B1, B2, and B3 be the parity-check
matrices of C1, C2, and C3, respectively.

Example 5. For µ = 3, in Construction A, we use the above
matrices B1, B2, and B3. We also choose H

′′
2 and H

′′
3 to be

the all-one vector of length ℓ over F2m .
From Theorem 6, the corresponding (ℓ, n0, k; d0, d)2 ME-

LRC CA has parameters n0 = 2m, k = 2mℓ− (m + 1)ℓ−



7

2m, d0 = 4, and d = 8. Since the extended Hamming code
C1 has an optimal dimension and the extended triple-error-
correcting BCH code C3 has an optimal minimum distance,
this code satisfies the requirements of Design I. Thus, from
Theorem 9, it is optimal w.r.t. the bound (1).

The code CA has ℓ sub-blocks. Any sub-block with less
than 4 erasures can be corrected locally, and any 7 (i.e.,
d − 1) erasures are guaranteed to be recovered. Moreover,
any erasure pattern is correctable if it satisfies: 1) the number
of sub-blocks that have more than 3 erasures is less than 2,
and 2) no sub-block has more than 7 erasures. For instance,
consider the erasure pattern where only the first three sub-
blocks have erasures, and the first, second, and third sub-
blocks have 3, 3, and 6 erasures, respectively. This erasure
pattern has a total of 12 erasures. Although it has more than
7 (i.e., d − 1) erasures, it is still correctable. In addition,
for some erasure patterns, the decoding can be completed at
the second level in Algorithm 1. One such erasure pattern is
where only the first three sub-blocks have erasures and the
erasure numbers are 2, 2, and 5, respectively.

The advantage of using the three-level (or similarly multi-
level) instead of the two-level construction is that the three-
level structure endows fine granularity; that is, it increases
the erasure-correcting capability as well as the decoding
complexity gradually. Thanks to this property, some erasure
patterns as presented above can be corrected during the
second level of decoding in Algorithm 1 and thus the
decoding is terminated earlier (i.e., skipping the third level
of decoding), resulting in a smaller decoding latency. �

2) ME-LRCs with local algebraic geometry codes over F4
Algebraic geometry codes usually have large minimum

distance and often possess a nested structure [33]. We
use a class of algebraic geometry codes called Hermitian
codes [36] to construct ME-LRCs.

From the construction of Hermitian codes [36], there
exists a chain of nested 4-ary Hermitian codes: CH(1) =
[8, 1, 8]4 ⊂ CH(2) = [8, 2, 6]4 ⊂ CH(3) = [8, 3, 5]4 ⊂
CH(4) = [8, 4, 4]4 ⊂ CH(5) = [8, 5, 3]4 ⊂ CH(6) =
[8, 6, 2]4 ⊂ CH(7) = [8, 7, 2]4.

Now, let the matrices B1, B2, B3, and B4 be the parity-
check matrices of CH(4), CH(3), CH(2), and CH(1),
respectively. Let H

′′
i , i = 2, 3, 4, be the all-one vector of

length ℓ over F4.

Example 6. For µ = 2, in Construction A, we use the above
matrices B1, B2, and H

′′
2 . From Theorem 6, the corresponding

(ℓ, n0, k; d0, d)4 ME-LRC CA has parameters n0 = 8, k =
4ℓ− 1, d0 = 4, and d = 5.

For µ = 3, in Construction A, we use the above matrices
B1, B2, B3, H

′′
2 , and H

′′
3 . From Theorem 6, the corresponding

(ℓ, n0, k; d0, d)4 ME-LRC CA has parameters n0 = 8, k =
4ℓ− 2, d0 = 4, and d = 6.

For µ = 4, in Construction A, we use the above matrices
Bi, i = 1, . . . , 4, and H

′′
j , j = 2, 3, 4. From Theorem 6, the

corresponding (ℓ, n0, k; d0, d)4 ME-LRC CA has parameters
n0 = 8, k = 4ℓ− 3, d0 = 4, and d = 8.

All of the above three families of ME-LRCs over F4 are
optimal w.r.t. the bound (1). �

3) ME-LRCs with local singly-extended Reed-Solomon codes
over Fq

Let n′ 6 q and α be a primitive element of Fq. We choose
H

′
1 to be the parity-check matrix of an [n′, n′ − d′1 + 1, d′1]q

singly-extended RS code, namely

H
′
1 =


1 1 · · · 1 1
1 α · · · αn′−2 0
...

...
. . .

...
...

1 αd′1−2 · · · α(n′−2)(d′1−2) 0

 .

For i = 2, 3, . . . ,µ, we choose H′
i to be

H
′
i =

 1 αd′i−1−1 · · · α(n′−2)(d′i−1−1) 0
...

...
. . .

...
...

1 αd′i−2 · · · α(n′−2)(d′i−2) 0

 ,

where d′1 < d′2 < · · · < d′µ . We also require that

δi = ⌈
d′µ

d′i−1
⌉ = ⌈

d′µ
d′i−1 + 1

⌉= · · ·= ⌈
d′µ

d′i − 1
⌉, ∀i = 2, . . . ,µ

and δ2 > δ3 > · · · > δµ .
For i = 2, 3, . . . ,µ, let H

′′
i be the parity-check matrix of

an [ℓ, ℓ − δi + 1, δi = ⌈ d′µ
d′i−1

⌉]qvi MDS code, which exists

whenever ℓ 6 qvi , where vi = d′i − d′i−1. Note that for an
MDS code with minimum distance 2, the code length can be
arbitrarily long.

Example 7. We use the above chosen matrices H′
i and H′′

i for
Construction A. The corresponding (ℓ, n′, k; d0, d)q ME-LRC

CA has parameters k = (n′ − d′1 + 1)ℓ − ∑µ
i=2(⌈

d′µ
d′i−1

⌉ −
1)(d′i − d′i−1), d0 = d′1, and d = d′µ; the field size q satisfies

q > max{q′, n′}, where q′ = maxi=2,...,µ{
⌈
ℓ

1
d′i−d′i−1

⌉
}.

When µ = 2 and d′1 < d′2 6 2d′1, the corresponding
(ℓ, n′, k; d0, d)q ME-LRC CA has parameters k = (n′ − d′1 +
1)ℓ− (d′2 − d′1), d0 = d′1, and d = d′2; the field size q needs
to satisfy q > n′. Since CA satisfies the requirements of
Design I, from Theorem 9, it is optimal w.r.t. the bound (1).

�

The following theorem shows that the µ-level ME-LRC
CA constructed in Example 7 is optimal in the sense of
possessing the largest possible dimension among all codes
with the same erasure-correcting capability.

