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Bing Fan, Student Member, IEEE, Hemant K. Thapar, Fellow, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract— Multitrack detection with array-head reading is
a promising technique proposed for next generation magnetic
storage systems. The multihead multitrack (MHMT) system
is characterized by intersymbol interference in the downtrack
direction and intertrack interference (ITI) in the crosstrack
direction. Constructing the trellis of a MHMT maximum like-
lihood (ML) detector requires knowledge of the ITI, which is
generally unknown at the receiver. Furthermore, in a time-
varying ITI environment, updating ML trellis labels using
adaptively-generated ITI estimates could incur significant delay.
In this paper, we propose one approach to solve these issues. The
proposed detector uses a different trellis structure whose output
labels are independent of the ITI level, with ITI-dependence
appearing only in a scale factor used to suitably weight the
computed path metrics in order to retain ML optimality. The
detector formulation facilitates the design of a gain loop structure
that can track the time-varying ITI and provide ITI estimates
to adaptively adjust the weights in the path metric evaluation.
Simulation results show that the proposed detector architecture
with ITI estimation offers a substantial performance advantage
over ML detection using a static ITI estimate.

Index Terms— Shingled magnetic recording (SMR), intertrack
interference (ITI), intersymbol interference (ISI), adaptive
estimation, maximum-likelihood sequence estimation (MLSE).

I. INTRODUCTION

W ITH the development of information networks and data
centers, the demand for ultra-high capacity storage

devices is continually increasing. For hard disk drive (HDD)
storage, several promising technologies have been proposed
to increase the areal density. Among these options, bit pat-
terned magnetic recording (BPMR), heat assisted magnetic
recording (HAMR), and microwave assisted magnetic record-
ing (MAMR) are technologies that require significant modifi-
cation of the recording media and/or the read-write transducer

Manuscript received May 27, 2016; revised October 31, 2016 and
January 4, 2017; accepted January 5, 2017. Date of publication January 16,
2017; date of current version April 14, 2017. This work was supported in
part by the National Science Foundation under Grant CCF-1405119, and the
Center for Memory and Recording Research (formerly, Center for Magnetic
Recording Research) at UC San Diego. The associate editor coordinating the
review of this paper and approving it for publication was L. Dolecek.

B. Fan and P. H. Siegel are with the Center for Memory and Recording
Research, Department of Electrical and Computer Engineering, University of
California, San Diego, La Jolla, CA 92093, USA (e-mail: bifan@ucsd.edu;
psiegel@ucsd.edu).

H. K. Thapar is with OmniTier, Inc., Santa Clara, CA 95054, USA (e-mail:
hemantkthapar@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2017.2652471

to push beyond the superparamagnetic limit [1]. In contrast,
two dimensional magnetic recording (TDMR) combined with
shingled writing, has been proposed as an approach to advanc-
ing areal density using conventional media and recording head
technology, relying instead upon more sophisticated signal
processing techniques to decode data under severe noise and
interference conditions [2].

One particular challenge faced by future generations of
magnetic recording systems will be how to deal with the cross-
talk between densely-packed data tracks. It is conceivable
that in the near term, the width and separation of record-
ing tracks will be significantly reduced, with a relatively
smaller reduction in read head size [2]–[4]. Therefore, the
read head will sense signals from neighboring tracks when
reading from a target track, causing substantial intertrack
interference (ITI) [5]. The performance of a single-head single-
track (SHST) detector in such a scenario with ITI was studied
in [6]. The results show that the additional signal distortion
caused by ITI can severely degrade the performance of disk
drives using conventional SHST detection methods.

The next-generation magnetic recording channel, which is
characterized by both ITI in the crosstrack direction and inter-
symbol interference (ISI) in the downtrack direction, can be
well approximated by the two-dimensional ISI (2D-ISI) model,
in which the impulse response of the read head is represented
by a matrix [7]. Since maximum likelihood (ML) detection
on a general 2D-ISI channel is quite complex – in fact, it has
been shown to be NP-hard even for some elementary 2D-ISI
channels [8] – considerable effort has been spent on designing
practical suboptimal detectors. For example, the authors in [9]
propose a one-dimensional (1D) multi-strip base Bahl, Cocke,
Jelinek and Raviv (BCJR) detector for a 2×2 impulse response
matrix. Their algorithm, which passes soft information from
column to column, could achieve performance that is approxi-
mately 2

3 dB from ML. The detector proposed in [10] adopts a
turbo structure, where the soft information is iteratively shared
between a row-by-row BCJR detector and another column-
by-column BCJR detector. Simulation results show that the
performance of the proposed detector is near optimal. In [11],
the performance of a similar turbo detector was then examined
on a more realistic magnetic recording channel derived from a
Voronoi grain model. Several other turbo-structured detectors
have also been explored in [12]–[14]. Although the row-
column turbo detector achieves promising performance on the
2D-ISI channel, it generally suffers from high computational
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complexity and long delay. In [15] the authors construct a
factor graph for the 2D-ISI channel and design a general belief
propagation (GBP) detector to combat both the 2D-ISI and
the “overwriting” effect in TDMR. Although GBP has higher
complexity, its parallelized information processing could lead
to shorter detection delay.

Another approach to approximating the magnetic recording
channel is the multihead multitrack (MHMT) model, where
the ISI is generally more severe than ITI. In an MHMT
system, multiple read heads scan a group of data tracks
simultaneously. Guard gaps are generally added between
neighboring groups to prevent cross-talk [16], [17]. Detector
design for MHMT has been studied for decades. Iterative
ITI cancellation, which removes ITI from each single-track
readback signal before detection, was explored in [18], [19].
The simulation results in [19] show that, under a specified
ITI level, the ITI cancellation scheme could offer 3dB gain
compared to the conventional SHST detector. Another ITI
cancellation algorithm that uses soft decisions was recently
studied in [20]. Unlike ITI cancellation, which tends to reduce
the problem to a 1D detection task, an MHMT detector
processes multiple readback waveforms and decodes multiple
data tracks simultaneously. An optimal MHMT detector was
proposed in [21], and then theoretically analyzed in [22]. An
iterative detection/decoding scheme for a two-track channel
model with two heads was simulated in [23]. In [24], the
authors studied the performance and implementation cost of
the MHMT ML detector for a higher-order MHMT system.
Similar structures were also analyzed for BPMR in [3], [17].
As shown in these works, the MHMT detector can better
combat ITI for a large group of channels compared to the
SHST scheme. However, processing data from multiple heads
exponentially increases the computational complexity of the
MHMT detector.

In this two-part paper, we adopt the MHMT model and
aim to address two challenging problems that can potentially
make ML detection for the MHMT channel impractical –
adaptive ITI estimation and implementation complexity. Our
model is similar to those used in [19], [21], [23], [25]. We
assume that there are n data tracks representing an independent
band, with n read heads, all with the same physical properties,
evenly spaced over the band. The channel seen by each head
from the track to which it is associated is assumed to be a
partial-response ISI channel with additive Gaussian noise. The
model for ITI assumes that the interfering signal sensed by
a read head from a neighboring track is a scaled version of
the signal sensed by the head directly over the neighboring
track. Of particular interest is the case where ITI derives
only from directly adjacent tracks. We recognize that this
ITI model is a relatively simple approximation to the actual
magnetic recording channel, but it nonetheless serves as useful
motivation for the investigation of potentially useful detection
algorithms and architectures.

