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Abstract—Erasure codes play an important role in storage

systems to prevent data loss. In this work, we study a class of
erasure codes called Multi-Erasure Locally Recoverable Codes
(ME-LRCs) for storage arrays. Compared to previous related
works, we focus on the construction of ME-LRCs over small
fields. We first develop upper and lower bounds on the minimum
distance of ME-LRCs. Our main contribution is to propose a
general construction of ME-LRCs based on generalized tensor
product codes, and study their erasure-correcting properties. A
decoding algorithm tailored for erasure recovery is given, and
correctable erasure patterns are identified. We then prove that
our construction yields optimal ME-LRCs with a wide range
of code parameters, and present some explicit ME-LRCs over
small fields. Finally, we show that generalized integrated inter-
leaving (GII) codes can be treated as a subclass of generalized
tensor product codes, thus defining the exact relation between
these codes.

I. INTRODUCTION

Recently, erasure codes with both local and global erasure-

correcting properties have received considerable attention [3],

[9], [18]–[20], [22], thanks to their promising application in

storage systems. The idea behind them is that when only a

few erasures occur, these erasures can be corrected fast using

only local parities. If the number of erasures exceeds the lo-

cal erasure-correcting capability, then the global parities are

invoked.

In this paper, we consider this kind of erasure codes with

both local and global erasure-correcting capabilities for a

ρ× n0 storage array [3], where each row contains some lo-

cal parities, and additional global parities are distributed in

the array. The array structure is suitable for many storage

applications. For example, consider a redundant array of in-

dependent disks (RAID) type of architecture for solid-state

drives (SSDs) [3], [8]. In this scenario, a ρ× n0 storage array

can represent a total of ρ SSDs, each of which contains n0
flash memory chips. Within each SSD, an erasure code is

applied to these n0 chips for local protection. In addition,

erasure coding is also done across all the SSDs for global

protection of all the chips. More specifically, let us give the

formal definition of this class of erasure codes as follows.

Definition 1. Consider a code C over a finite field Fq consist-

ing of ρ× n0 arrays such that:

1) Each row in each array in C belongs to a linear local code

C0 with length n0 and minimum distance d0 over Fq.

2) Reading the symbols of C row-wise, C is a linear code

with length ρn0, dimension k, and minimum distance d
over Fq.

Then, we say that C is a (ρ, n0, k; d0, d)q Multi-Erasure Lo-

cally Recoverable Code (ME-LRC). �
Thus, a (ρ, n0, k; d0, d)q ME-LRC can locally correct d0−

1 erasures in each row, and is guaranteed to correct a total

of d− 1 erasures anywhere in the array.
Our work is motivated by a recent work by Blaum and Het-

zler [3]. In their work, the authors studied ME-LRCs where

each row is a maximum distance separable (MDS) code, and

gave code constructions with field size q � max{ρ, n0} us-

ing generalized integrated interleaving (GII) codes [11], [23],

[25]. Our Definition 1 generalizes the definition of the codes

in [3] by not requiring each row to be an MDS code. There

exist other related works. The ME-LRCs in Definition 1 can

be seen as (r, δ) LRCs with disjoint repair sets. A code C
is called an (r, δ) LRC [20], if for every coordinate, there

exists a punctured code (i.e., a repair set) of C with support

containing this coordinate, whose length is at most r+δ− 1,

and whose minimum distance is at least δ. Although the ex-

isting constructions [20], [22] for (r, δ) LRCs with disjoint

repair sets can generate ME-LRCs as in Definition 1, they

use MDS codes as local codes and require a field size that

is at least as large as the code length. A recent work [1]

gives explicit constructions of (r, δ) LRCs with disjoint re-

pair sets over field Fq from algebraic curves, whose repair

sets have size r+δ− 1 =
√

q or r+δ− 1 =
√

q+ 1. Partial

MDS (PMDS) codes [2] are also related to but different from

ME-LRCs in Definition 1. In general, an ME-LRC is not a

PMDS code which needs to satisfy more strict requirements.

A ρ× n0 array code is called an (r; s) PMDS code if each

row is an [n0, n0 − r, r + 1]q MDS code and whenever any r
locations in each row are punctured, the resulting code is also

an MDS code with minimum distance s+ 1. The construction

of (r, s) PMDS codes for all r and s with field size O(nρn0
0 )

was known [6]. More recently, a family of PMDS codes with

field size O(max{ρ, nr+s
0 }s) was constructed [7].

To the best of our knowledge, however, the construction

of optimal ME-LRCs over any small field (e.g., the field size

less than the length of the local code, or even the binary

field) has not been fully explored and solved. The goal of this

paper is to study ME-LRCs over small fields. We propose

a general construction based on generalized tensor product

codes [16], [24], which were first utilized in [12] to construct

binary single-erasure LRCs [9], [10], [14], [15], [19], [22].

The contributions of this paper are:
1) We extend our previous construction in [12] to the sce-

nario of multi-erasure LRCs over any field. As a result, the
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construction in [12] can be seen as a special case of the

construction proposed in this paper.

2) In contrast to [3], our construction does not require

field size q � max{ρ, n0}, and it can even generate binary

ME-LRCs. We derive upper and lower bounds on the mini-

mum distance of ME-LRCs. For 2d0 � d, we show that our

construction can produce optimal ME-LRCs with respect to

(w.r.t.) the new upper bound on the minimum distance.