Theorem 10. Let C be a code of length ℓn′ and dimension
k over Fq. Each codeword in C consists of ℓ sub-blocks,
each of length n′. Assume that C corrects all erasure patterns
satisfying the condition in (6), where δτ = ⌈ d′µ

d′τ−1
⌉ for

2 6 τ 6 µ. Then, the dimension satisfies k 6 (n′ − d′1 +

1)ℓ− ∑µ
i=2(⌈

d′µ
d′i−1

⌉ − 1)(d′i − d′i−1).

Proof: The proof is by contradiction.
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Let each codeword in C correspond to an ℓ× n′ array. We
index the coordinates of the array from 1 to ℓn′, proceeding
from left to right within each row, and taking the rows from
top to bottom . Let I1 be the set of coordinates defined by
I1 = {(i − 1)n′ + j : δ2 − 1 < i 6 ℓ, 1 6 j 6 d′1 − 1}.
For 2 6 τ 6 µ, let Iτ be the set of coordinates given by
Iτ = {(i − 1)n′ + j : δτ+1 − 1 < i 6 δτ − 1, 1 6 j 6
d′τ − 1}, where δµ+1 is defined to be 1. Let I be the set of
all the coordinates of the array.

By calculation, we have |I\(I1 ∪I2 ∪ · · · ∪ Iµ)| = (n′−
d′1 + 1)ℓ− ∑µ

i=2(⌈
d′µ

d′i−1
⌉ − 1)(d′i − d′i−1). Now, assume that

k > (n′ − d′1 + 1)ℓ− ∑µ
i=2(⌈

d′µ
d′i−1

⌉ − 1)(d′i − d′i−1). Then,

there exist at least two distinct codewords c′ and c′′ in C that
agree on the coordinates in the set I\(I1 ∪ I2 ∪ · · · ∪ Iµ).
We erase the values on the coordinates in the set I1 ∪ I2 ∪
· · · ∪ Iµ of both c′ and c′′. This erasure pattern satisfies
the condition in (6). Since c′ and c′′ are distinct, this erasure
pattern is uncorrectable. Thus, our assumption that k > (n′−
d′1 + 1)ℓ− ∑µ

i=2(⌈
d′µ

d′i−1
⌉ − 1)(d′i − d′i−1) is violated.

Remark 1. The construction by Blaum and Hetzler [5] based
on GII codes cannot generate the ME-LRCs constructed in
Examples 5 and 6. For the ME-LRC in Example 7, since the
local code is the singly-extended RS code, the construction
in [5] can also be used to produce an ME-LRC that has the
same code parameters ρ, n0, k, d0 and d as those of the ME-
LRC CA from our construction. However, the construction
in [5] requires the field size q to satisfy q > max{ℓ, n′},
which in general is larger than that in our construction.

V. RELATION TO GENERALIZED INTEGRATED
INTERLEAVING CODES

Integrated interleaving (II) codes were first introduced
in [15] as a two-level error-correcting scheme for data storage
applications, and were then extended in [32] and more
recently in [35] as generalized integrated interleaving (GII)
codes for multi-level data protection. In [5], [37], GII codes
were utilized for local erasure recovery.

The main difference between GII codes and generalized
tensor product codes is that a generalized tensor product code
over Fq is defined by operations over the base field Fq and
its extension fields, as shown in (5); in contrast, a GII code
over Fq is defined by operations only over the field Fq. As
a result, generalized tensor product codes are more flexible
than GII codes, and generally GII codes cannot be used to
construct ME-LRCs over very small fields, e.g., the binary
field.

The goal of this section is to study the exact relation
between generalized tensor product codes and GII codes. We
will show that GII codes are in fact a subclass of generalized
tensor product codes. The idea is to reformulate the parity-
check matrix of a GII code into the form of a parity-check
matrix of a generalized tensor product code. Establishing
this relation allows some code properties of GII codes to
be obtained directly from known results about generalized

tensor product codes. We start by considering II codes, the
two-level case of GII codes, to illustrate our idea.

A. Integrated Interleaving Codes

We take our definition of II codes from [15]. Let Ci, i =
1, 2, be [n, ki , di]q linear codes over Fq such that C2 ⊂ C1
and d2 > d1. An II code CI I is defined as follows:

CI I =

{
c = (c0, c1, . . . , cm−1) : ci ∈ C1, 0 6 i < m,

and
m−1

∑
i=0

αbici ∈ C2, b = 0, 1, . . . ,γ − 1
}

,
(7)

where α is a primitive element of Fq and γ < m 6 q − 1.
According to the above definition, it is known that the

parity-check matrix of CI I is

HI I =

[
I

⊗
H1

Γ2
⊗

H2

]
, (8)

where
⊗

denotes the Kronecker product. The matrices H1

and
[

H1
H2

]
over Fq are the parity-check matrices of C1 and

C2, respectively; the matrix I over Fq is the m × m identity
matrix; and the matrix Γ2 over Fq is the parity-check matrix
of an [m, m −γ,γ + 1]q code with the following form

Γ2 =


1 1 · · · 1
1 α · · · αm−1

1 α2 · · · α2(m−1)

...
...

. . .
...

1 α(γ−1) · · · α(γ−1)(m−1)

 . (9)

Remark 2. The parity-check matrix HI I over Fq in (8) of CI I
is obtained by operations over the same field Fq. In contrast,
the parity-check matrix H over Fq in (5) of a generalized
tensor product code is obtained by operations over both the
base field Fq and its extension fields.

Remark 3. In general, the codes C1 and C2 in (7) are chosen
to be RS codes [15]. If C1 and C2 are chosen to be binary
codes, then m can only be m = 1.

To see the relation between II codes and generalized tensor
product codes, we reformulate HI I in (8) by splitting the
rows of H2, producing the following form,

HI I =


I

⊗
H1

Γ2
⊗

H2(1)
Γ2

⊗
H2(2)

...
...

...
Γ2

⊗
H2(k1 − k2)

 . (10)

Here, the matrix H1 over Fq is the parity-check matrix of
C1 and is treated as a vector over the extension field Fqn−k1 ;
correspondingly, the matrix I is treated as the m×m identity
matrix over Fqn−k1 . For 1 6 i 6 k1 − k2, H2(i) over Fq
represents the ith row of H2, and Γ2 over Fq is the matrix
in (9).
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Now, referring to the matrix in (5), the matrix in (10) can
be interpreted as a parity-check matrix of a (1 + k1 − k2)-
level generalized tensor product code over Fq. Thus, we
conclude that an II code is a generalized tensor product code.
Using the properties of generalized tensor product codes, we
can directly obtain the following result, which was proved
in [15] in an alternative manner.