In Part I, we consider the problem of estimating the side
track response. In [6], the authors propose a least mean
square (LMS) adaptive algorithm to estimate the off-track
interference for the SHST system. For the MHMT detector,
the knowledge of side track response is crucial because

the construction of MHMT trellis requires complete channel
responses from side tracks. In addition, updating ITI estimate
could possibly delay the detection process since the output
labels of the MHMT trellis need to be recalculated. To solve
this issue, we propose a novel detection method, weighted
sum-subtract joint detection (WSSJD), whose trellis labels do
not change with ITI. Then we reformulate the ITI estimation
as a channel gain control problem, and design gain loops
to adaptively track the value of ITI. The design and the
performance of the proposed detector for the simplest case,
which is the 2H2T system, have been introduced in [26].

This paper extends [26] in the following ways. We gen-
eralize the proposed 2H2T WSSJD algorithm to the general
n-head, n-track (nHnT) case. By taking the eigenvalue decom-
position of the channel interference matrix, and applying
coordinate transformations in both the input and the output
spaces, the cross-interfering channels are transformed into n
separate sub-channels. The parameter that indicates the ITI
level appears in the gain factor of each resulting sub-channel,
and thus can be estimated by gain loops. The trellis of the
transformed system remains the same under varying ITI levels,
so adaptive ITI level estimates can be used. Simulation results
on 2H2T and 3H3T systems show that under time-varying ITI
conditions, WSSJD with adaptively estimated ITI outperforms
the traditional ML detector for which practical considerations
dictate the use of a static ITI estimate. We also analyze
the performance advantage of the nHnT detection system
over ITI-free single-track detection by examining the distance
properties of each system.

Another important issue, which will be discussed in Part II
of this work, is the increased computational complexity of
the MHMT detector. We find that the transformation devel-
oped in WSSJD offers a natural set-partition principle for
the input constellation that can be used in a reduced-state
sequence estimation (RSSE) architecture. This concept was
partially presented in [27] and [28]. In Part I, we present the
performance of reduced WSSJD with gain loops for compar-
ison. The implementation details and the theoretical perfor-
mance analysis of the reduced algorithm will be presented
in Part II.

The paper is organized as follows. In Section II we intro-
duces the nHnT model and our assumptions in deriving the
model. The ML detector and its performance approximation in
terms of the minimum distance parameter are also reviewed. In
Section III we introduce the WSSJD algorithm for the 2H2T
system, and analyze its performance by examining its mini-
mum distance. A suboptimal implementation is also discussed.
In Section IV we study the ITI sensitivity of the detectors. We
also analyze the effect of ITI mismatch on different types of
error events. A gain loop structure is then proposed to adap-
tively estimate the ITI level for use by WSSJD. The proposed
WSSJD algorithm is generalized in Section V. We show how
the WSSJD transformation decomposes the nHnT system into
parallel sub-channels. Pseudocode of the generalized WSSJD
algorithm is also provided. Bit-error-rate simulation results for
the 2H2T and 3H3T channels are presented in Section VI,
where we consider both static and adaptive ITI environments.
The paper concludes in Section VII.
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II. n-HEAD n-TRACK CHANNEL MODEL

In next-generation magnetic recording using shingled mag-
netic recording, the data tracks will be organized into bands,
each consisting of a number of narrow, closely space tracks,
with a small gap between bands to prevent interference [16].

Consider a band of n tracks. Let xi(D) denote the bipolar
data sequence recorded on the i -th track, xi(D) = �N

k=0 xi
k Dk ,

with xi
k ∈ {−1,+1}. We assume that xi

k is i.i.d. and equiproba-
ble, and xi(D), i ∈ {1, . . . , n} are independent sequences. We
also assume that there is no phase offset during the writing,
i.e., the data sequences are perfectly aligned.

During the readback process, n heads are evenly placed
over n tracks, with one head designated per track. The signal
from each head is passed through a matched filter, a sampler,
and then equalized to the target dipulse response represented
by a polynomial h(D) = h0 + h1 D + · · · + hν Dν that
reflects the intersymbol interference (ISI). The interference
from neighboring tracks is additive, and the interfering by
a read head from a neighboring track is assumed to be a
scaled version of the read signal that would be sensed by
the head directly over the neighboring track in the absence
of any intertrack interference. Let r i (D) denote the sampled
readback samples corresponding to the signal from the head
corresponding to the i -th track, i = 1, . . . , n. The resulting
n-head n-track (nHnT) system is described by

R(D) = AnX(D)h(D) + �(D), (1)

where

X(D) = [x1(D), · · · , xn(D)]� (2)

is the input vector, and

R(D) = [r1(D), · · · , rn(D)]� (3)

is the output vector. The vector of electronic noise components
is denoted by

�(D) = [ω1(D), · · · , ωn(D)]�. (4)

We assume that the noise samples are independent and
Gaussian distributed, with zero mean and variance σ 2. The
term X(D)h(D) = [x1(D)h(D), · · · , xn(D)h(D)]� denotes
the vector of noiseless ISI channel outputs, and An is an
n × n interference matrix. In our model, we assume that only
adjacent tracks interfere. This assumption is reasonable since
in most cases the ITI from the adjacent tracks is the dominant
one. Additionally, by assuming the physical uniformity and
symmetry of read heads, An can be modeled as a symmetric
tridiagonal Toeplitz matrix

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ε

ε 1
. . . 0

. . .
. . .

. . .

0 . . . 1 ε
ε 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where ε ∈ [0, 0.5] represents the ITI level determined by the
distance between the head and the adjacent track.

Fig. 1. Minimum squared-distance comparison of different detectors on
channel h(D) = 1 + D with d2

0 = 8.

Given the received sequences R(D), the ML detector
chooses X∗(D) that satisfies

X∗(D) = arg max
X(D)

Pr(R(D)|X(D))

= arg min
X(D)

‖R(D) − AnX(D)h(D)‖2, (6)

where ‖·‖2 denotes the squared Euclidean norm. For instance,
‖X(D)‖2 is calculated by

‖X(D)‖2 =
∑

i

‖xi (D)‖2 =
∑
i, j

(xi
j )

2. (7)

The trellis constructed in the ML detector contains 2nν states,
each of which is associated with 2n edges.

Let xi (D) and x̂ i (D) be the correct and estimated input
sequences corresponding to track i , respectively. An error
event occurs if for some track i , ei(D) = xi (D) − x̂ i (D)
is not zero. For an error event

e(D) = [e1(D), · · · , en(D)]�, (8)

the distance parameter is calculated by

d2(e(D)) = ‖An e(D)h(D)‖2 =
n∑

i=1

‖yi (D)‖2, (9)

where

y1(D) = [e1(D) + εe2(D)]h(D), (10)

yn(D) = [en(D) + εen−1(D)]h(D), (11)

yi (D) = [ei (D) + εei−1(D) + εei+1(D)]h(D),

i ∈ [2, n − 1]. (12)

The minimum distance parameter of the channel is obtained
by minimizing d2(e(D)) over all possible e(D). In Fig. 1,
we plot the minimum distances of the nHnT ML detector for
n = 2, 3, 4, 5, assuming h(D) = 1 + D. It can be observed
that in a large region of ε, the nHnT ML detectors have a
greater minimum distance parameter than the ITI-free SHST
ML detector. The distance parameters associated with the other
detectors plotted in Fig. 1 will be discussed in Section III-C.
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Fig. 2. Schematic of a two-head two-track recording system.