3) We present an erasure decoding algorithm and its cor-

responding correctable erasure patterns, which include the

pattern of any d− 1 erasures. We show that the ME-LRCs

from our construction based on Reed-Solomon (RS) codes

are optimal w.r.t. certain correctable erasure patterns.

4) So far the exact relation between GII codes [3], [23],

[25] and generalized tensor product codes has not been fully

investigated. We prove that GII codes are a subclass of gen-

eralized tensor product codes. As a result, the parameters of

a GII code can be obtained by using the known properties

of generalized tensor product codes.

The remainder of the paper is organized as follows. In

Section II, we study field size dependent upper and lower

bounds for ME-LRCs. In Section III, we propose a general

construction of ME-LRCs. The erasure-correcting properties

of these codes are studied and an erasure decoding algorithm

is presented. In Section IV, we study optimal code construc-

tion and give several explicit optimal ME-LRCs over different

fields. In Section V, we prove that GII codes are a subclass

of generalized tensor product codes. Section VI concludes

the paper. Due to space constraints, we omit some detailed

proofs, which can be found online in the longer version of

this paper [13].

Throughout the paper, we use the notation [n] to denote

the set {1, . . . , n}. For a length-n vector v over Fq and a

set I ⊆ [n], the vector vI denotes the restriction of the

vector v to coordinates in the set I , and wq(v) represents

the Hamming weight of the vector v over Fq. The transpose

of a matrix H is written as HT . For a set S , |S| represents

the cardinality of the set. A linear code C over Fq of length

n, dimension k, and minimum distance d will be denoted by

C = [n, k, d]q or [n, k, d]q for simplicity. For a code with

only one codeword, the minimum distance is defined as ∞.

II. UPPER AND LOWER BOUNDS FOR ME-LRCS

In this section, we derive field size dependent upper and

lower bounds on the minimum distance of ME-LRCs. The

upper bound obtained here will be used to prove the opti-

mality of our construction for ME-LRCs in the following

sections.

Now, we give an upper bound on the minimum distance

of a (ρ, n0, k; d0, d)q ME-LRC, by extending the shortening

bound for LRCs in [5].

Let d(q)opt[n, k] denote the largest possible minimum distance

of a linear code of length n and dimension k over Fq, and

let k(q)opt[n, d] denote the largest possible dimension of a linear

code of length n and minimum distance d over Fq.

Lemma 2. For any (ρ, n0, k; d0, d)q ME-LRC C, the mini-

mum distance d satisfies

d � min
0�x�� k

k∗ �−1, x∈Z

{
d(q)opt[ρn0 − xn0, k− xk∗]

}
, (1)

and the dimension satisfies

k � min
0�x�� k

k∗ �−1, x∈Z

{
xk∗ + k(q)opt[ρn0 − xn0, d]

}
, (2)

where k∗ = k(q)opt[n0, d0].
An asymptotic lower bound for ME-LRCs with local MDS

codes was given in [1]. Here, by simply adapting the Gilbert-

Varshamov (GV) bound [21], we have the following GV-like

lower bound on ME-LRCs of finite length without specifying

local codes.

Lemma 3. A (ρ, n0, k;� d0,� d)q ME-LRC C exists, if

d−2

∑
i=0

(
ρ(n0 − �logq

(
∑d0−2

j=0 (n0−1
j )(q− 1) j)�)− 1

i

)
(q− 1)i

< qρ(n0−�logq

(
∑

d0−2
j=0 (

n0−1
j )(q−1) j

)
�)−k .

(3)

III. ME-LRCS FROM GENERALIZED TENSOR PRODUCT

CODES: CONSTRUCTION AND DECODING

Tensor product codes, first proposed by Wolf in [24], are

a family of binary error-correcting codes defined by a parity-

check matrix that is the tensor product of the parity-check

matrices of two constituent codes. Later, they were general-

ized in [16]. In this section, we first introduce generalized

tensor product codes over Fq. Then, we give a general con-

struction of ME-LRCs from generalized tensor product codes.

The minimum distance of the constructed ME-LRCs is deter-

mined, a decoding algorithm tailored for erasure correction

is proposed, and corresponding correctable erasure patterns

are studied.

A. Generalized Tensor Product Codes over Fq
We start by presenting the tensor product operation of two

matrices H
′

and H
′′
. Let H

′
be the parity-check matrix of a

code with length n′ and dimension n′ − v over Fq. The ma-

trix H
′

can be considered as a v (row) by n′ (column) matrix

over Fq or as a 1 (row) by n′ (column) matrix of elements

from Fqv . Let H
′

be the vector H
′
= [h

′
1 h

′
2 · · · h

′
n′ ], where

h
′
j, 1 � j � n′, are elements of Fqv . Let H

′′
be the parity-

check matrix of a code of length � and dimension �− λ over

Fqv . We denote H
′′

by

H
′′
=

⎡
⎢⎣

h
′′
11 · · · h

′′
1�

...
. . .

...

h
′′
λ1 · · · h

′′
λ�

⎤
⎥⎦ ,

where h
′′
i j, 1 � i � λ and 1 � j � �, are elements of Fqv .

The tensor product of the matrices H
′′

and H
′

is defined

as

HTP = H
′′ ⊗

H
′
=

⎡
⎢⎣

h
′′
11H

′ · · · h
′′
1�H

′

...
. . .