Lemma 11. The code CI I is a linear code over Fq of length
N = nm, dimension K = (m − γ)k1 + γk2, and minimum
distance D > min{(γ + 1)d1, d2}.

Proof: For 1 6 i 6 k1 − k2, let the following parity-
check matrix 

H1
H2(1)
...
H2(i)


define an [n, k1 − i, d2,i]q code. It is clear that d1 6 d2,1 6
d2,2 6 · · · 6 d2,k1−k2 = d2.

From the properties of generalized tensor product codes,
the redundancy is N − K = nm − K = (n − k1)m +
γ(k1 − k2); that is, the dimension is K = k1(m −
γ) + k2γ. Using Theorem 5, the minimum distance is
D > min

{
d1(γ + 1), d2,1(γ + 1), . . . , d2,k1−k2−1(γ +

1), d2,k1−k2

}
= min

{
(γ + 1)d1, d2

}
.

B. Generalized Integrated Interleaving Codes

We extend the idea used in the previous subsection to the
more general case of GII codes. We use the definition of GII
codes from [35] for consistency.

Let Ci, i = 0, 1, . . . ,γ, be [n, ki , di]q codes over Fq such
that

Cis = · · · = Cis−1+1 ⊂ Cis−1 = · · · = Cis−2+1

⊂ · · · ⊂ Ci1 = · · · = C1 ⊂ C0,
(11)

where i0 = 0, is = γ, and i0 6 i1 6 · · · 6 is. The minimum
distances satisfy d0 6 d1 6 · · · 6 dγ . A GII code CGII is
defined as:

CGII =

{
c = (c0, c1, . . . , cm−1) : ci ∈ C0, 0 6 i < m,

and
m−1

∑
i=0

αbici ∈ Cγ−b, b = 0, 1, . . . ,γ − 1
}

,

(12)

where α is a primitive element of Fq and γ < m 6 q − 1.
We will use several matrices in the representation of the

parity-check matrix of CGII . Let the matrix I over Fq be the
m × m identity matrix. Let H0 over Fq be the parity-check

matrix of C0. For 1 6 j 6 s, let the matrix
[

H0
Hi j

]
over Fq

represent the parity-check matrix of Ci j , where Hi j has the
form

Hi j =


Hi1\i0
Hi2\i1

...
Hi j\i j−1

 .

The size of the submatrix Hi j\i j−1
in Hi j is (ki j−1 − ki j)× n.

For any i 6 j, let the matrix Γ(i, j;α) over Fq be the parity-
check matrix of an [m, m− ( j− i+ 1), j− i+ 2]q code with
the following form

Γ(i, j;α) =


1 αi · · · αi(m−1)

1 αi+1 · · · α(i+1)(m−1)

...
...

. . .
...

1 α j · · · α j(m−1)

 . (13)

Now, according to the definition in (12), using the matrices
introduced above, the parity-check matrix of CGII is

HGII =



I
⊗

H0
Γ(0, is − is−1 − 1;α)

⊗
His

Γ(is − is−1, is − is−2 − 1;α)
⊗

His−1...
...

...
Γ(is − i2, is − i1 − 1;α)

⊗
Hi2

Γ(is − i1, is − i0 − 1;α)
⊗

Hi1

 ,

(14)
which, after rearranging the rows, can be simplified into

HGII =



I
⊗

H0
Γ(0, is − i0 − 1;α)

⊗
Hi1\i0

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1...
...

...
Γ(0, is − is−2 − 1;α)

⊗
His−1\is−2

Γ(0, is − is−1 − 1;α)
⊗

His\is−1

 . (15)

Note that since the matrix of (15) is obtained from the matrix
of (14) by a permutation of rows, they define the same code.
For the sake of convenience, we use the same notation HGII
for both of them by a slight abuse of notation.

To make a connection between GII codes and generalized
tensor product codes, we further reformulate the matrix HGII
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in (15) as follows,

HGII =



I
⊗

H0
Γ(0, is − i0 − 1;α)

⊗
Hi1\i0

(1)
...

...
...

Γ(0, is − i0 − 1;α)
⊗

Hi1\i0
(ki0 − ki1 )

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1
(1)

...
...

...
Γ(0, is − i1 − 1;α)

⊗
Hi2\i1

(ki1 − ki2 )
...

...
...

...
...

...
Γ(0, is − is−2 − 1;α)

⊗
His−1\is−2

(1)
...

...
...

Γ(0, is − is−2 − 1;α)
⊗

His−1\is−2
(kis−2 − kis−1 )

Γ(0, is − is−1 − 1;α)
⊗

His\is−1
(1)

...
...

...
Γ(0, is − is−1 − 1;α)

⊗
His\is−1

(kis−1 − kis )


(16)

where, in the first level, the matrix H0 over Fq is treated as
a vector over the extension field Fqn−ko , and correspondingly
the matrix I is treated as the m × m identity matrix over
Fqn−ko . For 1 6 x 6 s and 1 6 y 6 kix−1 − kix , Hix\ix−1

(y)
over Fq represents the yth row of the matrix Hix\ix−1

.
Now, referring to the matrix in (5), the matrix in (16) can

be seen as a parity-check matrix of a (1 + k0 − kis)-level
generalized tensor product code over Fq. As a result, we can
directly obtain the following lemma, which was also proved
in [35] in a different way.

Lemma 12. The code CGII is a linear code over Fq of length
N = nm, dimension K = ∑γ

x=1 kx + (m − γ)k0 =
∑s

j=1(i j − i j−1)ki j + (m − γ)k0, and minimum distance
D > min

{
(γ + 1)d0, (γ − i1 + 1)di1 , . . . , (γ − is−1 +

1)dis−1 , dis
}

.

Proof: For 1 6 x 6 s and 1 6 y 6 kix−1 − kix , let the
following parity-check matrix

H0
Hi1\i0(1)...
Hi1\i0(ki0 − ki1)
...
Hix\ix−1

(1)
...
Hix\ix−1

(y)


define an [n, kix−1 − y, dix ,y]q code, so we have dix−1 6
dix ,1 6 dix ,2 6 · · · 6 dix ,(kix−1

−kix )
= dix . From the

properties of generalized tensor product codes, it is easy to
obtain the dimension K = ∑s

j=1(i j − i j−1)ki j + (m − γ)k0.