It is well known that the error event probability of a
trellis-based detector can be approximated as Pe ∝ Q( dmin

2σ ),
where Q(·) is the tail probability of the standard Gaussian
distribution, dmin is the minimum distance, and σ is the
standard deviation of the additive Gaussian noise. The
performance of the detector can be accurately predicted by
analyzing its minimum distance.

We notice that the calculation of trellis output labels,
Y(D) = AnX(D)h(D), requires knowledge of the ITI level ε.
This can introduce disadvantages in the hardware realization
of the conventional ML detector. With time-varying ITI levels,
the detector in effect has to recalculate and update the branch
output labels whenever ε changes. If ε changes frequently, this
process could incur a substantial increase in hardware com-
plexity and delay. Therefore, using a conventional approach to
implementation, MHMT ML detection is essentially limited to
a static value of ε. Indeed, in the prior literature, studies of
MHMT ML detection have always assumed a static ITI envi-
ronment [21]–[23]. On a hard disk drive, however, ε generally
varies spatially due to mechanical effects such as head skew
and flying height variation. Thus, adaptive estimation of ε will
be necessary, potentially introducing the complexity and delay
issues just mentioned if conventional ML detection is used.

In the following sections, we propose a novel detection
architecture that is amenable to incorporating adaptive ITI
estimation while retaining the optimality of ML detection.
The proposed detector uses a different trellis diagram from
the conventional ML detector. For convenience, we refer to the
latter as the “ML trellis” even though both detectors produce
the same ML output sequences.

III. WSSJD ON 2H2T SYSTEM

The weighted sum-subtract joint detection (WSSJD) algo-
rithm differs from the conventional ML detector in two
respects. First, it has a “sum-subtract” preprocessor before the
Viterbi detector. Second, it uses weighted branch metrics in
detection. In this section, we assume ε to be known. This
condition will be relaxed in Section IV where we show that
ε acts as a gain factor that can be estimated by means of a
first-order gain loop.

We begin the presentation of WSSJD by first analyzing
the 2H2T case. A schematic of the 2H2T system is shown
in Fig. 2. Let xa(D) and xb(D) be the input sequences
corresponding to track a and track b, respectively. The outputs
of the corresponding read heads are

ra(D) = ya(D) + ωa(D),

rb(D) = yb(D) + ωb(D), (13)

where

ya(D) = xa(D)h(D) + εxb(D)h(D),

yb(D) = εxa(D)h(D) + xb(D)h(D), (14)

are the noiseless outputs. As given in [22], the minimum
distance parameter of the 2H2T ML detector is

d2
min, ML =

{
(1 + ε2)d2

0 if 0 � ε � 2 − √
3

2(1 − ε)2d2
0 if 2 − √

3 � ε � 1/2
(15)

where d0 is the minimum distance of the single-track detector
on channel h(D) when there is no ITI. The single track error
events are the dominant error patterns at low ITI, while the
double track error events are the dominant ones at high ITI.
The operating point that gives the highest minimum distance,
or the best performance of the ML detector, is at ε = 2 −√

3.

A. Sum-Subtract Preprocessing

Instead of directly processing ra(D) and rb(D), the WSSJD
method first calculates the weighted sum and difference,
r+(D) and r−(D), given by

r+(D) = 1

1 + ε
[ ra(D) + rb(D) ],

r−(D) = 1

1 − ε
[ ra(D) − rb(D) ], (16)

respectively. Defining new input signals by

z+(D) = xa(D) + xb(D),

z−(D) = xa(D) − xb(D), (17)

and the corresponding noiseless output signals by

y+(D) = z+(D)h(D),

y−(D) = z−(D)h(D), (18)

we can rewrite (16) as

r+(D) = y+(D) + ω+(D),

r−(D) = y−(D) + ω−(D). (19)

The new noise components,

ω+(D) = 1

1 + ε
(ωa(D) + ωb(D)),

ω−(D) = 1

1 − ε
(ωa(D) − ωb(D)) (20)

satisfy ω+
k ∼ N (0, 2σ 2

(1+ε)2 ), ω−
k ∼ N (0, 2σ 2

(1−ε)2 ). Furthermore,

E[ ω+
k ω−

k ] = 1

1 − ε2 (E[ ωa
k

2 ] − E[ ωb
k

2 ] ) = 0, (21)

which implies that ω+(D) and ω−(D) are uncorrelated and,
therefore, independent.

We can think of r+(D) and r−(D) as the noisy outputs
obtained by passing each of z+(D) and z−(D) through
a channel h(D), but with different noise powers. These two
channels are called the “sum channel” and the “subtract
channel”, respectively. Notice that the new inputs z+

k and z−
k

have a three-level alphabet, B = {−2, 0, 2}. There is a
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TABLE I

MAPPING BETWEEN (xa
k , xb

k ) AND (z+
k , z−

k )

Fig. 3. WSSJD trellis for channel h(D) = 1 + D.

one-to-one mapping between (z+
k , z−

k ) and (xa
k , xb

k ), as shown
in Table I.

Since r+(D) and r−(D) are obtained from separate chan-
nels, one can independently detect z+(D) and z−(D), and
then map (z+

k , z−
k ) to (xa

k , xb
k ) according to Table I. This

corresponds to solving for

ẑ+(D) = arg max
z+(D)

log Pr(r+(D) | z+(D))

= arg min
z+(D)

‖r+(D) − z+(D)‖2 ,

ẑ−(D) = arg max
z−(D)

log Pr(r−(D) | z−(D))

= arg min
z−(D)

‖r−(D) − z−(D)‖2. (22)

This computation has complexity O(2 · 3ν). However, it is
suboptimal. From Table I we see that z+(D) and z−(D) are
not independent, e.g., z+

k = 2 forces z−
k to be 0. Independent

detection ignores this correlation and produces some undecod-
able (ẑ+

k , ẑ−
k ) pairs. Optimal detection must jointly consider

both the sum channel and the subtract channel, determining

ẑ+(D), ẑ−(D)

= arg max
z+(D),z−(D)

log Pr(r+(D), r−(D) | z+(D), z−(D)). (23)

The Viterbi algorithm (VA) is applied to solve (23).
The WSSJD trellis has the same number of states as the
ML trellis. Each branch connects an initial state s(k) =
[z+

k−ν . . . z+
k−1, z−

k−ν . . . z−
k−1] to a terminal state s(k + 1) =

[z+
k−ν+1 . . . z+

k , z−
k−ν+1 . . . z−

k ] with input label Lin = (z+
k , z−

k )

and output label Lout = (y+
k , y−

k ). Fig. 3 shows a WSSJD
trellis for the channel h(D) = 1 + D. The text to the left of
each state lists the branch labels in the form of input/output.