...

h
′′
λ1H

′ · · · h
′′
λ�H

′

⎤
⎥⎦ ,
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where h
′′
i jH

′
= [h

′′
i jh

′
1 h

′′
i jh

′
2 · · · h

′′
i jh

′
n′ ], 1 � i � λ and

1 � j � �, and the products of elements are calculated ac-

cording to the rules of multiplication for elements over Fqv .

The matrix HTP will be considered as a vλ× n′� matrix of

elements from Fq, thus defining a tensor product code over

Fq. We provide an example to illustrate these operations.

Example 1. (cf. [24]) Let H
′′

be the following parity-check

matrix over F4 for a [5, 3, 3]4 code where α is a primitive

element of F4,

H
′′
=

[
α0 0 α0 α0 α0

0 α0 α0 α1 α2

]
.

Let H
′

be the following parity-check matrix over F2 for a

[3, 1, 3]2 Hamming code,

H
′
=

[
1 0 1
0 1 1

]
.

Representing the elements of F4 as α0 =

[
1
0

]
, α1 =[

0
1

]
, α2 =

[
1
1

]
, and 0 =

[
0
0

]
, we have

HTP = H
′′ ⊗

H
′

=

[
α0 α1 α2 0 0 0 α0 α1 α2 α0 α1 α2 α0 α1 α2

0 0 0 α0 α1 α2 α0 α1 α2 α1 α2 α0 α2 α0 α1

]
.

Using the same symbol-to-binary vector mapping, we repre-

sent HTP over F2 as

HTP =

⎡
⎣ 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1

0 1 1 0 0 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 1 1 0 1 1 1 1 0 1 0 1

⎤
⎦ ,

which defines a binary [15, 11, 3]2 code. �
Our construction of ME-LRCs is based on generalized ten-

sor product codes [16]. Define the matrices H
′
i and H

′′
i for

i = 1, 2, . . . ,μ as follows. The matrix H
′
i is a vi × n′ matrix

over Fq such that the (v1 + v2 + · · ·+ vi)× n′ matrix

Bi =

⎡
⎢⎢⎢⎣

H
′
1

H
′
2

...
H
′
i

⎤
⎥⎥⎥⎦

is a parity-check matrix of an [n′, n′ − v1 − v2 − · · · −
vi , d′i]q code C′i , where d′1 � d′2 � · · · � d′i. The matrix

H
′′
i is a λi × � matrix over Fqvi , which is a parity-check

matrix of an [�, �− λi , δi]qvi code C′′i .

We define a μ-level generalized tensor product code over

Fq as a linear code having a parity-check matrix over Fq in

the form of the following μ-level tensor product structure

H =

⎡
⎢⎢⎢⎣

H
′′
1
⊗

H
′
1

H
′′
2
⊗

H
′
2

...
H
′′
μ

⊗
H
′
μ

⎤
⎥⎥⎥⎦ . (4)

As the matrix HTP, each level in the matrix H is obtained

by operations over Fq and its extension field. We denote this

code by CμGTP. Its length is nt = n′� and the dimension is

kt = nt − ∑μ
i=1 viλi.

By adapting Theorem 2 in [16] from the field F2 to Fq, we

directly have the following theorem on the minimum distance

of CμGTP over Fq.

Theorem 4. The minimum distance dt of a generalized tensor

product code CμGTP over Fq satisfies

dt � min{δ1, δ2d′1, δ3d′2, . . . , δμd′μ−1, d′μ}.

Proof: See the longer version [13].

B. Construction of ME-LRCs

Now, we present a general construction of ME-LRCs based

on generalized tensor product codes.

Construction A
Step 1: Choose vi × n′ matrices H

′
i over Fq and λi × � ma-

trices H
′′
i over Fqvi , for i = 1, 2, . . . ,μ, which satisfy the

following two properties:

1) The parity-check matrix H
′′
1 = I�×�, i.e., an �× � identity

matrix.

2) The matrices H
′
i (or Bi), 1 � i � μ, and H

′′
j , 2 � j � μ,

are chosen such that d′μ � δ jd′j−1, for j = 2, 3, . . . ,μ.

Step 2: Generate a parity-check matrix H over Fq according

to (4) with the matrices H
′
i and H

′′
i , for i = 1, 2, . . . ,μ. The

constructed code corresponding to the parity-check matrix H
is referred to as CA. �
Theorem 5. The code CA is a (ρ, n0, k; d0, d)q ME-LRC with

parameters ρ = �, n0 = n′, k = n′�− ∑μ
i=1 viλi, d0 = d′1,

and d = d′μ .

Proof: According to Construction A, the code parame-

ters ρ, n0, k, and d0 can be easily determined. In the follow-

ing, we prove that d = d′μ .

Since δ1 = ∞ (H
′′
1 is the identity matrix) and d′μ � δid′i−1

for all i = 2, 3, . . . ,μ, from Theorem 4, d � d′μ .

Now, we show that d � d′μ . For i = 1, 2, . . . ,μ,

let H
′
i = [h

′
1(i), . . . , h

′
n′(i)] over Fqvi , and let

[h
′′
11(i), . . . , h

′′
λi1

(i)]T over Fqvi be the first column of

H
′′
i . Since the code with parity-check matrix Bμ has

minimum distance d′μ , there exist d′μ columns of Bμ ,

say in the set of positions J = {b1, b2, . . . , bd′μ}, which

are linearly dependent; that is, ∑ j∈J α jh
′
j(i) = 0, for

some α j ∈ Fq, for all i = 1, 2, . . . ,μ. Thus, we have

∑ j∈J α jh
′′
p1(i)h

′
j(i) = h

′′
p1(i)

(
∑ j∈J α jh

′
j(i)

)
= 0, for

p = 1, 2, . . . , λi and i = 1, 2, . . . ,μ. That is, the columns in

positions b1, b2, . . . , bd′μ of H are linearly dependent.