From Theorem 5, the minimum distance satisfies

D > min
{
(γ + 1)d0 , (γ + 1)di1 ,1 ,

. . . , (γ + 1)di1 ,ki0−ki1−1 , (γ − i1 + 1)di1 ,

. . . , (γ − is−1 + 1)dis−1 , (γ − is−1 + 1)dis ,1 ,

. . . , (γ − is−1 + 1)dis ,kis−1−kis−1 , dis

}
= min

{
(γ + 1)d0 , (γ − i1 + 1)di1 ,

. . . , (γ − is−1 + 1)dis−1 , dis

}
.

Remark 4. In some prior works, generalized tensor product
codes are called generalized error-location (GEL) codes [6],
[24]. Recently, in [35], the similarity between GII codes
and GEL codes was observed. However, the exact relation
between them was not studied. In [35], the author also
proposed a new generalized integrated interleaving scheme
over binary BCH codes, called GII-BCH codes. These codes
can also be seen as a special case of generalized tensor
product codes.

Remark 5. Construction A for generalized tensor product
codes is also related to the well-known |u|u + v|
construction [23, Ch. 2.9] which is defined as follows. Given
an [n, k1, d1]q code C1 and an [n, k2, d2]q code C2, we can
form a new code C3 consisting of all vectors: |u|u + v|, u ∈
C1 and v ∈ C2. Then C3 is a [2n, k1 + k2, min{2d1, d2}]q
code.

If we assume that C2 is a subcode of C1, then
Construction A corresponds to the |u|u + v| construction.
More specifically, let C1 and C2 have parity-check matrices

H
′
1 and

[
H

′
1

H
′
2

]
respectively. Choose H

′′
1 =

[
1 0
0 1

]
and

H
′′
2 = [−1 1]. Then, Construction A generates the matrix

in (5) as

H =

 H
′
1 0

0 H
′
1

−H
′
2 H

′
2

 ,

which is a parity-check matrix of the code C3 obtained from
the |u|u + v| construction.

VI. CAPACITY-ACHIEVING ME-LRCS FOR A COMPOUND
ERASURE PRODUCT CHANNEL

In this section, we turn to a probabilistic setting
and interpret ME-LRCs from an information-theoretic
perspective. Specifically, we construct ME-LRCs that are
universally good for a family of erasure product channels
defined as a compound erasure channel, i.e., that achieve the
compound capacity. Since we will not make explicit reference
to minimum distances d0 and d in the following discussion
of ME-LRCs, we will simplify the notation (ρ, n0, k; d0, d)q
to (ρ, n0, k)q when referring to ME-LRC code parameters.
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A. Information-Theoretic Motivation

Consider the memoryless q-ary erasure channel (QEC) W:
X → Y , with input alphabet X , output alphabet Y , and
transition probabilities W(y|x), x ∈ X , y ∈ Y . The input
alphabet X is Fq, and the output alphabet Y is Fq ∪ {?} (of
size q+1), where ? represents an erasure symbol. For every
pair consisting of a transmitted symbol x ∈ Fq and a received
symbol y ∈ Fq ∪ {?}, the transition probability W(y|x) is:

W(y|x) =

 1 −ε if y = x
ε if y =?
0 otherwise,

where ε is called the erasure probability. The capacity of this
QEC W is denoted by C(W) and is attained by the uniform
input distribution [28], i.e.,

C(W) =max
p(x)

I(X; Y)

=max
p(x)

∑
x∈X

∑
y∈Y

1
q

W(y|x)logq
W(y|x)

∑x′∈X
1
q W(y|x′)

=1 −ε.

Note that the base of the logarithm is q. For a linear code C =

[n, k, d]q over a QEC W, let P(n)
e (x) denote the conditional

block probability of error, assuming that x was sent, x ∈ C.
Let P(n)

e (C) denote the average probability of error of this
code. Assuming equiprobable codewords, it is clear that, by
symmetry,

P(n)
e (C) = 1

|C| ∑
x∈C

P(n)
e (x) = P(n)

e (x).

The communication scenario in which the ME-LRCs will
be applied is the following. Consider a channel consisting of
a parallel bank of ρ independent local QECs. The erasure
probabilities ε1, . . . ,ερ of the local QECs are not precisely
known at the encoder, but it is known that they are a
permutation of a specific vector of erasure probabilities εεε.
Given a (ρ, n0, k)q ME-LRC, each of the ρ sub-blocks (i.e.,
local codewords) is transmitted over a corresponding local
QEC. Roughly speaking, if the local channel has a small
enough erasure probability, then it can be decoded locally.
If, on the other hand, the local channel has too large an
erasure probability, the local code needs to resort to some
global parities to help decoding. In the remainder of this
section, we formalize this scenario and present a construction
of ME-LRCs that achieve the compound capacity of the set
of parallel banks of channels corresponding to a given erasure
probability vector εεε.

B. Erasure Product Channel and Compound Channel

We now formally define an erasure product
channel Wpd(yℓ|xℓ;σ) consisting of ℓ parallel QECs
W1, W2, . . . , Wℓ in a certain fixed order which is determined
by a permutation σ . Without loss of generality, we assume
that ℓ is some fixed value, and write ℓ = ∑µ

i=1 ℓi, for
some 1 6 µ 6 ℓ. The first ℓ1 QECs W1, . . . , Wℓ1

are the same, with erasure probability ε1; similarly, for
2 6 i 6 µ, the QECs W∑i−1

j=1 ℓ j+1, . . . , W∑i
j=1 ℓ j

are the

same, with erasure probability εi. We also assume that
ε1 < ε2 < · · · < εµ , so the capacities of these QECs satisfy
C(Wℓ1) > C(Wℓ2) > · · · > C(Wℓµ ).

Consider a permutation given by a bijective mapping σ :
[ℓ] → [ℓ]. The erasure product channel is defined as:

Wpd(yℓ|xℓ;σ) : X1 × · · · × Xℓ → Y1 × · · · × Yℓ

with each input alphabet Xi = Fq and each output alphabet
Yi = Fq ∪ {?} for i = 1, . . . , ℓ, and transition probability

Wpd(yℓ|xℓ;σ) =Wpd(y1, . . . , yℓ|x1, . . . , xℓ;σ)

=
ℓ

∏
i=1

p(yi|xi),

where xi ∈ Xi, yi ∈ Yi, and the probability p(yi|xi) is equal
to Wσ(i)(y|x), for i = 1, . . . , ℓ.