Note that, unlike the ML trellis, the WSSJD trellis labels are
independent of ε.

B. Weighted Branch Metric

Since the sum and the subtract channel have different noise
powers, WSSJD computes a weighted sum of their individual
distance metrics, ‖r+(D)− y+(D)‖2 and ‖r−(D)− y−(D)‖2.
The optimal choice of the weights is found by evaluating (23),

ẑ+(D), ẑ−(D)

= arg max
z+(D),z−(D)

log Pr(r+(D), r−(D)|z+(D), z−(D))

= arg max
z+(D),z−(D)

log Pr(r+(D)|z+(D)) + log Pr(r−(D)|z−(D))

= arg min
z+(D),z−(D)

‖r+(D) − y+(D)‖2

2σ 2/(1 + ε)2 + ‖r−(D) − y−(D)‖2

2σ 2/(1 − ε)2

= arg min
z+(D),z−(D)

(1 + ε)2‖r+(D) − y+(D)‖2

+ (1 − ε)2‖r−(D) − y−(D)‖2. (24)

Let Mk (s) denote the survivor path metric for state s at time k.
The path metric corresponding to the extension along a branch
from state s to s′ is

Mk+1(s
′) = Mk(s) + (1 + ε)2(r+

k − y+
k )2

+ (1 − ε)2(r−
k − y−

k )2. (25)

The term mk(s, s′) = (1+ε)2(r+
k − y+

k )2 +(1−ε)2(r−
k − y−

k )2

is the weighted branch metric.
Since the sum-subtract transformation is bijective, we have

Pr(r+(D), r−(D)|z+(D), z−(D))

= Pr(ra(D), rb(D)|xa(D), xb(D)). (26)

Therefore, WSSJD gives the ML solution.
Assume (z+(D), z−(D)) are the correct input sequences.

WSSJD outputs wrong estimates (ẑ+(D), ẑ−(D)) if

Pr(r+(D), r−(D)|z+(D), z−(D))

< Pr(r+(D), r−(D)|ẑ+(D), ẑ−(D)). (27)

Let e+(D) = z+(D) − ẑ+(D) and e−(D) = z−(D) − ẑ−(D)
be the error event. Notice that the alphabet of e+

k and e−
k is

{±4,±2, 0}, and e+
k and e−

k are not independent, e.g., e+
k = 4

implies e− = 0. The probability of having (e+(D), e−(D)) is
approximated by Q( dWSSJD(e+(D),e−(D))

2σ ), where

d2
WSSJD(e+(D), e−(D))

= (1 + ε)2‖e+(D)h(D)‖2 + (1 − ε)2‖e−(D)h(D)‖2

2
(28)

is the effective distance parameter defined for WSSJD.
Although the labels on the WSSJD trellis are independent of ε,
the distance metric used to estimate the WSSJD performance
has to incorporate the effect of the signal-to-noise ratio (SNR)
differences in the sum and subtract channels. Evaluating (28)
for all possible error events shows that WSSJD has the same
minimum distance parameter as the ML detector.
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C. Performance Loss From Neglecting Branch
Metric Weighting Factors

We refer to the detector that ignores the weighting factors,
i.e., that uses

mk(s, s′) = (r+
k − y+

k )2 + (r−
k − y−

k )2 (29)

as the branch metric, as the sum-subtract joint detector. The
corresponding sum-subtract joint detection (SSJD) method is
suboptimal. The performance loss of SSJD is reflected in
its minimum distance parameter. Let (z+(D), z−(D)) and
(ẑ+(D), ẑ−(D)) be the correct and estimated sequences. The
error event probability is

Pr(‖r+(D) − z+(D)h(D)‖2 + ‖r−(D) − z−(D)h(D)‖2

> ‖r+(D) − ẑ+(D)h(D)‖2 + ‖r−(D) − ẑ−(D)h(D)‖2)

= Q

(
dSSJD(e+(D), e−(D))

2σ

)
, (30)

where

dSSJD(e+(D), e−(D)) = ‖e+(D)h(D)‖2 + ‖e−(D)h(D)‖2
√

2‖e+(D)h(D)‖2

(1+ε)2 + 2‖e−(D)h(D)‖2

(1−ε)2

.

(31)

Since e+(D) and e−(D) are not independent, we express them
as e+(D) = ea(D) + eb(D) and e−(D) = ea(D) − eb(D)
to find d2

min, SSJD. To simplify the notation, let A(D) =
ea(D)h(D) and B(D) = eb(D)h(D). We have

d2
SSJD(ea(D), eb(D))

= (1 + ε)2(1 − ε)2(‖A(D)‖2 + ‖B(D)‖2)2

(1 + ε2)(‖A(D)‖2 + ‖B(D)‖2) − 4ε〈A(D), B(D)〉 .

(32)

Consider the case of a single-track error event, e.g., assume
eb(D) = 0. Then

d2
SSJD(ea(D), 0) = (1 + ε)2(1 − ε)2

1 + ε2 ‖A(D)‖2

� (1 + ε)2(1 − ε)2

1 + ε2 d2
0 (33)

with equality achieved when ea(D) gives the minimum
distance d2

0 on channel h(D).
For the case of a double-track error event we have

d2
SSJD(ea(D), eb(D)) � (1 − ε)2(‖A(D)‖2 + ‖B(D)‖2)

� 2(1 − ε)2d2
0 , (34)

where we have used the fact that

−〈A(D), B(D)〉 � ‖A(D)‖ ‖B(D)‖
� 1

2
(‖A(D)‖2 + ‖B(D)‖2). (35)

Equality is achieved in (34) when ea(D) = −eb(D) and
both ea(D) and eb(D) lead to the minimum distance d0 on
channel h(D). Comparison between (33) and (34) shows that,
in contrast to WSSJD, the minimum distance of SSJD is
always dominated by single-track error events. Therefore

d2
min, SSJD = (1 + ε)2(1 − ε)2

1 + ε2 d2
0 . (36)

In Fig. 1 we plot the squared minimum distance parameters
for several detectors as a function of ε. Recall that WSSJD on
the 2H2T model has the same d2

min as the 2H2T ML detector.
Two SHST detectors [25] are included for comparison
purposes. The optimal SHST detector estimates the data on
a track using the model for channel ISI and the interference
induced by the side track. Its minimum distance is dominated
by double-track error events, leading to

d2
min, opt-SHST = (1 − ε)2d2

0 . (37)

The conventional SHST detector considers only the channel
ISI and treats the side track interference as additional
electronic noise, and is therefore suboptimal. For the channel
with h(D) = 1 + D, the minimum distance has a closed form
expression given by

d2
min, con-SHST = (1 − 2ε)2d2

0 . (38)

Finally, the ITI-free SHST corresponds to the SHST channel
model with no ITI. The performance of the ITI-free SHST
detector can be viewed as the performance of an ideal ITI
cancellation scheme in which the side track response is
perfectly removed.