C. Erasure Decoding and Correctable Erasure Patterns

We present a decoding algorithm for the ME-LRC CA from

Construction A, tailored for erasure correction. The decoding

algorithm for error correction for generalized tensor product

codes can be found in [16].

Let the symbol ? represent an erasure and “e” denote a de-

coding failure. The erasure decoder DA : (Fq ∪ {?})n′� →
1125



CA ∪ {“e”} for an ME-LRC CA consists of two kinds of

component decoders D′
i and D′′

i for i = 1, 2, . . . ,μ described

below.

a) First, the decoder for a coset of the code C′i with parity-

check matrix Bi, i = 1, 2, . . . ,μ, is denoted by

D′
i :(Fq ∪ {?})n′ × (Fq ∪ {?})∑i

j=1 vj → (Fq ∪ {?})n′

which uses the following decoding rule: for a length-n′ input

vector y′, and a length-∑i
j=1 vj syndrome vector s′ without

erasures, if y′ agrees with exactly one codeword c′ ∈ C′i + e
on the entries with values in Fq, where the vector e is a coset

leader determined by both the code C′i and the syndrome

vector s′, i.e., s′ = eBT
i , then D′

i(y′, s′) = c′; otherwise,

D′
i(y′, s′) = y′. Therefore, if the length-n′ input vector y′

is a codeword in C′i + e with d′i − 1 or less erasures and the

syndrome vector s′ is not erased, then the decoder D′
i can

return the correct codeword.

b) Second, the decoder for the code C′′i with parity-check

matrix H
′′
i , i = 1, 2, . . . ,μ, is denoted by

D′′
i : (Fqvi ∪ {?})� → (Fqvi ∪ {?})�

which uses the following decoding rule: for a length-� input

vector y′′, if y′′ agrees with exactly one codeword c′′ ∈ C′′i
on the entries with values in Fqvi , then D′′

i (y′′) = c′′; other-

wise, D′′
i (y′′) = y′′. Therefore, if the length-� input vector

y′′ is a codeword in C′′i with δi − 1 or less erasures, then the

decoder D′′
i can successfully return the correct codeword.

The erasure decoder DA for the code CA is summarized in

Algorithm 1 below. Let the input word of length n′� for the

decoder DA be y = (y1, y2, . . . , y�), where each component

yi ∈ (Fq ∪ {?})n′ , i = 1, . . . , �. The vector y is an erased

version of a codeword c = (c1, c2, . . . , c�) ∈ CA.

Algorithm 1: Decoding Procedure of Decoder DA

Input: received word y = (y1, y2, . . . , y�).

Output: codeword c ∈ CA or a decoding failure “e”.

1. Let s1
j = 0, for j = 1, 2, . . . , �.

2. ĉ = (ĉ1, . . . , ĉ�) =
(
D′

1(y1, s1
1), . . . ,D′

1(y�, s1
� )
)

.

3. Let F = { j ∈ [�] : ĉ j contains ?}.

4. For i = 2, . . . ,μ
• If F �= ∅, do the following steps; otherwise go to step

5.

• (si
1, . . . , si

�) = D
′′
i

(
ĉ1H

′T
i , . . . , ĉ�H

′T
i

)
.

• ĉ j = D′
i

(
ĉ j, (s1

j , . . . , si
j)
)

for j ∈ F ; ĉ j remains the

same for j ∈ [�]\F .

• Update F = { j ∈ [�] : ĉ j contains ?}.

end
5. If F = ∅, let c = ĉ and output c; otherwise return “e”.

In Algorithm 1, we use the following rules for operations

which involve the symbol ?: 1) Addition +: for any element

γ ∈ Fq ∪{?}, γ+? =?. 2) Multiplication ×: for any element

γ ∈ Fq ∪ {?}\{0}, γ×? =?, and 0×? = 0. 3) If a length-n
vector x, x ∈ (Fq ∪ {?})n, contains an entry ?, then x is

considered as the symbol ? in the set Fqn ∪ {?}. Similarly,

the symbol ? in the set Fqn ∪ {?} is treated as a length-n
vector whose entries are all ?.

To describe correctable erasure patterns, we use the fol-

lowing notation. Let we(v) denote the number of erasures ?
in the vector v. For a received word y = (y1, y2, . . . , y�), let

Nτ = |{ym : we(ym) � d′τ , 1 � m � �}| for 1 � τ � μ.

Theorem 6. The decoder DA for a (ρ, n0, k; d0, d)q ME-LRC

CA can correct any received word y that satisfies the following

condition:

Nτ � δτ+1 − 1, ∀ 1 � τ � μ, (5)

where δμ+1 is defined to be 1.

Proof: See the longer version [13].
The following corollary follows from Theorem 6.

Corollary 7. The decoderDA for a (ρ, n0, k; d0, d)q ME-LRC

CA can correct any received word y with less than d erasures.

Proof: See the longer version [13].

IV. OPTIMAL CONSTRUCTION AND EXPLICIT ME-LRCS

OVER SMALL FIELDS

In this section, we study the optimality of Construction A,

and also present several explicit ME-LRCs that are optimal

over different fields.