The capacity of the channel Wpd(yℓ|xℓ;σ), denoted by
Cσ , is given by

Cσ = max
p(x1 ,...,xℓ)

Iσ (X1, . . . , Xℓ; Y1, . . . , Yℓ),

where Iσ (X1, . . . , Xℓ; Y1, . . . , Yℓ) represents the mutual
information between the input vector (X1, . . . , Xℓ) and the
output vector (Y1, . . . , Yℓ) under the permutation σ of the
component channels. It is known that the capacity Cσ is the
sum of the capacities of the parallel channels [9, p. 41], i.e.,

Cσ =
ℓ

∑
i=1

C(Wi) =
µ

∑
i=1

ℓiC(Wℓi ) =
µ

∑
i=1

ℓi(1 −εi). (17)

Now, we consider the compound erasure channel
Wcc that is the collection of erasure product channels
{Wpd(yℓ|xℓ;σ),σ ∈ Σ}, where the set Σ represents
all the ℓ!

ℓ1 !ℓ2 !···ℓµ ! permutations of the multiset T (µ)

consisting of ℓ1, ℓ2, . . . , ℓµ repetitions of the integers
1, 2, . . . ,µ, respectively. During the code transmission over
the compound channel Wcc, the permutation σ is fixed.
However, neither the encoder nor the decoder knows which
permutation σ is used. They only know the set of possible ℓ
parallel QECs.

For each message M ∈ {1, . . . , qnR}, the encoder
generates a length-ℓn sequence (xn

1 , xn
2 , . . . , xn

ℓ ), which
consists of ℓ length-n subsequences xn

i , 1 6 i 6 ℓ.
Then, the encoder transmits these ℓ subsequences over the
ℓ parallel channels simultaneously. The decoder receives
a corresponding length-ℓn sequence (yn

1 , yn
2 , . . . , yn

ℓ ), and
produces an estimate M̂ ∈ {1, . . . , qnR} or an error
message. We assume the message M is uniformly distributed
over {1, . . . , qnR}. Under the permutation σ , the average
probability of error is defined as Pn

e,σ = Pr{M̂ ̸=
M|σ is selected}. A rate R > 0 is said to be achievable
if there exists a sequence of (qnR, n) codes such that
limn→∞ Pn

e,σ = 0 for all σ ∈ Σ. The capacity Ccc of the
compound channel Wcc is the supremum over all achievable
rates. The following result is from [9].
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Proposition 13. (cf. [9, p. 170]) The capacity Ccc of
the compound channel Wcc with no information about
permutation σ available at either the encoder or the decoder
is

Ccc = max
p(x1 ,...,xℓ)

min
σ∈Σ

Iσ (X1, . . . , Xℓ; Y1, . . . , Yℓ).

We have the following upper bound on the capacity Ccc.

Lemma 14. The capacity Ccc of the compound channel Wcc
satisfies Ccc 6 Ccc = ∑µ

i=1 ℓi(1 −εi).

Proof: By changing the order of max and min
operations, we obtain

Ccc = max
p(x1 ,...,xℓ)

min
σ∈Σ

Iσ (X1, . . . , Xℓ; Y1, . . . , Yℓ)

6min
σ∈Σ

max
p(x1 ,...,xℓ)

Iσ (X1, . . . , Xℓ; Y1, . . . , Yℓ)

=min
σ∈Σ

Cσ =
µ

∑
i=1

ℓi(1 −εi),

where the last step follows from (17) that the capacity Cσ =
∑µ

i=1 ℓi(1 −εi) for every fixed permutation σ .

C. Capacity-Achieving ME-LRCs for the Compound Erasure
Channel Wcc

We now show that the upper bound Ccc in Lemma 14 can
be achieved by a sequence of deterministic codes obtained
from an explicit algebraic construction. In the following, we
will use a generalized tensor product structure to construct a
sequence of ME-LRCs that achieve the upper bound Ccc on
the capacity Ccc of the compound erasure channel Wcc. To
this end, we first present a lemma on the existence of nested
capacity-achieving linear codes over a set of QECs.

Lemma 15. Consider a set of µ QECs W1, W2, . . . , Wµ with
erasure probabilities ε1 < ε2 < · · · < εµ and corresponding
capacities C(W1) > C(W2) > · · · > C(Wµ). For any rates
R1 > R2 > · · · > Rµ such that Ri < C(Wi) = 1 − εi,
there exists a sequence of nested linear codes Cµ1 = [n, kµ =

Rµn]q ⊂ Cµ−1
1 = [n, kµ−1 = Rµ−1n]q ⊂ · · · ⊂ C1

1 =
[n, k1 = R1n]q such that the decoding error probability
of each C i

1 over the channel Wi, under maximum-likelihood
(ML) decoding, satisfies P(n)

e (C i
1) → 0, as n goes to infinity.

Proof: See Appendix F.

Remark 6. Recently, it was shown in [22] that generalized
Reed-Muller codes and primitive narrow-sense BCH codes
over Fq achieve the capacity of the QEC under block-
ML decoding. Since these codes have nested structure [28],
they are examples of nested capacity-achieving linear codes
over a set of QECs. Polar codes also have the nested
capacity-achieving property under successive cancellation
(SC) decoding [2], [21].

Now, we present Construction B, which is based on the
generalized tensor product structure in (5), to generate ME-
LRCs that can achieve the capacity of the compound channel

Wcc. The key part of Construction B is to choose a set of
appropriate nested capacity-achieving codes as component
codes, whose existence is guaranteed by Lemma 15.

Construction B

Step 1: (Rate splitting) For any given rate R < Ccc =
∑µ

i=1 ℓi(1 − εi), choose a set of rates R1, R2, . . . , Rµ such
that ∑µ

i=1 ℓiRi = R and Ri < C(Wℓi ) = 1 −εi.
Step 2: Choose a set of vi × n matrices H

′
i , i = 1, . . . ,µ,

over Fq such that the corresponding parity-check matrices Bi
in (4) generate a set of component codes C ′

i satisfying the
following properties:
1) Nested structure: C ′

µ ⊂ C ′
µ−1 ⊂ · · · ⊂ C ′

1, where C ′
i =

[n, n − ∑i
m=1 vm]q for 1 6 i 6 µ.

2) Capacity-achieving: the code C ′
i has the required rate Ri =

n−∑i
m=1 vm
n < C(Wℓi ) = 1 −εi, and on the channel Wℓi , the

error probability satisfies P(n)
e (C ′

i ) → 0, as n goes to infinity.
Step 3: Choose a parity-check matrix H

′′
1 = Iℓ×ℓ, i.e., the

ℓ × ℓ identity matrix. For i = 2, . . . ,µ, choose a λi × ℓ
matrix H

′′
i over Fqvi , which is a parity-check matrix of an

[ℓ, ℓ− λi , δi = λi + 1]qvi MDS code C ′′
i , where the value of

λi is chosen as λi = ℓ− ∑i−1
m=1 ℓm.

