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Abstract—Advances in biochemical technologies, such as syn-
thesizing and sequencing devices, have fueled manifold recent
experiments on archival digital data storage using DNA. In this
paper we review and analyze recent results on information-
theoretic aspects of such storage systems. The discussion focuses
on a channel model that incorporates the main properties of
DNA-based data storage. Namely, the user data is synthesized
many times onto a large number of short-length DNA strands.
The receiver then draws strands from the stored sequences in an
uncontrollable manner. Since the synthesis and sequencing are
prone to errors, a received sequence can differ from its original
strand, and their relationship is described by a probabilistic
channel. Recently, the capacity of this channel was derived for
the case of substitution errors inside the sequences. We review
the main techniques used to prove a coding theorem and its
converse, showing the achievability of the capacity and the fact
that it cannot be exceeded. We further provide an intuitive
interpretation of the capacity formula for relevant channel
parameters, compare with sub-optimal decoding methods, and
conclude with a discussion on cost-efficiency.

I. INTRODUCTION

DNA-based data storage is a novel approach for long-term
archiving of digital data. It has drawn recent attention due
to significant advances in biochemical technologies, such as
synthesizing and sequencing of DNA. Manifold experiments
[1]–[6] have been published in the last decade, addressing
many different aspects of digital data storage, such as reliabil-
ity, lifetime, random-access, and efficiency. At the same time,
the unique nature of DNA-based storage systems has fueled
theoretical investigations inside a variety of research fields,
such as computational biology, coding theory, information
theory and signal processing. This uniqueness is mainly due
to the technologies used to synthesize and sequence DNA.

The process of writing and reading digital data in DNA-
based data storage basically involves three main steps. First,
the digital binary data is encoded into many short vectors over
the alphabet {A,C,G,T}, which are then synthesized as DNA
strands. In most experiments, each strand is synthesized many
times such that multiple copies of each strand are present.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 801434). This work was also supported by
NSF Grant CCF-BSF-1619053 and by the United States-Israel BSF grant
2015816.

Second, those strands are transferred into a storage medium
that preserves the chemical structure of DNA and ensures
robustness over a long period of time. Third and finally,
when accessing the data inside the archive, the DNA strands
from the storage medium are sequenced. Due to the nature
of the sequencer, this is often an uncontrollable procedure
in the sense that it is not possible to choose which strands
are sequenced.1 Using the sequencing data, a decoder then
estimates the original digital data. There are several aspects
that distinguish DNA-based storage systems from conventional
transmission or storage systems. First, the unordered nature of
sequencing is seldom observed in traditional communication
systems. Next, a DNA strand is a complex molecule where
different nucleotides interact with one another, requiring the
consideration of its stability when designing the DNA se-
quences. Finally, the synthesis and sequencing are prone to
insertion and deletion errors, which are errors observed in few
other communication systems.

Most information-theoretic studies related to DNA-based
data storage discuss insertion and deletion error correction.
Classical papers on this topic are those by Gallager [7] and
Davey and Mackay [8]. More recently, increased interest
towards channel models with multiple transmissions over a
channel impaired by insertion and deletion errors arose, due to
the existence of multiple copies of each stored strand in DNA-
based storage systems. For example, [9], [10] study sequence
reconstruction from multiple DNA sequences, whereas [11]
discusses the case, where the case of coded original sequences.
Decoding algorithms and achievable information rates for a
channel whose output comprises several sequences obtained
over independent insertion and deletion channels are discussed
in [12], [13]. A related channel featuring multiple sequences
with errors and random shuffling has been discussed in [14].

This work deals with the so-called noisy drawing channel
that models the pipeline from synthesized to sequenced DNA
strands. It incorporates the unordered nature of the sequencing
process by modeling the received strands as random draws
of the input sequences together with substitution errors inside
the DNA strands. Prior work [15] has discussed this channel
for the noiseless case. We review recent results about the

1There are studies [3], [4] that have developed methods for random access
and for sequencing of specific strands. This was accomplished by designing
primers that are appended to the DNA strand. Here however, we are studying
the raw system without the usage of such additional primers.20
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Fig. 1. Exemplary realization of the DNA storage channel with M = 3 and
N = 4. Background colors highlight the origin of the received sequences.

capacity of the noisy drawing channel, reported in [16]. In
particular, we give an intuitive explanation of the capacity
formula and a coarse overview over the ingredients required
to prove these capacity results. We further compare achievable
rates with sub-optimal decoding methods with the capacity.
Finally, using the capacity formula, we present an optimization
problem that allows to design cost-efficient storage systems.
Note that recently, an extension of our work [16] to a broader
class of constituent channels has been published in [17].

