
On Parity-Preserving Constrained Coding
Ron M. Roth

Computer Science Department
Technion, Haifa 320003, Israel

ronny@cs.technion.ac.il

Paul H. Siegel

ECE Department and CMRR
UC San Diego, La Jolla, CA 92023, USA

psiegel@ucsd.edu

Abstract—Necessary and sufficient conditions are presented
for the existence of fixed-rate parity-preserving encoders for a
given constraint. It is also shown that under somewhat stronger
conditions, the stethering method guarantees an encoder that has
finite anticipation.

I. INTRODUCTION

Runlength limited (RLL) coding is widely employed in
magnetic and optical storage in order to mitigate the effects of
inter-symbol interference and clock drifting [3]. The encoder
typically takes the form of a finite-state machine, which maps
a sequence of input p-bit blocks into a sequence of output
q-bit codewords, so that the concatenation of the generated
codewords satisfies the RLL constraint. In most applications,
the coding scheme also provides DC control (or, more gen-
erally, suppression of the low frequencies). This is achieved
by allowing some (or all) input p-blocks to be mapped by
the encoder to more than one codeword and then, during
the encoding process, selecting the codeword that yields the
best DC suppression [7, p. 29]. One implementation of this
strategy uses parity-preserving encoders, whereby the parity
(i.e., the modulo-2 sum) of the input sequence within non-
overlapping windows (each consisting of one or more p-
blocks) is preserved at the output. DC control can be achieved
by reserving one input bit in that window and selecting its
value so as to minimize the DC contents [3, §11.4.3], [4], [8],
[9], [10], [11]. Parity-preserving RLL codes are used in the
Blu-ray standard.

Most constructions of parity-preserving codes so far were
obtained by ad-hoc methods. The purpose of this work is to
initiate a study of parity-preserving encoders, starting with the
special case where the window length over which the parity
is preserved is a fixed multiple of p. We provide a formal
definition of our setting in Section I-B below, preceded by
some background and definitions which are taken from [7].

A. Background

A (finite labeled directed) graph is a graph G = (V,E, L)
with a nonempty finite state (vertex) set V = V (G), finite
edge set E = E(G), and edge labeling L : E → Σ. The
constraint presented by G, denoted S(G), is the set of words

This work was done in part while R.M. Roth was visiting the Center for
Memory and Recording Research (CMRR), UC San Diego. This work was
supported by Grant 2015816 from the United-States–Israel Binational Science
Foundation (BSF), by NSF Grant CCF-BSF-1619053, and by Grant 1396/16
from the Israel Science Foundation.

over Σ that are generated by finite paths in G. A graph G is
deterministic if all outgoing edges from a state are distinctly
labeled. Every constraint has a deterministic presentation. A
graph G is lossless if no two paths with the same initial
state and the same terminal state generate the same word. The
anticipation A(G) of G is the smallest nonnegative integer a
(if any) such that all paths that generate any given word of
length a+1 from any given state in G share the same first edge.
A graph is said to have finite memory µ if µ is the smallest
nonnegative integer (if any) such that all paths of length µ that
generate the same word terminate in the same state.

A graph G is irreducible if it is strongly-connected. A con-
straint S is irreducible if it can be presented by a deterministic
irreducible graph.

The power Gt of a graph G is the graph with the same set
of states V (G) and edges that are the paths of length t in G;
the label of an edge in Gt is the length-t word generated by
the path. For S = S(G) the power St is defined as S(Gt).

Given a constraint S over an alphabet Σ and a loss-
less presentation G of S, the capacity of S is defined by
cap(S) = limℓ→∞(1/ℓ) log2 |S ∩ Σℓ|. It is known that
cap(S) = log2 λ(AG) where λ(AG) denotes the spectral
radius (Perron eigenvalue) of the adjacency matrix AG.

Given a constraint S and a nonnegative integer n, an (S, n)-
encoder is a lossless graph E such that S(E) ⊆ S and each
state has out-degree n. An (S, n)-encoder exists if and only
if log2 n ≤ cap(S). In a tagged (S, n)-encoder, each edge is
assigned an input tag from a finite alphabet of size n, such
that edges outgoing from the same state have distinct tags. The
anticipation (if finite) of an encoder determines its decoding
delay.

A (tagged) rate p : q encoder for a constraint S is a
(tagged) (Sq, 2p)-encoder (the tags are then assumed to be
from {0, 1}p). A rate p : q parity-preserving encoder for a
constraint S over Σ = {0, 1} is a tagged encoder for S in
which the parity of the (length-q) label of each edge matches
the parity of the (length-p) tag that is assigned to the edge
(see also Section I-B below).