Step 4: Generate a parity-check matrix H over Fq according
to (5) with the matrices H

′
i and H

′′
i , for i = 1, 2, . . . ,µ. The

constructed code corresponding to the parity-check matrix H
is referred to as CB.

Remark 7. In Step 1 of Construction B, there always exists a
rate splitting. For example, for any δ > 0, R = ∑µ

i=1 ℓi(1 −
εi)− δ, we can choose Ri = (1 −εi)− δ

ℓ for 1 6 i 6 µ.
In Step 2 of Construction B, explicit codes such as

generalized Reed-Muller codes, BCH codes, and polar codes
can be used as the component codes.

In Step 3 of Construction B, for a fixed ℓ, there always
exists an [ℓ, ℓ − λi , δi = λi + 1]qvi MDS code for a
sufficiently large n. This is because such an MDS code
exists whenever ℓ 6 qvi = q(Ri−1−Ri)n, so we only need

n > ⌈ logq(ℓ)

Ri−1−Ri
⌉. When we analyze the capacity-achieving

property of CB below, n is considered to go to infinity, so
those MDS codes exist and Construction B is valid even when
the underlying field size q is very small, e.g., q = 2.

On the contrary, in general the generalized integrated
interleaving codes in (12) cannot be used to construct ME-
LRCs that achieve the capacity of the compound channel
Wcc, since they require the underlying field size q > ℓ, which
is not always satisfied, for example, as in the case of a binary
compound channel Wcc with q = 2 and ℓ = 10.

Note that, in contrast to Construction A, Construction
B only specifies the rate and capacity-achieving properties
of the component codes, with no specific reference to the
minimum distance properties. The following theorem shows
that the ME-LRC obtained from Construction B can achieve
the capacity of the compound erasure channel Wcc.
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Theorem 16. The code CB is a (ρ, n0, k)q ME-LRC with
parameters ρ = ℓ, n0 = n, and k = (n − v1)ℓ −
∑µ

i=2 viλi. Moreover, the ME-LRC is capacity-achieving
over the compound channel Wcc, i.e., the error probability
Pn

e (CB) → 0, as n goes to infinity.

Proof: We first verify that the parallel code rate RB = k
n

of the constructed code CB equals R. To see this, we have

k
n
=
(n − v1)ℓ− ∑µ

i=2 viλi

n

=
(n − v1)ℓ− ∑µ

i=2 vi(ℓ− ∑i−1
j=1 ℓ j)

n

=
(n − v1)ℓ1

n
+

(n − ∑2
j=1 v j)ℓ2

n
+

· · ·+
(n − ∑µ

j=1 v j)ℓµ

n

=
µ

∑
i=1

ℓiRi .

In the Step 1 of Construction B, we require R = ∑µ
i=1 ℓiRi,

so we have RB = R.
Second, we prove that the code CB is capacity-achieving by

showing that the decoding error probability Pn
e (CB) → 0,

as n goes to infinity.
We use Algorithm 1 to decode CB, where the component

decoders D′
i and D′′

i are chosen to be maximum-likelihood
(ML) decoders as in Section III-C. From Algorithm 1, the
decoding for CB has a total of µ levels. Let us consider a
successful decoding event for CB over Wcc, denoted by Es,
and calculate its probability P(Es).

For the first level, we use the correct syndrome vector
(s1

1, . . . , s1
ℓ) = 0 to decode all the sub-blocks over the ℓ

QECs using the ML erasure decoding. For each sub-block,
the capacity of its corresponding QEC is unknown. However,
the sub-blocks over the ℓ1 QECs (each with capacity 1 −ε1)
will be decoded successfully with a high probability which
can be expressed as P1 =

(
1 − Pn

e (C ′
1)
)ℓ1 .

For the second level, since the ℓ1 sub-blocks have been
corrected in the first level, the number of uncorrected sub-
blocks is at most ∑µ

i=2 ℓi. These uncorrected sub-blocks
can be detected, because the ML erasure decoder does
not produce any miscorrections. As a result, the correct
syndrome vector (s2

1, . . . , s2
ℓ ) can be obtained. Using the

correct syndrome vectors (si
1, . . . , si

ℓ), i = 1, 2, the sub-
blocks over the ℓ2 QECs (each with capacity 1 − ε2) are
corrected. The probability associated with this is P2 >(
1 − Pn

e (C ′
2)
)ℓ2 ; we use a lower bound here since according

to Algorithm 1, some of the sub-blocks over the ℓ2 QECs
may have already been corrected in the first level.

Similarly, for the mth level, 3 6 m 6 µ, since ∑m−1
i=1 ℓi

sub-blocks have been corrected in the previous levels, the
number of uncorrected sub-blocks is at most ∑µ

i=m ℓi. As
a result, the correct syndrome vector (sm

1 , . . . , sm
ℓ ) can be

obtained. Using the correct syndrome vectors (si
1, . . . , si

ℓ),
i = 1, 2, . . . , m, the sub-blocks over the ℓm QECs (each with

capacity 1−εm) are corrected. The corresponding probability
is Pm >

(
1 − Pn

e (C ′
m)

)ℓm .
Thus, the probability of successful decoding Pn

s (CB) of CB
can be lower bounded as

Pn
s (CB) > P(Es) =

µ

∏
i=1

Pi >
µ

∏
i=1

(
1 − Pn

e (C ′
i )
)ℓi

.

Correspondingly, we can upper bound the decoding error
probability Pn

e (CB) of CB as

Pn
e (CB) =1 − Pn

s (CB)

61 −
µ

∏
i=1

(
1 − Pn

e (C ′
i )
)ℓi

.
(18)

From the capacity-achieving property of the chosen
component codes, we already have Pn

e (C ′
i ) → 0 as n goes

to infinity, so in (18), Pn
e (CB) → 0 as n goes to infinity.

Thus, we conclude that CB can achieve the capacity of the
compound channel Wcc.

VII. CONCLUSION

In this work, we presented a general construction for ME-
LRCs over small fields. This construction yields optimal
ME-LRCs with respect to an upper bound on the minimum
distance for a wide range of code parameters. Then, an
erasure decoder was proposed and corresponding correctable
erasure patterns were identified. ME-LRCs based on Reed-
Solomon codes were shown to be optimal among all codes
having the same erasure-correcting capability. In addition,
generalized integrated interleaving codes were proved to be
a subclass of generalized tensor product codes, thus giving
the exact relation between the two classes of codes. Finally,
we investigated ME-LRCs over a compound erasure product
channel, and we showed that a generalized tensor product
structure can be employed to construct capacity-achieving
ME-LRCs for such a channel.