We summarize the proposed algorithms as follows. The
branch labels of the trellis constructed for WSSJD or SSJD
are independent of the ITI level ε. This independence is
the key property underlying the proposed architecture for
combining WSSJD or SSJD with adaptive estimation of ε.
In WSSJD, the ITI level ε is used to weight the branch metrics,
thereby ensuring that it achieves ML performance. The SSJD
algorithm does not weight the branch metrics, thus producing
suboptimal decisions.

IV. ADAPTIVE ITI LEVEL ESTIMATION

A. ITI Sensitivity

To evaluate the sensitivity of the various detectors to a small
change in the ITI level, we introduce a small offset into our
performance simulations. Suppose the nominal ITI level is ε0,
while the true ITI level is adjusted by an offset �ε. The new
noiseless channel outputs become

ya(D) = xa(D)h(D) + (ε0 + �ε) xb(D)h(D),

yb(D) = xb(D)h(D) + (ε0 + �ε) xa(D)h(D). (39)

If the detectors use the nominal level ε0, rather than the true
level ε = ε0 + �ε, mismatch will lead to a degradation in
performance.

Fig. 4 shows the simulated bit error rate (BER) as a function
of the mismatch �ε for WSSJD, SSJD, and the conventional
ML detector on the channel with h(D) = 1 + D at SNR =
10dB, with ε0 = 0.1 and ε0 = 0.3, respectively. We see that
the minimum BER occurs at �ε ≈ 0 for ε0 = 0.1 and at
�ε = −0.02 for ε0 = 0.3. However, the BER performance
does not vary significantly in the interval |�ε| � 0.02 in either
case. It is evident that the BER curves are not symmetric about
�ε = 0. When ε0 = 0.1, the slope of the BER curve in
the region �ε < 0 is slightly higher than that in the region
�ε > 0. On the other hand, when ε0 = 0.3, the asymmetry
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Fig. 4. ITI sensitivity of different detectors on channel h(D) = 1 + D at
ε0 = 0.1 (left) and ε0 = 0.3 (right). SNR=10dB.

is reversed, and the difference between the slopes is more
significant.

Fig. 1 suggests that the observed behaviors are due to
minimum distance properties of the mismatched detectors.
To see this, consider the ML detector as an example. The
probability of having an error event (ea(D), eb(D)) when the
system has an offset �ε is

Pe = Q

(
1

2σ
d(ea, eb, xa, xb)

)
= Q

(
1

2σ
(dideal + dmism)

)
,

(40)

where

dideal =
√

‖A(D)‖2 + ‖B(D)‖2, (41)

dmism = 2�ε
〈A(D), xb(D)h(D)〉 + 〈B(D), xa(D)h(D)〉√‖A(D)‖2 + ‖B(D)‖2

,

(42)

A(D) = ea(D)h(D) + ε · eb(D)h(D),

B(D) = eb(D)h(D) + ε · ea(D)h(D). (43)

Compared to the ideal case, dmism is the additional effect
caused by the mismatch. Notice that with the existence of mis-
match, the distance parameter is now dependent on the input
sequence (xa(D), xb(D)). In addition, having mismatch does
not always decrease the distance. Some sequence combinations
could lead to larger distance than the ideal case. The error
event probability is dominated by the sequence combination
(ea, eb, xa, xb) that leads to the smallest value of dideal+dmism.
Finding such a combination is not an easy task because
(ea(D), eb(D)) and (xa(D), xb(D)) are not independent. For
example, ea

k = 2 forces xa
k to be 1. Due to this correlation, it is

hard to obtain an explicit expression for the minimum distance
of a general channel polynomial. But for the channel with
h(D) = 1 + D, we show in the Appendix that the minimum
distance of the single-track error events is

d2
s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8(1 + ε2
0 − 2�ε)2

1 + ε2
0

if �ε > 0

8[1 + ε2
0 + (2 + 2ε0)�ε]2

1 + ε2
0

if �ε < 0.

(44)

With the additional assistance of computer search, we also
show that the minimum distance produced by double-track

TABLE II

SEQUENCES ACHIEVING dMIN IN (46) UNDER POSITIVE/NEGATIVE
OFFSETS FOR (a) SINGLE-TRACK ERROR EVENTS, AND

(b) DOUBLE-TRACK ERROR EVENTS

Fig. 5. Minimum distance parameter of the ML detector at different levels
of mismatch for channel 1 + D.

error events is

d2
d =

{
16[(1 − ε0) − 2�ε]2 if �ε > 0

16(1 − ε0)
2 if �ε < 0.

(45)

The distance values, d2
s and d2

d , are achieved by the single track
error events and double track error events that minimize dideal,
respectively. Table II gives examples of sequence combinations
that achieve d2

s and d2
d . The overall minimum distance of the

system is

d2
min = min {d2

s , d2
d }. (46)

In summary, the asymmetry of the BER curve about
�ε = 0 is due to the correlation between (ea(D), eb(D))
and (xa(D), xb(D)). The reason that minimum BER points
for ε0 = 0.1 and ε0 = 0.3 occur at different values of the
mismatch �ε is because at ε0 = 0.1 the system performance
is largely dominated by the single track error events, while at
ε0 = 0.3 the double track error events are dominant. Fig. 5
shows the overall minimum distance d2

min as a function of
the mismatch |�ε| � 1 for several values of ε between
0.1 and 0.4. Comparing these results to the BER curves in
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Fig. 6. WSSJD with gain loops to adaptively estimate the ITI level.

Fig. 4, we find that for ε0 = 0.1, a positive mismatch produces
a higher d2

min than a negative offset of the same magnitude. For
ε0 = 0.3, this situation is reversed, and in a small range of neg-
ative offsets, −0.02 � �ε � 0, the mismatch does not reduce
the minimum distance of the system. In this case, the mismatch
also reduces the probability of worst case error events, leading
to a shift of the minimum BER to the negative side.

B. Gain Loop

Recall that in the sum-subtract preprocessing, ε appears
in the gain factors that normalize r+(D) and r−(D). We
rewrite (16) as

r+(D) = g+ [ ra(D) + rb(D) ],
r−(D) = g− [ ra(D) − rb(D) ], (47)

where g+, g− are the gain factors with true values 1
1+ε

and 1
1−ε , respectively. There are several well-known ways to

estimate g+ and g−[29]. In our work, we adopt the LMS
adaptive algorithm due to its simplicity and good convergence
properties. For ĝ+, the updating rule is given by

r̂+
k = ĝ+

k−1 (ra
k + rb

k ), (48)

ek = ŷ+
k − r̂+

k , (49)

ĝ+
k = ĝ+

k−1 + β ŷ+
k ek . (50)

The step-size parameter β controls the convergence speed.
Larger β leads to faster convergence, but also results in
larger error variance. Note that ŷ+

k represents the instantaneous
hard decision made by the Viterbi detector. The use of hard
decisions can potentially lead to growing estimation error at
low SNR. To mitigate this, one can introduce a small delay
m � 1 to get more accurate tentative decisions.1 In this case,
(49) and (50) become

ek−m = ŷ+
k−m − r̂+

k−m , (51)

ĝ+
k = ĝ+

k−1 + β ŷ+
k−m ek−m . (52)

1The use of soft decisions would lead to even further improvement in the
gain estimation, at the cost of increased complexity.