II. PRELIMINARIES

A. The Noisy Drawing Channel

For an integer n, we denote by [n] = {1, 2, . . . , n} the
set of positive integers up to n. The input of the DNA
storage channel is M sequences X1, . . . , XM where each
Xi = (Xi,1, . . . , Xi,L) ∈ ΣL, i ∈ [M ], is a vector of length
L over the binary alphabet Σ = {0, 1}. From these input
sequences, a total of N sequences are drawn with replacement,
each uniformly at random, and received with errors. Denote
by Ij ∈ [M ] the index of the j-th drawn input sequence. We
assume that the draws Ij are i.i.d. uniform random variables
with P (Ij = i) = 1

M for all j ∈ [N ] and i ∈ [M ].
The output of the channel is then given by N sequences
Yj = (Yj,1, . . . , Yj,L) ∈ ΣL, j ∈ [N ], each of length L. Each
sequence Yj is obtained by drawing a random input sequence
XIj and transmitting it over a binary symmetric channel (BSC)
with crossover probability p. That is, the individual output
symbols are given by

Yj,k =

{
XIj ,k with probability 1− p,
1−XIj ,k with probability p

,

for all j ∈ [N ], k ∈ [L]. For convenience, we stack all input
and output sequences to matrices X = (X1, . . . , XM ) ∈
ΣM×L and Y = (Y1, . . . , YN ) ∈ ΣN×L, such that each
sequence is a row of the corresponding matrix. Figure 1
illustrates an exemplary realization of this channel.

We continue by defining important random variables as-
sociated with this channel model. Throughout the paper we
will use the random variables Di = |{j ∈ [N ] : Ij = i}|,
i ∈ [M ], which count the number of times the i-th input
sequence has been drawn and Qd = |{i ∈ [M ] : Di = d}|,
d = 0, . . . , N , that denote the number of input sequences that
have been drawn a total of d times.

B. Multidraw Channel

An important component of the noisy drawing channel is
the so-called multidraw or binomial channel. Its relevance is
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Fig. 2. Capacity of the multidraw channel for different number of draws d,
over error probabilities p

due to the fact that each input sequence Xi is observed through
Di output sequences, each originating from the same input se-
quence. The multidraw channel has first been discussed in [18],
where the capacity was derived together with considerations
about practical transmission over this channel. The multidraw
channel is parameterized by the number of draws d ∈ N and
error probability 0 ≤ p ≤ 1. It is a discrete memoryless
channel with binary input and d binary output symbols, where
each symbol is equal to the input with probability 1 − p and
different from the input with probability p. The channel output
is therefore obtained by a d-fold repeated transmission over
a standard binary symmetric channel. The capacity of the
multidraw channel is directly obtained using the fact that it
is a discrete memoryless channel and computes to

Cd = 1 +
d∑
k=0

(
d

k

)
pk(1− p)d−k log

1

1 + pd−2k(1− p)2k−d
.

For an illustration of the capacity for different number of
draws, see Figure 2. Note that C0 = 0, C1 = 1 + p log p +
(1− p) log(1− p) and C0 ≤ C1 ≤ C2 ≤ C3 ≤ . . . , where the
inequalities are due to the data processing inequality.

III. CAPACITY OF THE NOISY DRAWING CHANNEL

Before we present the results on the capacity of the noisy
drawing channel, we formally define achievable information
rates and the associated capacity. We start with defining error-
correcting codes over the presented channel. Since the channel
input is M sequences, each of length L, a code over the noisy
drawing channel is a set C ⊆ ΣM×L. Its storage rate is defined
to be the number of bits that can be stored per nucleotide, i.e.,

Rs =
log |C|
ML

. (1)

Similarly we can define the recovery rate of a code C as the
number of information bits that can be retrieved per nucleotide
that is sequenced, i.e.,

Rr =
log |C|
NL

. (2)
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Assume a codeword X ∈ C has been transmitted over the noisy
drawing channel and Y ∈ ΣN×L has been received. A decoder
for a code C is then a mapping dec : ΣN×L 7→ C ∪ {fail},
dec(Y ) = X̂ , where fail denotes a decoding failure, i.e.,
the decoder cannot find any suitable codeword. A decoding
success is the event dec(Y ) = X and, conversely, the comple-
mentary event is a decoding error. Consequently, assuming that
a codeword X ∈ C, chosen uniformly at random, is transmitted
over the channel, the (average) error probability of a code C
with a decoder dec is the probability