APPENDIX A
PROOF OF LEMMA 2

Proof: For the case of x = 0, it is trivial. For 1 6 x 6
⌈ k

k∗ ⌉ − 1, x ∈ Z+, let I represent the set of the coordinates
of the first x rows in the array. Thus, |I| = xn0. First,
consider the code CI = {cI : c ∈ C} whose dimension is
denoted by kI , which satisfies kI 6 xk∗. Then, we consider
the code C0

I = {c[ρn0 ]\I : cI = 0 and c ∈ C}. Since the
code C is linear, the size of the code C0

I is qk−kI and it is
a linear code as well. Moreover, the minimum distance d̂ of
the code C0

I is at least d, i.e., d̂ > d.
Thus, we get an upper bound on the minimum distance d,

d 6 d̂ 6d(q)opt[ρn0 − |I|, k − kI ]

6d(q)opt[ρn0 − xn0, k − xk∗].

Similarly, we also get an upper bound on the dimension
k,

k − kI 6 k(q)opt[ρn0 − |I|, d̂] 6 k(q)opt[ρn0 − xn0, d].
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Therefore, we conclude that

k 6 k(q)opt[ρn0 − xn0, d] + kI 6 k(q)opt[ρn0 − xn0, d] + xk∗.

APPENDIX B
PROOF OF LEMMA 3

Proof: We can construct a (ρ, n0, k;> d0,> d)q ME-
LRC in two steps, and use the GV bound [28] twice. First,
there exists a [ρ(n0 − r0), k,> d]q array code G1 of size
ρ × (n0 − r0) where r0 is an integer 0 6 r0 < n0, if the
parameters satisfy

d−2

∑
i=0

(
ρ(n0 − r0)− 1

i

)
(q − 1)i < qρ(n0−r0)−k . (19)

Second, there exists a length-n0 code G2 with minimum
distance at least d0, if its redundancy r0 satisfies

r0 > logq

( d0−2

∑
i=0

(
n0 − 1

i

)
(q − 1)i

)
. (20)

Now, we encode each row of the code G1 using the
code G2 by adding r0 more redundancy symbols. The
resulting code is a (ρ, n0, k;> d0,> d)q ME-LRC. Let
r0 = ⌈logq

(
∑d0−2

i=0 (n0−1
i )(q − 1)i)⌉, and substitute it into

(19), producing (3).

APPENDIX C
PROOF OF THEOREM 5

Proof: A codeword x in CµGTP is an n′ℓ-dimensional
vector over Fq, denoted by x = (x1, x2, . . . , xℓ), where xi
in x is an n′-dimensional vector, for i = 1, 2, . . . , ℓ. Let
s j

i = xi H
′T
j , for i = 1, 2, . . . , ℓ and j = 1, 2, . . . ,µ. Thus,

s j
i is a v j-dimensional vector over Fq, and is considered

as an element in Fqv j . Let s j = (s j
1, s j

2, . . . , s j
ℓ) be the

ℓ-dimensional vector over Fqv j whose components are s j
i ,

i = 1, 2, . . . , ℓ.
To prove the theorem, we consider separately the two

possibilities:
1) s j ̸= 0 for some 1 6 j 6 µ.
2) s j = 0 for all 1 6 j 6 µ.
First, note that the condition xHT = 0 implies that

s jH
′′T
j = 0 for all 1 6 j 6 µ.

Now, consider the first possibility, namely that s j ̸= 0 for
some 1 6 j 6 µ, and let 1 6 j 6 µ be the smallest positive
integer such that s j ̸= 0. If j = 1, then s1 ̸= 0, and the
condition s1H

′′T
1 = 0 means that s1 is a codeword in the

code C ′′
1 defined by H

′′
1 . This implies that wqv1 (s1) > δ1.

Since wq(x) > wqv1 (s1), we conclude that wq(x) > δ1.
Next, suppose that 2 6 j 6 µ. Then si = 0 in (Fqvi )

ℓ,
for i = 1, . . . , j − 1. This means that xiBT

j−1 = 0 for

i = 1, 2, . . . , ℓ; that is, xi is a codeword in the code C ′
j−1

defined by the parity-check matrix B j−1, whose minimum
distance is d′j−1. Therefore, we have wq(xi) > d′j−1 if

xi ̸= 0, i = 1, 2, . . . , ℓ. Now, since s j ̸= 0, the condition
s jH

′′T
j = 0 means that s j is a codeword in the code C ′′

j

defined by H
′′
j . Therefore, wqv j (s j) > δ j. It follows that

wq(x) > wqv j (s j)d′j−1 > δ jd′j−1.
From consideration of the first possibility, therefore, we

conclude that

dt > min{δ1, δ2d′1, . . . , δµd′µ−1}. (21)

Now, we turn to the second possibility, namely that s j = 0
for all 1 6 j 6 µ. This means that xiBT

µ = 0 for i =

1, 2, . . . , ℓ; that is, xi is a codeword in the code C ′
µ defined by

the parity-check matrix Bµ , whose minimum distance is d′µ .
Therefore, we have wq(xi) > d′µ if xi ̸= 0, i = 1, 2, . . . , ℓ.
Since x ̸= 0, some xi ̸= 0, so we conclude that

wq(x) > d′µ . (22)

Combining (21) and (22), we conclude that

dt > min{δ1, δ2d′1, . . . , δµd′µ−1, d′µ}.

This completes the proof.

APPENDIX D
PROOF OF THEOREM 7

Proof: The proof follows from the decoding procedure
of the decoder DA. The ME-LRC CA has d0 = d′1 and d =
d′µ . For a received word y = (y1, y2, . . . , yℓ), each vector
yi, 1 6 i 6 ℓ, corresponds to a row in the array.