Fig. 7. Adaptive estimation of g+ and g− over one sector of N = 4096 bits
for the channel h(D) = 1 + D at different SNRs. In (a), ε = 0.1. In (b), ε is
a sinusoidal function of time.

Similarly, ĝ−
k can be estimated in the same manner. The

estimates ĝ+
k and ĝ−

k will be fed back to the Viterbi detector
to evaluate path metrics, i.e.,

Mk+1(s
′) = Mk(s) + ĝ+

k−1
2(r+

k − y+
k )2 + ĝ−

k−1
2(r−

k −y−
k )2.

(53)

Fig. 6 shows a complete block diagram for WSSJD with
adaptive gain estimation. The system contains two separate
gain loops for ĝ+

k and ĝ−
k . While a combined loop for

estimating ĝ+
k and ĝ−

k can provide a better estimate for ε,
using separate loops achieves similar performance in a more
efficient way.

In our simulations, ĝ+
0 and ĝ−

0 are initially set to 1. At
time k, ra

k + rb
k and ra

k − rb
k are normalized by the previously

estimated ĝ+
k−1 and ĝ−

k−1, respectively. The resulting signals
r̂+

k and r̂−
k are sent to the Viterbi detector. The path metric of

each trellis state is calculated by using weights ĝ+
k−1 and ĝ−

k−1.
The Viterbi detector picks the most likely path, and makes an
instantaneous decision on ŷ+

k−m and ŷ−
k−m . The error signal

is calculated to update ĝ+
k and ĝ−

k . Note that SSJD can also
work with these gain loops, without feeding ĝ+

k and ĝ−
k to the

path metric evaluation.
In Fig. 7, we track the values of g+

k and g−
k estimated by

gain loops in one sector of N = 4096 bits on the channel
with h(D) = 1 + D at high and low SNRs. The true values
of the gain factors, g+ = 1

1+ε and g− = 1
1−ε , are also plotted

for comparison. The step-size β is set to 0.005, and the delay
unit m = 5. In Fig. 7(a), ε has the fixed value 0.1, while in
Fig. 7(a) ε slowly varies around the value 0.1. We see that
gain factors are well tracked by the gain loops. The estimates
at high SNR (10dB) show better convergence than those in a
low SNR (7dB) environment.

V. WSSJD ON GENERAL ITI CHANNEL

A. Decomposition of Interference Matrix

To generalize WSSJD to the nHnT model, consider the
eigen-decomposition of An in (5),

An = Vn�nV�
n , (54)

where Vn is an n × n matrix whose columns are the eigen-
vectors of An , and �n is a diagonal matrix whose diagonal
elements are the corresponding eigenvalues. The eigenvalues
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and eigenvectors of the symmetric tridiagonal Toeplitz matrix
have a known closed form [29] [30]. If we define

T̂n =

⎡
⎢⎢⎢⎢⎣

0 1 O

1 0
. . .

. . .
. . . 1

O 1 0

⎤
⎥⎥⎥⎥⎦

, (55)

then

An = In + εT̂n = Vn(In + ε�̂n)V�
n , (56)

where In is an n × n identity matrix, and �̂n is the diag-
onal matrix containing the eigenvalues of T̂n . Therefore,
the columns of Vn are also the eigenvectors of T̂n , and
�n = In + ε�̂n . In fact, both �̂n and Vn have closed forms:
the kth eigenvalue of T̂n is

λ̂k = 2 cos

(
kπ

n + 1

)
, (57)

and the j th element in the kth eigenvector vk is

v j k =
√

2

n + 1
sin

(
k jπ

n + 1

)
. (58)

Note that Vn is independent of ε.
Example 1:. For the case n = 2,

�2 =
[

1 + ε 0
0 1 − ε

]
, V2 =

[ √
2

2

√
2

2√
2

2 −
√

2
2

]
.

Example 2:. For the case n = 3,

�3 =
⎡
⎣

1 + √
2ε 0 0

0 q1 0
0 0 1 − √

2ε

⎤
⎦ ,

V3 =

⎡
⎢⎢⎢⎢⎢⎣

1

2

√
2

2

1

2√
2

2
0 −

√
2

2
1

2
−

√
2

2

1

2

⎤
⎥⎥⎥⎥⎥⎦

.

B. Channel Decomposition and Generalized WSSJD

The nHnT model is given by (1). Using the decomposition
of An in (54), we can express the channel output as

R(D) = Vn�nV�
n X(D)h(D) + �(D). (59)

Reorganizing (59) gives

�−1
n V�

n R(D) = V�
n X(D) h(D) + �−1

n V�
n �(D). (60)

Let X̄(D) = V�
n X(D), R̄(D) = �−1

n V�
n R(D) and �̄(D) =

�−1
n V�

n �(D) be the vectors of transformed input sequences,
received sequences and noises, respectively. The new channel
model becomes

R̄(D) = X̄(D)h(D) + �̄(D), (61)

which is composed of n parallel channels. The j th channel
is obtained by considering the j th row of both sides of (61),
which gives

r̄ j (D) = x̄ j (D)h(D) + ω̄ j (D), (62)

where

r̄ j (D) = 1

1 + ελ̂ j

n∑
i=1

vi j r i (D), (63)

x̄ j (D) =
n∑

i=1

vi j x i (D), (64)

w̄ j (D) = 1

1 + ελ̂i

n∑
i=1

vi j ωi (D). (65)

Several properties of the transformed channel model can be
observed:

1) The noise components in �̄(D) are independent. Let
ωk and ω̄k be length-n vectors of the original and
transformed noise samples at time k, i.e., the coefficients
of Dk in the sequences ω(D) and ω̄(D), respectively.
Then

E[ω̄kω̄
�
k ] = E[�−1

n V�
n ωkω

�
k Vn�−1

n ] = (σ�−1
n )2,

(66)

which is a diagonal matrix. So the components of ω̄k

are uncorrelated and Gaussian, therefore independent.
Furthermore, the noise power of the j th channel
is σ 2/λ2

j .
2) After the transformation, the inputs of different com-

ponent channels have different alphabets. For the j th

component channel, the alphabet � j is

� j =
{

n∑
i=1

vi j xi |xi ∈ {+1,−1}
}

. (67)

3) The j th component channel corresponds to transmit-
ting x̄ j (D) through the ISI channel h(D) and adding
electronic noise of power σ 2/λ2

j . Since the inputs to
different channels are correlated, a joint trellis is needed
to search for the optimal decision. The new trellis states
can be found by applying the one-to-one mapping to the
conventional ML states. Therefore, the WSSJD trellis
has 2nν states.

4) Since Vn is determined once n is given, the WSSJD
trellis is well-defined, and the branch labels are also
independent of ε.