A. Optimal Construction
We show how to construct ME-LRCs which are optimal

w.r.t. the bound (1) by adding more constraints to Construc-

tion A. To this end, we specify the choice of the matrices in

Construction A. This specification, referred to as Design I,

is as follows.
1) H

′
1 is the parity-check matrix of an [n′, n′ − v1, d′1]q code

which satisfies k(q)opt[n
′, d′1] = n′ − v1.

2) Bμ is the parity-check matrix of an [n′, n′ −∑μ
i=1 vi , d′μ ]q

code with d(q)opt[n
′, n′ − ∑μ

i=1 vi] = d′μ .

3) The minimum distances satisfy d′μ � 2d′1.

4) H
′′
i is an all-one vector of length � over Fqvi , i.e., the

parity-check matrix of a parity code with minimum distance

δi = 2, for all i = 2, . . . ,μ. �
Theorem 8. The code CA from Construction A with Design I

is a (ρ = �, n0 = n′, k = n′�− v1�− ∑μ
i=2 vi ; d0 = d′1, d =

d′μ)q ME-LRC, which is optimal with respect to the bound

(1).

Proof: From Theorem 5, the code parameters ρ, n0, k,

d0, and d can be determined. We have k∗ = k(q)opt[n
′, d′1] =

n′ − v1. Setting x = �− 1, we get

d � min
0�x�� k

k∗ �−1

{
d(q)opt[ρn0 − xn0, k− xk∗]

}

�d(q)opt[�n′ − (�− 1)n′, k− (�− 1)k∗]

=d(q)opt[n
′, n′ −

μ

∑
i=1

vi] = d′μ .
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This proves that CA achieves the bound (1).

B. Explicit ME-LRCs from Construction A

Our construction is very flexible and can generate many

ME-LRCs over different fields. In the following, we present

several examples.

1) ME-LRCs with local extended BCH codes over F2
From the structure of BCH codes [21], there exists a chain

of nested binary extended BCH codes: C3 = [2m, 2m − 1−
3m, 8]2 ⊂ C2 = [2m, 2m − 1− 2m, 6]2 ⊂ C1 = [2m, 2m −
1−m, 4]2.

Let the matrices B1, B2, and B3 be the parity-check ma-

trices of C1, C2, and C3, respectively.

Example 2. For μ = 3, in Construction A, we use the above

matrices B1, B2, and B3. We also choose H
′′
2 and H

′′
3 to be

the all-one vector of length � over F2m .

From Theorem 5, the corresponding (ρ, n0, k; d0, d)2 ME-

LRC CA has parameters ρ = �, n0 = 2m, k = 2m�− (m +
1)� − 2m, d0 = 4, and d = 8. This code satisfies the re-

quirements of Design I. Thus, from Theorem 8, it is optimal

w.r.t. the bound (1). �

2) ME-LRCs with local algebraic geometry codes over F4
We use a class of algebraic geometry codes called Hermi-

tian codes [26] to construct ME-LRCs.

From the construction of Hermitian codes [26], there ex-

ists a chain of nested 4-ary Hermitian codes: CH(1) =
[8, 1, 8]4 ⊂ CH(2) = [8, 2, 6]4 ⊂ CH(3) = [8, 3, 5]4 ⊂
CH(4) = [8, 4, 4]4 ⊂ CH(5) = [8, 5, 3]4 ⊂ CH(6) =
[8, 6, 2]4 ⊂ CH(7) = [8, 7, 2]4.

Now, let the matrices B1, B2, B3, and B4 be the parity-

check matrices of CH(4), CH(3), CH(2), and CH(1), respec-

tively. Let H
′′
i , i = 2, 3, 4, be the all-one vector of length �

over F4.

Example 3. For μ = 2, in Construction A, we use the above

matrices B1, B2, and H
′′
2 . From Theorem 5, the corresponding

(ρ, n0, k; d0, d)4 ME-LRC CA has parameters ρ = �, n0 = 8,

k = 4�− 1, d0 = 4, and d = 5.

For μ = 3, in Construction A, we use the above matrices

B1, B2, B3, H
′′
2 , and H

′′
3 . From Theorem 5, the corresponding

(ρ, n0, k; d0, d)4 ME-LRC CA has parameters ρ = �, n0 = 8,

k = 4�− 2, d0 = 4, and d = 6.

For μ = 4, in Construction A, we use the above matrices

Bi, i = 1, . . . , 4, and H
′′
j , j = 2, 3, 4. From Theorem 5, the

corresponding (ρ, n0, k; d0, d)4 ME-LRC CA has parameters

ρ = �, n0 = 8, k = 4�− 3, d0 = 4, and d = 8.

All of the above three families of ME-LRCs over F4 are

optimal w.r.t. the bound (1). �

3) ME-LRCs with local singly-extended Reed-Solomon codes
over Fq

Let n′ � q and α be a primitive element of Fq. We choose

H
′
1 to be the parity-check matrix of an [n′, n′ − d′1 + 1, d′1]q

singly-extended RS code, namely

H
′
1 =

⎡
⎢⎢⎢⎣

1 1 · · · 1 1
1 α · · · αn′−2 0
...

...
. . .

...
...

1 αd′1−2 · · · α(n′−2)(d′1−2) 0

⎤
⎥⎥⎥⎦ .

For i = 2, 3, . . . ,μ, we choose H′i to be

H
′
i =

⎡
⎢⎣

1 αd′i−1−1 · · · α(n′−2)(d′i−1−1) 0
...