For the first level, since δ1 = ∞, the correct syndrome
vector (s1

1, . . . , s1
ℓ) is the all-zero vector, i.e., (s1

1, . . . , s1
ℓ ) =

0. Thus, the rows with at most d′1 − 1 erasures are corrected.
For the second level, the remaining uncorrected row ĉ j,

j ∈ F , has at least d′1 erasures. The total number of such
uncorrected rows with indices in F is less than δ2, because
we require N1 6 δ2 − 1 in the condition (6). Thus, the
correct syndrome vector (s2

1, . . . , s2
ℓ ) can be obtained. As

a result, the rows with at most d′2 − 1 erasures are corrected.
Similarly, by induction, if the decoder runs until the µth

level, the remaining uncorrected row ĉ j, j ∈ F , has at
least d′µ−1 erasures. The total number of such uncorrected
rows with indices in F is less than δµ , because we require
Nµ−1 6 δµ − 1 in the condition (6). Therefore, all the correct
syndrome vectors (si

1, . . . , si
ℓ), i = 1, 2, . . . ,µ, are obtained.

On the other hand, the remaining uncorrected row ĉ j, j ∈ F ,
has at most d′µ − 1 erasures, since we also require Nµ 6 0
in the condition (6). Thus, all of these uncorrected rows can
be corrected in this step using all these correct syndromes.

APPENDIX E
PROOF OF COROLLARY 8

Proof: The ME-LRC CA has d0 = d′1 and d = d′µ . We
only need to show that the received word y with any d′µ − 1
erasures satisfies the condition in Theorem 7. We prove it
by contradiction. If the condition is not satisfied, there exists
an integer i, 1 6 i 6 µ, such that Ni > δi+1. Therefore,
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we have we(y) > d′iδi+1 > d′µ , where the last inequality
is from the requirement of Construction A. Thus, we get a
contradiction of the assumption that the received word y has
d′µ − 1 erasures.

APPENDIX F
PROOF OF LEMMA 15

Proof: To prove the lemma, we will use the following
result for the QEC, which is a consequence of Theorem 6.2.1
of Gallager [11, p. 206].

Lemma 17. For the QEC W with erasure probability ε, let n
and nR be integers such that R < C(W) = 1−ε. Let P(n)

e (C)
denote the average of P(n)

e (C) over all linear [n, nR]q codes C
under maximum-likelihood decoding. Then,

P(n)
e (C) 6 q−nEq(ε,R),

where Eq(ε, R) is the random coding error exponent of
Gallager and Eq(ε, R) > 0 for all R satisfying 0 6 R <
C(W).

The following lemma is a direct consequence of
Lemma 17.

Lemma 18. For every ρ ∈ (0, 1], at least a fraction 1−ρ (i.e.,
> 1 − ρ) of all linear [n, nR]q codes C satisfy

P(n)
e (C) 6 (1/ρ)q−nEq(ε,R).

Proof: The proof is based on contradiction. Consider
the set S of codes C for which P(n)

e (C) > (1/ρ)q−nEq(ε,R).
Assume that S forms more than a fraction ρ of all linear
[n, nR]q codes C. Then, we have

P(n)
e (C) > ρ

|S| ∑
C∈S

P(n)
e (C) > q−nEq(ε,R),

which contradicts Lemma 17. Therefore, S only forms at
most a fraction ρ of all linear [n, nR]q codes C.

With the above two lemmas, we are ready to prove
Lemma 15.

Consider an ensemble G1 of all k1 × n full rank matrices
over Fq. The size of G1 is |G1| = (qn − 1)(qn − q) · · · (qn −
qk1−1). Now, for each matrix G1

i ∈ G1, 1 6 i 6 |G1|,
take the last k2 rows to form a new matrix G2

i . All these
new matrices form a new ensemble G2, including possible
repetitions. It is clear that |G2| = |G1| and in G2, each
k2 × n full rank matrix over Fq appears (qn − qk2)(qn −
qk2+1) · · · (qn − qk1−1) times. Similarly, for each matrix
G1

i ∈ G1, 1 6 i 6 |G1|, take the last k j, 3 6 j 6 µ,
rows to form a new matrix G j

i . All these new matrices
form a new ensemble G j. It is clear that |G j| = |G1|
and in G j, each k j × n full rank matrix over Fq appears
(qn − qk j)(qn − qk j+1) · · · (qn − qk1−1) times.

Note that the number of generator matrices of a linear
[n, k]q code is the same for all such codes. Therefore, from
Lemma 18, in each ensemble G j for 1 6 j 6 µ, at least

a fraction x of all matrices in this ensemble will generate
linear codes C such that the error probability P(n)

e (C) 6
( 1

1−x )q
−nEq(ε j ,R j).

Now, choose x to be a certain value satisfying 1
2 < x < 1.

Let S1 be the subset of the ensemble G1 such that |S1 |
|G1 |

> x
and each matrix in S1 generates a linear code C1

1 with the
error probability P(n)

e (C1
1 ) 6 ( 1

1−x )q
−nEq(ε1 ,R1). Let S2 be

the subset of the ensemble G1 such that |S2 |
|G1 |

> x and for
each matrix in S2, its last k2 rows generate a linear code
C2

1 with the error probability P(n)
e (C2

1 ) 6 ( 1
1−x )q

−nEq(ε2 ,R2).
Then, using basic properties of set operations, we have

|S1 ∩ S2|
|G1|

=
|S1|
|G1|

+
|S2|
|G1|

− |S1 ∪ S2|
|G1|

> |S1|
|G1|

+
|S2|
|G1|

− 1

>2x − 1 > 0.

Thus, we find a non-empty subset S12 = S1 ∩ S2 in
the ensemble G1 such that: 1) S12 has at least a fraction
2x − 1 > 0 of all the matrices in G1, and 2) each matrix
in S12 generates a linear code C1

1 with the error probability
P(n)

e (C1
1 ) 6 ( 1

1−x )q
−nEq(ε1 ,R1), and its last k2 rows generate

a linear code C2
1 with the error probability P(n)

e (C2
1 ) 6

( 1
1−x )q

−nEq(ε2 ,R2).
Similarly, arguing as above, it is not hard to see that for

any x satisfying µ−1
µ < x < 1, in the ensemble G1, we can

find a non-empty subset G1 ⊆ G1 such that: 1) G1 has at
least a fraction µx − (µ − 1) > 0 of all the matrices in G1,
and 2) for each matrix G1 in G1, for each j, 1 6 j 6 µ, the
last k j rows of G1 will generate a linear code C j

1 with the

error probability P(n)
e (C j

1) 6 ( 1
1−x )q

−nEq(ε j ,R j).
Thus, there exists a sequence of nested linear codes Cµ1 =

[n, kµ = Rµn]q ⊂ Cµ−1
1 = [n, kµ−1 = Rµ−1n]q ⊂ · · · ⊂

C1
1 = [n, k1 = R1n]q such that for all 1 6 i 6 µ, the error

probability P(n)
e (C i

1) → 0, as n goes to infinity.
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