The optimal decision X̄∗(D) satisfies

X̄∗(D) = arg max
X̄(D)

log Pr(R̄(D)|X̄(D))

= arg min
X̄(D)

n∑
j=1

λ2
j ‖r̄ j (D) − x̄ j (D)h(D)‖2. (68)

It is easy to see that WSSJD gives the optimal ML solution.
For a given error event ē(D) = [ē1(D), . . . , ēn(D)], where

ē j (D) is the error sequence on the j th component channel, the
distance parameter is given by

d2(ē(D)) =
∑

j

λ2
j ‖ē j (D)h(D)‖2. (69)
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Algorithm 1 WSSJD With Gain Loop on nHnT

1: function X̂(D) =WSSJD(R(D), ε0)
2: Initialize:
3: M(0) = 0,
4: M(p) = ∞ for p = 1, · · · , 2nν − 1 � path metric
5: � is a 2nν × N zero matrix � path history
6: G = (In + ε0�̂n)−1 � gain factors
7: Begin:
8: for k = 1 to N do
9: r̄k = GV�

n rk

10: for p = 0 to 2nν − 1 do
11: for each predecessor state qi of p
12: Mi = M(qi ) + (r̄k − y(qi ,p))�G−2(r̄k − y(qi ,p))
13: update M(p) = min

i
Mi

14: �(p, k) = qi � extend survivor path
15: end for
16: if k > m then
17: p∗ = arg min

p
M(p)

18: for j = 1 to δ do
19: p∗ = �(p∗, k − j + 1);
20: end for � trace back path history
21: e = y(�(p∗,k−δ),p∗) − r̄k−δ

22: G = G + βdiag(y(�(p∗,k−δ),p∗))diag(e)
23: end if
24: end for
25: end

C. Gain Loops

As shown in (62)-(65), for each channel the ITI level ε
appears in a gain factor normalizing

∑n
i=1 vi j r i (D) such

that its expectation is x̄(D)h(D). Gain loops can be used to
adaptively estimate these gain factors.

Let g j
k denote the gain factor estimated for the j th channel at

time k. Then E[g j
k ] = 1

1+ελ̂ j
. Again, we use the LMS adaptive

algorithm to update g j
k , according to the equations

r̂ j
k = g j

k−1

∑
i

vi j r
i
k, (70)

ê j
k−m = ŷ j

k−m − r̂ j
k−m , (71)

g j
k = g j

k−1 + β ŷ j
k−mê j

k−m , (72)

where ŷ j
k−m is the instantaneous hard decision on the noiseless

output of the j th ISI channel at time k − m. To find ŷ j
k−m , we

identify the trellis state which currently has the smallest path
metric, and trace back the path history for m time slots to
obtain the corresponding channel output. The gain factors g j

k
are also used in weighting the path metric, to ensure the
ML performance of the detector.

Algorithm 1 summarizes the procedures to implement
WSSJD with gain loops on the nHnT channel. The algorithm
makes use of the following notation:

1) N is the length of one frame; ε0 is the initial value of ε.
2) G is a diagonal matrix with g j

k as the j th diagonal
element.

Fig. 8. BER vs. SNR of different detectors with static ITI level (a) ε = 0.1
and (b) ε = 0.3.

3) rk is a column vector of the received signals from nH nT
channel at time k; r̄k is the vector of outputs from the
transformed channel.

4) M(p) is the accumulated path metric at state p.
5) y(q,p) is a column vector of the trellis output label from

state q to p.
6) diag(v) is a diagonal matrix with the elements of the

vector v along the diagonal.

VI. SIMULATION RESULTS

In this section, we present BER performance simulation
results for WSSJD and SSJD on the nHnT channel model
for several values of n. We plot the BER as a function of
channel SNR, where we define SNR as

SNR(dB) = 10 log
‖h(D)‖2

2σ 2 . (73)

Note that, in contrast to some studies such as [12], our
definition of SNR does not take the energy ε2‖h(D)‖2 in the
cross-track signal into account. Since we use separate figures
for the results corresponding to different static ITI values,
this definition should not lead to any confusion. It is also
better suited for presenting the results obtained when the ITI
is characterized by a small variation around a fixed nominal
ITI level.

A. 2H2T System

We simulate WSSJD and SSJD with gain loops on the
2H2T system with channel polynomial h(D) = 1+ D. We set
β = 0.008 and m = 5. The initial values of gain factors
g+

0 and g−
0 are obtained by passing training samples through

the system.
We first test the proposed detectors and gain loop structure

when ε is fixed. In Fig. 8, we compare the BER performances
of WSSJD, SSJD, and the conventional 2H2T ML detector, for
ε = 0.1 and ε = 0.3. The frame size is N = 4096 bits. In our
setup, the ML detector knows the value of ε, while WSSJD
and SSJD adaptively estimate gain factors using the gain loop
structure shown in Fig. 6. Therefore, the static ML detector
provides the optimal BER performance. It is observed that the
BER curve of WSSJD with a gain loop almost coincides with
that of the static ML detector. This indicates that the LMS
adaptive algorithm provides sufficiently accurate estimates of
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Fig. 9. BER vs. SNR of different detectors with ε slowly varying about the
mean value (a) ε0 = 0.1 and (b) ε0 = 0.3.

gain factors. The recursive least squares (RLS) algorithm can
speed up the convergence of the gain loop at the expense
of higher complexity, but the BER performance improvement
would be negligible. As expected from the minimum distance
plots in Fig. 1, the performance loss suffered by SSJD relative
to WSSJD is more severe at ε = 0.3 than at ε = 0.1. Although
not shown here, simulation results for the frame error rate vs.
SNR correlate well with the BER results.

Next, we test the performance of the detectors by assuming
a dynamic ITI model in which ε changes slowly with respect
to the location k. Specifically, we set

ε(k) = ε0 + 0.1 sin(4πk/N), (74)

where N = 4096 and ε0 is the mean value. In this case,
we compare the adaptive WSSJD algorithm, in which gain
loops are used to track the value of ε, with the ML detector
which uses the static value ε0. The simulation results, shown
in Figs. 9, show that the adaptive WSSJD outperforms the
static ML detectiion by about 0.3-0.5dB at high SNR.

In both cases, the performance of the ITI-free SHST
detector is plotted for comparison. It is interpreted as the
performance of the ideal ITI cancellation scheme, where the
ITI is completely removed from the readback signals of each
track.

The trellis complexity of the MHMT ML detector can be
prohibitively complex for practical purposes. We address this
problem in [27] and [28] by using a reduced-state trellis
with the RSSE detection algorithm. Moreover, the gain loop
structure for ITI estimation in WSSJD can be directly applied
in the RSSE setting. Fig. 10 shows BER simulation results for
WSSJD with several RSSE implementations of various trellis-
complexities on the extended class-IV partial response (EPR4)
channel, with channel polynomial h(D) = 1 + D − D2 − D3.
We see that, as expected, WSSJD with a 64-state trellis and
adaptive ITI estimation outperforms the static ML detector
with the same number of states. Results are also shown for
RSSE using 12, 16, and 32 trellis states, along with gain
estimation loops. We can see that RSSE can achieve the same
performance as WSSJD using only one-half the number of
trellis states (32 vs. 64).

B. 3H3T System

In Fig. 11, we plot the BER performance of several detec-
tors on the 3H3T channel. We assume that each component

Fig. 10. Performance of reduced complexity implementations of WSSJD
with gain loop on 2H2T EPR4 channel. ε is sinusoidally varying with mean
value ε0 = 0.1.