P (E) =
1

|C|
∑
X∈C

P (dec(Y ) 6= X) ,

where Y is the result of transmitting X over the noisy drawing
channel. For our asymptotic statements in this paper we will
set M = 2βL and N = cM for some fixed 0 < β < 1, 0 < c,
and let L go to infinity. With this relationship we arrive at
the following definition of achievable rates. Let β, c, and p be
fixed and given. We say a rate Rs is achievable, if there exists
a family of codes C(M × L) ⊆ ΣM×L with storage rate Rs

together with a decoder dec : ΣN×L 7→ C(M × L) ∪ {fail}
such that the decoding error probability P (E) → 0 tends to
zero, as L → ∞, with M = 2βL and N = cM . We can
use this definition to define the capacity of the noisy drawing
channel as the supremum of achievable rates, i.e., C(β, c, p) =
sup{Rs : Rs is achievable}. By this definition, the capacity is
a function that exclusively depends on the channel parameters
β, c, and p. Explicitly, the capacity is given as follows [16].

Theorem 1: Fix 0 < c, 0 ≤ p < 1
8 , and 0 < β < 1−H(4p)

2 .
Then, the capacity of the noisy drawing channel is given by

C(β, c, p) =
∞∑
d=0

Poic(d)Cd − β(1− e−c), (3)

where Poic(d) = e−ccd

d! is the probability mass function of the
Poisson distribution with expected value c and H(p) is the
binary entropy function.

Note that this theorem holds only for relatively small noise
values p < 1

8 and moderate number of sequences β and
a valid capacity expression remains unknown for a larger
range of parameters. However, the result holds for, e.g., all
p ≤ 0.075 and β ≤ 1

20 . Notably, most current experiments
report parameters within this region [19], [20].

A. Interpretation and Intuition

We now proceed with giving an intuitive explanation of the
capacity formula. Conceptually, the noisy drawing channel can
be split into two sub-channels, for an illustration see Figure
3. The first sub-channel transmits each input sequence Xi,
i ∈ [M ] over one of M parallel multidraw channels, each with
Di draws. The second sub-channel then randomly permutes
the resulting set of sequences comprising the draws of all Xi,
i ∈ [M ]. It is easy to check that the input-output relation is
the same as in the original model. The capacity of the first
sub-channel is obtained as follows. First note that the random
variables Di individually converge to Poisson distributions
with mean c as L→∞ since the Di’s are binomial distributed
with N = cM trials and success probability 1

M . While the
variables Di are not mutually independent, it is still possible
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Fig. 3. Division of the noisy drawing channel into two sub-channels. The
first part are M parallel multidraw channels with random number of draws
Di. The second part randomly permutes all sequences. The output sequences
are indexed according to their appearance in the output Y .

to prove convergence of the drawing distribution. That is,
Qd

M → Poic(d) converge jointly in probability. Therefore, the
relative number of channels with d draws is asymptotically
Poic(d). Since the capacity of the multidraw channel with
d draws is Cd, it follows that the capacity of the first sub-
channel is given by

∑
d Poic(d)Cd. We now turn to discuss

the influence of the second sub-channel. There are in total
only M − Q0 input sequences i which have been drawn at
least once, i.e., Di > 0. As the channel randomly permutes the
sequences, the receiver has an uncertainty of roughly NM−Q0

options to associate the output sequences with M −Q0 drawn
input sequences and

(
M

M−Q0

)
options to choose those positions

with Di > 0. A random coding argument then suggests
that the rate loss associated with this uncertainty is roughly
((M −Q0) logN +O(M))/(ML) → β(1 − e−c). Note that
the rigorous derivation of the capacity is more involved since
a precise analysis of the effect of the permutation operation on
the capacity is non-trivial. Details are provided in [16], [21].

Note that the above discussion suggests that the capacity
of the channel obtained by replacing the BSC with an inser-
tion/deletion channel in our model has, in a suitable parameter
domain, a capacity equal to that in (3), where Cd is replaced by
the capacity C ID

d of a d-multidraw insertion/deletion channel.
However this result remains unproven to date and is hindered
due to the lack of a comprehensive understanding of even C ID

1 .