...
. . .

...
...

1 αd′i−2 · · · α(n′−2)(d′i−2) 0

⎤
⎥⎦ ,

where d′1 < d′2 < · · · < d′μ . We also require that

δi = �
d′μ

d′i−1
� = � d′μ

d′i−1 + 1
�= · · ·= � d′μ

d′i − 1
�, ∀i = 2, . . . ,μ

and δ2 > δ3 > · · · > δμ .

For i = 2, 3, . . . ,μ, let H
′′
i be the parity-check matrix of

an [�, � − δi + 1, δi = � d′μ
d′i−1
�]qvi MDS code, which exists

whenever � � qvi , where vi = d′i − d′i−1. Note that for an

MDS code with minimum distance 2, the code length can be

arbitrarily long.

Example 4. We use the above chosen matrices H′i and H′′i
for Construction A. The corresponding (ρ, n0, k; d0, d)q ME-

LRC CA has parameters ρ = �, n0 = n′, k = (n′ −
d′1 + 1)� − ∑μ

i=2(�
d′μ

d′i−1
� − 1)(d′i − d′i−1), d0 = d′1, and

d = d′μ; the field size q satisfies q � max{q′, n′}, where

q′ = maxi=2,...,μ{
⌈
�

1
d′i−d′i−1

⌉}.
When μ = 2 and d′1 < d′2 � 2d′1, the correspond-

ing (ρ, n0, k; d0, d)q ME-LRC CA has parameters ρ = �,

n0 = n′, k = (n′ − d′1 + 1)� − (d′2 − d′1), d0 = d′1, and

d = d′2; the field size q needs to satisfy q � n′. Since CA
satisfies the requirements of Design I, from Theorem 8, it is

optimal w.r.t. the bound (1). �

The following theorem shows that the μ-level ME-LRC

CA constructed in Example 4 is optimal in the sense of pos-

sessing the largest possible dimension among all codes with

the same erasure-correcting capability.

Theorem 9. Let C be a code of length �n′ and dimension k
over Fq. Each codeword in C consists of � sub-blocks, each of

length n′. Assume that C corrects all erasure patterns satisfy-

ing the condition in (5), where δτ = � d′μ
d′τ−1

� for 2 � τ �
μ. Then, we must have dimension k � (n′ − d′1 + 1)� −
∑μ

i=2(�
d′μ

d′i−1
� − 1)(d′i − d′i−1).

Proof: The proof is based on contradiction.

Let each codeword in C correspond to an �× n′ array. We

index the coordinates of the array row by row from number

1 to �n′. Let I1 be the set of coordinates defined by I1 =
{(i − 1)n′ + j : δ2 − 1 < i � �, 1 � j � d′1 − 1}. For

2 � τ � μ, let Iτ be the set of coordinates given by Iτ =
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{(i− 1)n′ + j : δτ+1 − 1 < i � δτ − 1, 1 � j � d′τ − 1},

where δμ+1 is defined to be 1. Let I be the set of all the

coordinates of the array.

By calculation, we have |I\(I1 ∪I2 ∪ · · · ∪ Iμ)| = (n′ −
d′1 + 1)�− ∑μ

i=2(�
d′μ

d′i−1
� − 1)(d′i − d′i−1). Now, assume that

k > (n′ − d′1 + 1)�− ∑μ
i=2(�

d′μ
d′i−1
� − 1)(d′i − d′i−1). Then,

there exist at least two distinct codewords c′ and c′′ in C that

agree on the coordinates in the set {i : i ∈ I\(I1 ∪ I2 ∪
· · · ∪ Iμ)}. We erase the values on the coordinates in the set

{i : i ∈ I1 ∪ I2 ∪ · · · ∪ Iμ} of both c′ and c′′. This erasure

pattern satisfies the condition in (5). Since c′ and c′′ are dis-

tinct, this erasure pattern is uncorrectable. Thus, our assump-

tion that k > (n′ − d′1 + 1)�−∑μ
i=2(�

d′μ
d′i−1
� − 1)(d′i − d′i−1)

is violated.

Remark 1. The construction by Blaum and Hetzler [3] based

on GII codes cannot generate ME-LRCs constructed in Ex-

amples 2 and 3. For the ME-LRC in Example 4, since the

local code is the singly-extended RS code, the construction

in [3] can also be used to produce an ME-LRC that has the

same code parameters ρ, n0, k, d0 and d as those of the ME-

LRC CA from our construction. However, the construction in

[3] requires the field size q to satisfy q � max{�, n′}, which

in general is larger than that in our construction.

V. RELATION TO GENERALIZED INTEGRATED

INTERLEAVING CODES

Integrated interleaving (II) codes were first introduced in

[11] as a two-level error-correcting scheme for data storage

applications, and were then extended in [23] and more re-

cently in [25] as generalized integrated interleaving (GII)

codes for multi-level data protection.

The main difference between GII codes and generalized

tensor product codes is that a generalized tensor product code

over Fq is defined by operations over the base field Fq and

also its extension field, as shown in (4); in contrast, a GII

code over Fq is defined over the same field Fq. As a result,

generalized tensor product codes are more flexible than GII

codes, and generally GII codes cannot be used to construct

ME-LRCs over very small fields, e.g., the binary field.