Given a square nonnegative integer matrix A and a positive
integer n, an (A,n)-approximate eigenvector is a nonneg-
ative nonzero integer vector x that satisfies the inequality
Ax ≥ nx componentwise. The set of all (A,n)-approximate
eigenvectors will be denoted by X (A,n), and it is known
that X (A,n) ̸= ∅ if and only if n ≤ λ(A). Given a
constraint S presented by a deterministic graph G and a

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 1804

positive integer n, the state-splitting algorithm provides a
method for transforming G, through an (AG, n)-approximate
eigenvector, into an (S, n)-encoder with finite anticipation.

For a positive integer b, the set {0, 1, 2, . . . , b−1} will be
denoted by [b⟩.

B. Parity-preserving encoders

Let S be a constraint over an alphabet Σ, and fix a
partition {Σ0,Σ1} of Σ. The symbols in Σ0 (resp., Σ1) will
be referred to as the even (resp., odd) symbols of Σ. The
partition of Σ to two elements (only) follows from the primary
motivation of this work, namely, constructing and analyzing
parity-preserving encoders. However, without much further
effort, the definitions and results can be extended to a partition
of Σ into any number of partition elements.

Given a graph H with labeling in Σ, for b ∈ [2⟩, we denote
by Hb the subgraph of H containing only the edges with labels
in Σb.

Let S = S(G) be a constraint and n0 and n1 be nonnegative
integers. An (S, n0, n1)-encoder E is an (S, n0+n1)-encoder
such that for each b ∈ [2⟩, the subgraph Eb is an (S, nb)-
encoder. In other words, from each state in E , there are n0 out-
going edges with even labels and n1 outgoing edges with odd
labels. For the applications in mind where we are interested in
rate p : q parity-preserving encoders for constraints S over the
binary alphabet, the set Σ0 (resp., Σ1) will contain length-q
words in S having even (resp., odd) parity (see Section I-D
and Example 2 in Section III-B). Then any rate p : q
parity-preserving encoder for S is a (tagged) (Sq, 2p−1, 2p−1)-
encoder and, conversely, any (Sq, 2p−1, 2p−1)-encoder can be
tagged so that it is parity preserving.

When studying (S(G), n0, n1)-encoders, there is no loss
of generality in assuming that both G and the encoder are
irreducible. Indeed, if E is an (S(G), n0, n1)-encoder, then
an irreducible sink of E is an (S′, n0, n1)-encoder, where S′

is an irreducible constraint presented by some irreducible
component of G (see the proof of [6, Proposition 3]). Note
that G0, G1, E0, and E1 may still be reducible even when G
and E are irreducible.

C. Statement of main result

Theorem 1. Let S be an irreducible constraint, presented by
an irreducible deterministic graph G, and let n0 and n1 be
positive integers. Then there exists an (S, n0, n1)-encoder if
and only if X (AG0 , n0) ∩ X (AG1 , n1) ̸= ∅.

The necessary and sufficient conditions in the theorem
are discussed in Sections II and III, respectively. Hereafter,
we use the notation X (AG0 , AG1 , n0, n1) for the intersection
X (AG0 , n0) ∩ X (AG1 , n1).

In view of Theorem 1, finding the possible pairs (n0, n1)
for which an (S(G), n0, n1)-encoder exists for a given G and
partition {Σ0,Σ1} requires a method for deciding whether
X (AG0 , n0) and X (AG1 , n1) share common vectors. This
decision problem can be recast as a linear programming

problem, namely, deciding whether there is a real vector x
that satisfies the following constraints:

(AG0 − n0I)x ≥ 0
(AG1 − n1I)x ≥ 0

x ≥ 0
1⊤ · x = 1 ,

(1)

where 0 and 1 stand for the all-zero and all-1 vectors. Since
all the coefficients in (1) are integers, if there is a real feasible
solution x then there is also a rational solution, and, therefore,
there is a nonzero integer solution that satisfies the (first)
three inequalities in (1). There are known polynomial-time
algorithms for solving linear programming problems, such as
Karmarkar’s algorithm [5], but it would be interesting to find a
more direct method, tailored specifically to the constraints (1),
for determining whether X (AG0 , AG1 , n0, n1) ̸= ∅. In com-
parison, recall that in the context of ordinary (S, n)-encoders,
the question of interest is whether X (AG, n) is nonempty,
which, in turn, is equivalent to asking whether n ≤ λ(AG).