Fig. 11. BER performance of WSSJD on 3H3T EPR4 channel (h(D) =
1 + D − D2 − D3) under sinusoidally varying ITI with mean value ε0 = 0.1.

channel is equalized to the EPR4 target. The WSSJD detector
therefore requires 512 trellis states. As the matrix decom-
position described in Example 2 indicates, the ITI estima-
tion for the transformed 3H3T system requires only 2 gain
loops, one for each of the first and the third component
channels. We observe in the figure that WSSJD with ITI
estimation outperforms the static ML algorithm by about
1dB when the BER is in the range [10−5, 10−4]. The per-
formance is further improved by averaging the two gain
factors to get a better estimate of ε. Finally, we see that
an RSSE implementation of WSSJD with only 96 states
achieves performance comparable to that of the full 512-state
WSSJD implementation.

VII. CONCLUSION

We study MHMT detection as a potential candidate for next-
generation magnetic recording. We assume a simplified sym-
metric nHnT model in which only adjacent tracks interfere.
The ITI is assumed to be linear and additive, and its amplitude
is controlled by a scalar. In this paper, we consider how to
estimate the ITI and how to efficiently use the new estimates
to improve the detector performance. By means of a channel
transformation, we decompose the original nHnT system into
n separate subchannels, each of which has a channel gain
factor that depends on the ITI level. Based on this transformed
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system, we propose a novel detection method which we call
weighted sum-subtract joint detection (WSSJD). The new
method achieves ML performance. However, in contrast to the
conventional MHMT ML detector trellis, the branch labels of
the WSSJD trellis do not depend on the ITI level. Instead, the
value of ITI level is incorporated into a weighting factor used
to compute the path metrics. A simple gain loop structure is
described, permitting efficient adaptive estimation of the gain
factors and their straightforward incorporation into the WSSJD
algorithm. Simulation results show that when ITI is time-
varying, WSSJD with adaptive ITI estimation outperforms the
ML detection using static ITI estimates. Minimum distance
analysis is presented, providing a theoretical basis for the com-
parison of different MHMT detectors. The WSSJD technique
is also amenable to a reduced complexity implementation
based upon RSSE, which is the focus of Part II of this
work.

APPENDIX

MINIMUM DISTANCE ANALYSIS FOR ITI SENSITIVITY

In this section we give the derivation of (44) and (45).

A. Single Track Error Events

Assume eb(D) = 0. The distance components reduce to

dideal =
√

(1 + ε2
0 )‖ea(D)h(D)‖2,

dmism = 2�ε

×
〈
ea(D)h(D), xb(D)h(D)

〉 + ε0 〈ea(D)h(D), xa(D)h(D)〉√
(1 + ε2
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.

We bound dmism as follows:
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where Mh = ∑
m |hm | = 2 for the channel h(D) = 1 + D.

Using a similar derivation, we can show

〈
ea(D)h(D), xb(D)h(D)

〉
� − Mh

2
‖ea(D)h(D)‖2. (76)

To find the bounds for 〈ea(D)h(D), xa(D)h(D)〉, note that
〈
ea(D)h(D), xa(D)h(D)

〉

=
∑

k
(ea

k−1 + ea
k )(xa

k−1 + xa
k )

=
k2+1∑
k=k1

(ea
k−1xa

k−1 + ea
k−1xa

k + ea
k xa

k−1 + ea
k xa

k ) (77)

�
k2+1∑
k=k1

(|ea
k−1| − |ea

k−1| − |ea
k | + |ea

k |) (78)

= 0.

The inequality in (78) follows from the fact that xa
k always

has the same sign as ea
k , so ea

k xa
k = |ea

k |. Choosing xa
k to

have the opposite sign to ea
k−1 leads to the lower bound

ea
k−1xa

k � −|ea
k−1|.

The upper bound derived in (75) is also applicable to
〈ea(D)h(D), xa(D)h(D)〉. Therefore,

0 �
〈
ea(D)h(D), xa(D)h(D)

〉
� ‖ea(D)h(D)‖2. (79)

Combining (75) and (79), and using ‖ea(D)h(D)‖2 � 8 for
the channel h(D) = 1 + D, we can bound the single-track
minimum distance in the two cases of �ε > 0 and �ε < 0
as follows:

ds = dideal + dmism

�

⎛
⎝
√

1 + ε2
0 − 2�ε√

1 + ε2
0

⎞
⎠ ‖ea(D)h(D)‖

�
2
√

2(1 + ε2
0 − 2�ε)√

1 + ε2
0

, if �ε > 0,

and

ds = dideal + dmism

�

⎛
⎝
√

1 + ε2
0 + 2�ε(1 + ε0)√

1 + ε2
0

⎞
⎠ ‖ea(D)h(D)‖

�
2
√

2(1 + ε2
0 + 2(1 + ε0)�ε)√

1 + ε2
0

, if �ε < 0.

Table II(a) gives examples of error events that achieve these
bounds.

B. Double Track Error Events

In this case, both ea(D) and eb(D) are non-zero at some
locations. To find an achievable bound on dideal + dmism, we
assume �ε � 1. Therefore the distance increment/decrement
caused by the mismatch will not be as significant as the
distance in the ideal case. The minimum value of dideal given
by (41) is 4(1 − ε0), achieved by the error sequences of the
form

ea = [0, · · · , 0, ea
k1

, · · · , ea
k2

, · · · , 0],
eb = [0, · · · , 0, eb

k1
, · · · , eb

k2
, · · · , 0],
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with ea
k+1 = −ea

k for k1 � k � k2 − 1, and eb
k = −ea

k for
k1 � k � k2. The assumption on �ε suggests that we focus
on these error events. We use d∗

mism to denote the minimum
distance parameter attained by this subset of double track error
events.

We can express 〈A(D), xb(D)h(D)〉 by
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)xb
k2+1. (80)

Upper and lower bounds for (80) can be found by carefully
choosing values for xb

k1−1 and xb
k2+1. If xb

k1−1 and xb
k2+1 have

the same sign as ea
k1

and ea
k2

, respectively, (80) achieves the
maximum value 0. If xb

k1−1 and xb
k2+1 have the same sign as

eb
k1

and eb
k2

, respectively, (80) achieves the minimum value
8(ε0 − 1). Similarly, we have

8(ε0 − 1) � 〈B(D), xa(D)h(D)〉 � 0. (81)

We conclude that in the case of �ε > 0 and �ε < 0,

d∗
d

def= dideal + d∗
mism � 4(1 − ε0) + 2�ε

4(1 − ε0)
· 16(ε0 − 1)

= 4(1 − ε0 − 2�ε), if �ε > 0,

and

d∗
d

def= dideal + d∗
mism � 4(1 − ε0), if �ε < 0.

Notice that these bounds are derived for a subset of double
track error events which achieve min dideal, examples of which
are given in Table II.

We compared the values of d2
min = min{d2

s , d2
d } obtained

by exhaustive computer search with min{(d∗
s )2, (d∗

d )2}, and
they agreed at all points plotted in Fig. 5. This sup-
ports the assumption that the simplification in our analy-
sis of double track error events does not affect the d2

min
computation.
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