The goal of this section is to study the exact relation be-

tween generalized tensor product codes and GII codes. We

will show that GII codes are in fact a subclass of generalized

tensor product codes. The idea is to reformulate the parity-

check matrix of a GII code into the form of a parity-check

matrix of a generalized tensor product code. Establishing this

relation allows some code properties of GII codes to be ob-

tained directly from known results about generalized tensor

product codes. We start by considering the II codes, a two-

level case of GII codes, to illustrate our idea.

A. Integrated Interleaving Codes

We follow the definition of II codes in [11]. Let Ci, i =
1, 2, be [n, ki , di]q linear codes over Fq such that C2 ⊂ C1

and d2 > d1. An II code CI I is defined as follows:

CI I =

{
c = (c0, c1, . . . , cm−1) : ci ∈ C1, 0 � i < m,

and
m−1

∑
i=0

αbici ∈ C2, b = 0, 1, . . . ,γ − 1
}

,
(6)

where α is a primitive element of Fq and γ < m � q− 1.

According to the above definition, it is known that the

parity-check matrix of CI I is

HII =

[
I

⊗
H1

Γ2
⊗

H2

]
, (7)

where
⊗

denotes the Kronecker product. The matrices H1

and

[
H1
H2

]
over Fq are the parity-check matrices of C1 and

C2, respectively, the matrix I over Fq is an m × m iden-

tity matrix, and Γ2 over Fq is the parity-check matrix of an

[m, m− γ,γ + 1]q code in the following form

Γ2 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1 α · · · αm−1

1 α2 · · · α2(m−1)

...
...

. . .
...

1 α(γ−1) · · · α(γ−1)(m−1)

⎤
⎥⎥⎥⎥⎥⎦

. (8)

Remark 2. The parity-check matrix HII over Fq in (7) of CI I
is obtained by operations over the same field Fq. In contrast,

the parity-check matrix H over Fq in (4) of a generalized

tensor product code is obtained by operations over both the

base field Fq and its extension field.

Remark 3. In general, the codes C1 and C2 in (6) are chosen

to be RS codes [11]. If C1 and C2 are chosen to be binary

codes, then m can only be m = 1.

To see the relation between II codes and generalized tensor

product codes, we reformulate HII in (7) into the following

form, by splitting the rows of H2,

HII =

⎡
⎢⎢⎢⎢⎣

I
⊗

H1
Γ2

⊗
H2(1)

Γ2
⊗

H2(2)
...

...
...

Γ2
⊗

H2(k1 − k2)

⎤
⎥⎥⎥⎥⎦ , (9)

where the matrix H1 over Fq is the parity-check matrix of

C1, and is treated as a vector over the extension field Fqn−k1

here; correspondingly, the matrix I is treated as an m× m
identity matrix over Fqn−k1 . For 1 � i � k1− k2, H2(i) over

Fq represents the ith row of H2, and Γ2 over Fq is the matrix

in (8).

Now, referring to the matrix in (4), the matrix in (9) can be

interpreted as a parity-check matrix of a (1 + k1 − k2)-level

generalized tensor product code over Fq. Thus, we conclude

that an II code is a generalized tensor product code. Using

the properties of generalized tensor product codes, we can

directly obtain the following result, which was proved in [11]

in an alternative way.

1128



Lemma 10. The code CI I is a linear code over Fq of length

N = nm, dimension K = (m− γ)k1 + γk2, and minimum

distance D � min{(γ + 1)d1, d2}.

Proof: For 1 � i � k1 − k2, let the following parity-

check matrix ⎡
⎢⎢⎣

H1
H2(1)
...

H2(i)

⎤
⎥⎥⎦

define an [n, k1 − i, d2,i]q code. It is clear that d1 � d2,1 �
d2,2 � · · · � d2,k1−k2 = d2.

From the properties of generalized tensor prod-

uct codes, the redundancy is N − K = nm − K =
(n − k1)m + γ(k1 − k2); that is, the dimension is K =
k1(m− γ) + k2γ. Using Theorem 4, the minimum distance

is D � min
{

d1(γ + 1), d2,1(γ + 1), . . . , d2,k1−k2−1(γ +

1), d2,k1−k2

}
= min

{
(γ + 1)d1, d2

}
.

B. Generalized Integrated Interleaving Codes
With the similar idea used in the previous subsection, we

continue our proof for GII codes. We use the definition of

GII codes from [25] for consistency. Let Ci, i = 0, 1, . . . ,γ,

be [n, ki , di]q codes over Fq such that

Cis = · · · = Cis−1+1 ⊂ Cis−1 = · · · = Cis−2+1

⊂ · · · ⊂ Ci1 = · · · = C1 ⊂ C0,
(10)

where i0 = 0 and is = γ. The minimum distances satisfy

d0 � d1 � · · · � dγ . A GII code CGII is defined as:

CGII =

{
c = (c0, c1, . . . , cm−1) : ci ∈ C0, 0 � i < m,

and
m−1

∑
i=0

αbici ∈ Cγ−b, b = 0, 1, . . . ,γ − 1
}

,

(11)

where α is a primitive element of Fq and γ < m � q− 1.
Let us first define some matrices which will be used below.

Let the matrix I over Fq be an m×m identity matrix. Let

H0 over Fq be the parity-check matrix of C0. For 1 � j � s,

let the matrix

[
H0
Hij

]
over Fq represent the parity-check

matrix of Ci j , where

Hij =

⎡
⎢⎢⎢⎣

Hi1\i0
Hi2\i1

...
Hij\i j−1

⎤
⎥⎥⎥⎦ .