D. Going to powers of the constraint

Next, we discuss the effect of going to powers of a con-
straint, namely, attempting to construct (St, n0, n1)-encoders,
for increasing values of t. To this end, we first need to define
the even and odd symbols in Σt, which is the alphabet of St,
given a partition {Σ0,Σ1} of Σ. Motivated again by the parity-
preserving application, we say that w ∈ Σt is even (resp.,
odd), if it contains an even (resp., odd) number of symbols
from Σ1 (i.e., the parity of w is the modulo-2 sum of the
parities of the symbols in w). The set of even (resp., odd)
words in Σt will be denoted by (Σt)0 (resp., (Σt)1).

It turns out that in most cases, we can approach the capacity
of S with parity-preserving encoders if we let t increase. Note,
however, that such an increase may sometimes be necessary,
even when the capacity of S is log2(n0+n1) (see Example 1
below). This presents a distinction between parity-preserving
encoders and ordinary ones: when cap(S) = log2 n, capacity
is always attained by ordinary encoders already for t = 1.

Specifically, we have the following result (we omit the proof
due to space limitations).

Theorem 2. Let G be a deterministic primitive1 graph, having
at least one edge with an even label and one edge with an odd
label. Then there exists an infinite sequence of nonnegative
integers n(1), n(2), · · · such that (S(Gt), n(t), n(t))-encoders
exist and

lim
t→∞

(log2 n
(t))/t = cap(S(G)) .

For a deterministic graph G and a positive integer t, we
denote by nmax(G, t) the largest integer n for which there
exist (S(Gt), n, n)-encoders, and define the largest possible
coding ratio attainable by such encoders by

ρ(G, t) = (1/t) log2 (2nmax(G, t)) . (2)

Example 1. Let G be the graph in Figure 1, where Σ0 =
{a, b} and Σ1 = {c, d}. We have λ(AG) = 2, and the matrices

1An irreducible graph is primitive if the gcd of its cycle lengths is 1.

2018 IEEE International Symposium on Information Theory (ISIT)

1805

jR

Y
s

α βa

b
c

d
Fig. 1. Graph G for Example 1.

AG0 and AG1 are given by

AG0 =

(
1 1
0 0

)
and AG1 =

(
0 1
1 0

)
.

It can be shown by induction on t that λ(A(Gt)0) =
λ(A(Gt)1) = 2t−1. Clearly, X (A(Gt)0 , n) and X (A(Gt)1 , n)
are empty if and only if n > 2t−1. Their intersection,
however, turns out to be empty also when n = 2t−1. On
the other hand, for n(t) = 2t−1−1, we do have (2 1)⊤ ∈
X (A(Gt)0 , A(Gt)1 , n

(t), n(t)). So, in this case, ρ(G, t) =
(1/t) log2(2

t−2) (< 1): while we can approach the capacity
value of 1 as t increases, we cannot actually achieve it by
rate t : t parity-preserving encoders.

In contrast, there is a very simple one-state variable-rate
parity-preserving encoder with coding ratio 1 for S(G): just
map the input 0 to a (at rate 1 : 1) and the inputs 10 and 11
to bd and cd, respectively (at rate 2 : 2).

Theorem 2 focused on (S, n0, n1)-encoders where n0 =
n1. While this case suits the motivation of parity-preserving
encoders (where n0 = n1 = 2p−1), there seems to be a merit
in studying the more general case as well (see Example 2 in
Section III-B).

II. NECESSARY CONDITION

Our proof of the “only if” part of Theorem 1 is a refinement
of the proof of Theorem 3 in [6], where it was shown,
inter alia, that the existence of an (S, n)-encoder implies
that X (AG, n) ̸= ∅. Since the existence of an (S, n0, n1)-
encoder implies the existence of (S(Gb), nb)-encoders for
b ∈ [2⟩, it also implies that X (AG0 , n0) and X (AG1 , n1) are
both nonempty sets (and, so, n0 ≤ λ(AG0) and n1 ≤ λ(AG1)).
Theorem 1 implies that their intersection must be nonempty
too. We omit the proof due to space limitations.

The next two corollaries (and their proofs) parallel Corol-
lary 1 and Theorem 5 in [6].

Corollary 3. Let S, G, n0, and n1 be as in Theorem 1. Then,
for any (S, n0, n1)-encoder E ,

|V (E)| ≥ min
x∈X (AG0

,AG1
,n0,n1)

∥x∥∞ ,

where ∥(xu)u∥∞ = maxu xu.