B. Discussion of the Capacity Expression

Having built an intuitive understanding of the origin of the
capacity, we now proceed to discuss the capacity expression
for different parameters regimes. Figure 4 shows the capacity
for β = 1/20 and different values of c over a range of values
of p. Note that the plot is limited to error probabilities of at
most p = 0.075 due to the parameter limitation in Theorem 1.
We observe that surprisingly already for c = 5, the capacity
exhibits a very flat behavior, dropping only very slightly from
its maximum at p = 0. This can be explained by the fact
that in this case, the average number of times that a sequence
is drawn is already large enough such that only a small rate
loss is incurred by the errors in the sequences (c.f. Figure
2). It is observed that even for p → 0, the capacity does
not approach one. In fact, this result is known from [15],
where it is shown that the capacity for this case is equal to
(1− β)(1− e−c), which is a special case of Theorem 1. The
reason for this behavior is that even in the noiseless case, a
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Fig. 4. Capacity of the noisy drawing channel for different values of c, over a
range of error probabilities p, with β = 1

20
. The dashed lines show achievable

rates for the case of suboptimal decoding with majority decisions.

fraction of 1− e−c input sequences are never observed at the
receiver and it is further necessary to label the sequences with
an index of length βL to combat the loss of ordering. On the
other hand, if c→∞, the capacity approaches 1− β. This is
intuitive, as in this case, each input sequence is drawn so many
times, that the capacity of the multidraw channel is almost
one for most sequences. Then, close to no error correction is
required and it is sufficient to add an index of length βL to
each sequence. Figure 4 also shows achievable rates using a
suboptimal decoder based on majority voting. More precisely,
for these curves we assume a decoder that, instead of using all
output sequences to decode the original word, first performs
a bitwise majority decision on all sequences that stem from
the same input sequence. In the case where the majority is not
unique, the decoder chooses the bit randomly. The maximum
achievable rate is then measured for a channel with input X
and output comprised of the results of the majority decision.
The achievable rates in this case can be computed using (3)
and replacing Cd with the capacity of a binary symmetric
channel whose error probability is equal to the probability of
a wrong decision after a majority vote on d bits. Clearly, due
to a potential loss of information during the majority decision
this decoding strategy is sub-optimal. However, we see that
the overall rate loss with respect to the capacity is relatively
small, depending on the channel parameters.

Most publications to date focus on the storage rate Rs

to evaluate their results. More recently, however, the interest
in efficient design with respect to both, storage rate Rs and
recovery rate Rr has increased [15], [22]. In this regard,
Figure 5 shows the regions of achievable (Rr, Rs) pairs for
different error probabilities p and β = 1

20 . Notably, the
region significantly flattens out for recovery rates Rr below
approximately 0.1, which should be considered for efficient
system design. We will elaborate on this in the next section.
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Fig. 5. Achievable storage and recovery rate region for different error
probabilities p and β = 1

20
. The shaded regions highlight the achievable

(Rr, Rs) pairs.

IV. DESIGN OF COST-EFFICIENT DNA ARCHIVES

Having the capacity expression at hand, we will now
present an optimization problem that will allow to design cost-
efficient DNA storage systems. To start with, we let β and
p be fixed parameters to be chosen by the system engineer.
While β is usually determined by the length of the DNA
sequences and the amount of digital data that shall be stored,
p is given by the synthesis and sequencing technologies. The
costs associated with DNA-based data storage are mainly due
to the synthesis and sequencing of DNA strands. To this end,
assume we are given a synthesis machine that incurs a cost of
γs per nucleotide. Further, we use a sequencing machine that
has an associated cost γr per read of a single nucleotide of
DNA. Using a code of storage rate Rs and recovery rate Rr,
the total cost associated with writing and reading a single bit
to and from the archive is

γ(β, c, p) =
γs
Rs

+
γr
Rr

=
1

C(β, c, p)
(γs + cγr) ,

where we assumed the usage of a capacity-achieving storage
code, i.e., Rs = C(β, c, p) and used the relation Rs = cRr.
Note that in comparison to [15] we additionally incorporate the
error probability into the system design. With this expression
it is possible to optimize γ(β, c, p) over c for given β and p.
Currently the synthesis cost is a factor of roughly 104 larger
than the sequencing cost [15] and we thus set γs

γr
= 104.

For p = 0.02 and β = 1
20 , one obtains that c∗ ≈ 11.4

minimizes the cost, while for p = 0.05, we obtain c∗ ≈ 14.
Note that smaller synthesis costs will push the optimum c∗

towards smaller values, since the sequencing costs become
more apparent. Naturally it is possible to extend this cost
optimization by incorporating, for example, that the costs are
a function of the synthesis and sequencing quality p and then
perform a joint optimization over c and p.
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