For any i � j, let matrix Γ(i, j;α) over Fq be the parity-

check matrix of an [m, m− ( j− i + 1), j− i + 2]q code in

the following form

Γ(i, j;α) =

⎡
⎢⎢⎢⎣

1 αi · · · αi(m−1)

1 αi+1 · · · α(i+1)(m−1)

...
...

. . .
...

1 α j · · · α j(m−1)

⎤
⎥⎥⎥⎦ . (12)

Now, according to the definition in (11), using the matrices

introduced above, the parity-check matrix of CGII is

HGII =

⎡
⎢⎢⎢⎢⎢⎢⎣

I
⊗

H0
Γ(0, is − is−1 − 1;α)

⊗
His

Γ(is − is−1, is − is−2 − 1;α)
⊗

His−1...
...

...
Γ(is − i2, is − i1 − 1;α)

⊗
Hi2

Γ(is − i1, is − i0 − 1;α)
⊗

Hi1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(13)

which can be transformed into the form of

HGII =

⎡
⎢⎢⎢⎢⎢⎢⎣

I
⊗

H0
Γ(0, is − i0 − 1;α)

⊗
Hi1\i0

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1...
...

...
Γ(0, is − is−2 − 1;α)

⊗
His−1\is−2

Γ(0, is − is−1 − 1;α)
⊗

His\is−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

To make a connection between GII codes and generalized

tensor product codes, we further reformulate the matrix HGII
in (14) as follows,

HGII =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
⊗

H0
Γ(0, is − i0 − 1;α)

⊗
Hi1\i0

(1)
...

...
...

Γ(0, is − i0 − 1;α)
⊗

Hi1\i0
(ki0 − ki1 )

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1
(1)

...
...

...
Γ(0, is − i1 − 1;α)

⊗
Hi2\i1

(ki1 − ki2 )
...

...
...

...
...

...
Γ(0, is − is−2 − 1;α)

⊗
His−1\is−2

(1)
...

...
...

Γ(0, is − is−2 − 1;α)
⊗

His−1\is−2
(kis−2 − kis−1 )

Γ(0, is − is−1 − 1;α)
⊗

His\is−1
(1)

...
...

...
Γ(0, is − is−1 − 1;α)

⊗
His\is−1

(kis−1 − kis )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(15)

where, in the first level, the matrix H0 over Fq is treated as

a vector over the extension field Fqn−ko , and correspondingly

the matrix I is treated as an m × m identity matrix over

Fqn−ko . For 1 � x � s and 1 � y � kix−1 − kix , Hix\ix−1
(y)

over Fq represents the yth row of the matrix Hix\ix−1
.

Now, referring to the matrix in (4), the matrix in (15) can

be seen as a parity-check matrix of a (1 + k0 − kis)-level

generalized tensor product code over Fq. As a result, we can

directly obtain the following lemma, which was also proved

in [25] in a different way.

Lemma 11. The code CGII is a linear code over Fq of

length N = nm, dimension K = ∑γ
x=1 kx + (m − γ)k0 =

∑s
j=1(i j − i j−1)ki j + (m − γ)k0, and minimum distance

D � min
{
(γ + 1)d0, (γ − i1 + 1)di1 , . . . , (γ − is−1 +

1)dis−1 , dis
}

.
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Proof: For 1 � x � s and 1 � y � kix−1 − kix , let the

following parity-check matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0
Hi1\i0(1)...

Hi1\i0(ki0 − ki1)
...

Hix\ix−1
(1)

...

Hix\ix−1
(y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

define an [n, kix−1 − y, dix ,y]q code, so we have dix−1 �
dix ,1 � dix ,2 � · · · � dix ,kix−1

−kix
= dix . From the proper-

ties of generalized tensor product codes, it is easy to obtain
the dimension K = ∑s

j=1(i j − i j−1)ki j + (m− γ)k0. From

Theorem 4, the minimum distance satisfies

D �min
{
(γ + 1)d0,

(γ + 1)di1 ,1, . . . , (γ + 1)di1 ,ki0−ki1−1, (γ − i1 + 1)di1 ,

. . . , . . . , (γ − is−1 + 1)dis−1 ,

(γ − is−1 + 1)dis ,1, . . . , (γ − is−1 + 1)dis ,kis−1−kis−1, dis

}

=min
{
(γ + 1)d0, (γ − i1 + 1)di1 ,

. . . , (γ − is−1 + 1)dis−1 , dis

}
.

Remark 4. In some prior works, we find that generalized ten-

sor product codes are called generalized error-location (GEL)

codes [4], [17]. Recently, in [25], the similarity between GII

codes and GEL codes was observed. However, the exact re-

lation between them was not studied. In [25], the author also

proposed a new generalized integrated interleaving scheme

over binary BCH codes, called GII-BCH codes. These codes

can also be seen as a special case of generalized tensor prod-

uct codes.

VI. CONCLUSION

In this work, we presented a general construction for ME-

LRCs over small fields. This construction yields optimal ME-

LRCs with respect to an upper bound on the minimum dis-

tance for a wide range of code parameters. Then, an erasure

decoder was proposed and corresponding correctable erasure

patterns were identified. ME-LRCs based on Reed-Solomon

codes were shown to be optimal among all codes having

the same erasure-correcting capability. Finally, generalized

integrated interleaving codes were proved to be a subclass

of generalized tensor product codes, thus giving the exact

relation between these two codes.
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