Corollary 4. With S, G, n0, n1, and E as in Corollary 3,

A(E) ≥ logn

(
min

x∈X (AG0
,AG1

,n0,n1)
∥x∥∞

)
,

where n = max{n0, n1}.

The Franaszek algorithm is a known method for computing
approximate eigenvectors [6, Sec. IX]. Figure 2 presents a
modification of it for computing a vector in X (A0, A1, n0, n1),

where A0 and A1 are nonnegative integer k × k matrices (a
nonnegative integer k-vector ξ is provided as an additional
parameter to the algorithm). The modified algorithm can be
used to compute the lower bounds of Corollaries 3 and 4,
and will turn out to be useful also when designing parity-
preserving encoders.

By slightly generalizing the proof of validity of the (ordi-
nary) Franaszek algorithm (see [6, Sec. IX]) it follows that
the algorithm in Figure 2 returns the largest (componentwise)
vector x ∈ X (A0, A1, n0, n1) that satisfies x ≤ ξ; if no such
vector exists, then the algorithm returns 0.

y ← ξ;
x← 0;
while (x ̸= y) {

x← y;
y ← min {⌊(1/n0)A0x⌋ , ⌊(1/n1)A1x⌋ ,x};

/∗ apply ⌊·⌋ and min{·, ·} componentwise ∗/
}
return x;

Fig. 2. Modified Franaszek algorithm.

By analyzing the complexity of Karmarkar’s algorithm [5],
one can infer an upper bound on the largest entry of the output
of the algorithm in Figure 2 (in terms of its input parameters).
It is still open whether such a bound can be obtained in a
more straightforward manner.

III. SUFFICIENT CONDITION

We start proving the “if” part in Theorem 1 by considering
two special cases in Sections III-A and III-B. We then turn to
the general case in Section III-C.

A. Deterministic encoders

If X (AG0 , AG1 , n0, n1) contains a 0–1 vector, then a sub-
graph of G is an (S(G), n0, n1)-encoder with anticipation 0.
By Corollary 4, the existence of such a vector is also a
necessary condition for having a deterministic (S(G), n0, n1)-
encoder. If, in addition, G has finite memory µ, then the
resulting encoder is (µ, 0)-definite2 and, therefore, (µ, 0)-
sliding-block decodable for any tagging.

B. Encoders with anticipation 1 obtained by state splitting

Suppose now that X (AG0 , AG1 , n0, n1) does not contain
a 0–1 vector, yet contains a vector x = (xu)u such that for
each b ∈ [2⟩, an application of one x-consistent state splitting
round3 to Gb results in an all-1 induced approximate eigen-
vector. For b ∈ [2⟩, let Êb be the resulting (S(Gb), n0, n1)-
encoder. Note that each state u ∈ V (G) is transformed into
xu descendant states in each encoder Êb; denote those states
by (u, i)b, where i ∈ [xu⟩ (the order implied by the index i
on the descendant states of a given u can be arbitrary).

2A graph is (m,a)-definite if all paths that generate a given word of length
m+a+1 share the same (m+1)st edge. An encoder is (m,a)-sliding-block
decodable if these paths share the same tag on their (m+1)st edges.

3Refer to [7, Ch. 5] for the description of the state-splitting algorithm and
for the related terms used here.

2018 IEEE International Symposium on Information Theory (ISIT)

1806

Next, construct the following graph E :

V (E) = {(u, i) : u ∈ V (G) and i ∈ [xu⟩} ,

and endow E with an edge (u, i)
a→ (v, j) if and only if for

some b ∈ [2⟩, the encoder Êb contains an edge (u, i)b
a→

(v, j)b. It follows from the construction that Eb = Êb for
b ∈ [2⟩. In particular, from each E-state there are nb outgoing
edges with labels from Σb, for each b ∈ [2⟩. Moreover, it can
be readily seen that every word that can be generated from
state (u, i) in E can also be generated from the parent G-state u
in G. Finally, E has anticipation 1: if a word w1w2 is generated
in E by a path π from (u, i) in E then u and the symbol w1

uniquely identify the parent G-state, v, of the terminal state of
the first edge in π, and the symbol w2 then uniquely identifies
the particular descendant state (v, j) of v in which that edge
terminates. Furthermore, if G has finite memory µ, then E
is (µ, 1)-definite and, therefore, (µ, 1)-sliding-block decodable
for any tagging.

Example 2. We consider the 16th power of the (2, 10)-
RLL constraint, as found in the DVD standard [7, §1.7.3
and Example 5.7]. Let G be the 11-state graph presenting
that power and let Σ0 (resp., Σ1) be the set of all 16-bit
words of even (resp., odd) parity that satisfy the (2, 10)-RLL
constraint. Running the algorithm in Figure 2 with A0 = AG0 ,
A1 = AG1 , and ξ = 2 · 1 yields the result

x = (1 1 2 2 2 2 1 1 1 1 0)⊤ ,

for any n0 ≤ 173 and n1 ≤ 178 (running the algorithm
with larger values of n0 or n1 yields the all-zero vector).
This is also the vector obtained when running the (ordinary)
Franaszek algorithm with AG = AG0 + AG1 , n = 351,
and ξ = 2 · 1. In both G0 and G1 we can merge states to
yield G′

0 and G′
1 with four states each, and the respective

(AG′
0
, AG′

1
, n0=173, n1=178)-approximate eigenvector is

x′ = (1 1 2 1)⊤ .

Both G′
0 and G′

1 can be split in one round consistently
with x′, resulting in the all-1 induced vector and, therefore, in
an (S(G), 173, 178)-encoder. The out-degree of the encoder
used in the DVD is 2p = 256, where the set of input tags
consists of all 8-bit tuples. Some of the input tags can be
mapped to two possible 16-bit words with different parities4,
while the rest are mapped to unique 16-bit words.

C. Construction using the stethering method

The technique used in Section III-B does not seem to
generalize easily if the conditions therein—namely, being able
to split G0 and G1 in one round and ending up with an all-1
induced approximate eigenvector—do not hold. In fact, due to
the fact that the matrices G0 and G1 may be reducible, there
are examples that show that we may get stuck while attempting
to split them. Moreover, we have found an example (which
we omit) where multiple rounds of state splitting are required,

4There can be at most 173+178− 256 = 95 input bytes of this type, but
in practice their number is slightly smaller.

which do end up with an all-1 approximate eigenvector, yet
there is no way one can match the descendant states in E0
of a given G-state with the respective descendant states in E1
while maintaining finite anticipation.

Recognizing that the finite anticipation property is not
guaranteed even when the state-splitting algorithm is used
(at least in the manner we employed this algorithm in Sec-
tion III-B), we resort to a more general framework of designing
encoders, which includes the state-splitting algorithm and the
stethering design method of [2] as special cases (see also [1]
and [7, §6.2]). As we see, it will be rather easy to adapt the
stethering method to design parity-preserving encoders, even
though finite anticipation can be guaranteed only under certain
conditions.

Next we recall the stethering method, while tailoring it to
our setting. Let G be a deterministic graph and {Σ0,Σ1} be
a partition of its label alphabet Σ, and let x = (xu)u∈V (G)

be in X (AG0 , AG1 , n0, n1). We assume that x > 0, or else
remove the zero-weight states from G. For u ∈ V (G), denote
by Σb(u) the set of symbols from Σb that label edges outgoing
from u. For u ∈ V (G) and a ∈ Σb(u), denote by τ(u; a) the
terminal G-state of the unique edge outgoing from u with
label a.

For b ∈ [2⟩ and u ∈ V (G), let

∆b(u) =
{
(a, j) : a ∈ Σb(u) and j ∈

[
xτ(u;a)

⟩}
.

Since x ∈ X (AGb
, nb) we have |∆b(u)| = (AGb

x)u ≥ nbxu.
Thus, we can partition (a subset of) ∆b(u) into xu subsets

∆
(0)
b (u), ∆

(1)
b (u), . . . , ∆

(xu−1)
b (u) , (3)

such that |∆(i)
b (u)| = nb for each i. We fix such a partition

and construct the following graph E :

V (E) = {(u, i) : u ∈ V (G) and i ∈ [xu⟩} ,

and for each b ∈ [2⟩, u ∈ V (G), i ∈ [xu⟩, and (a, j) ∈
∆

(i)
b (u), we endow E with an edge (u, i)

a→ (τ(u; a), j).

Proposition 5. The graph E is an (S(G), n0, n1)-encoder.

We omit the proof (the respective proof for ordinary en-
coders is essentially contained in [1]).

The number of states of the constructed encoder E (before
any possible merging of states) equals the sum, ∥x∥1, of the
entries of x. Thus, with this construction, we can obtain an
encoder E such that

|V (E)| ≤ min
x∈X (AG0 ,AG1 ,n0,n1)

∥x∥1

(compare with the lower bound of Corollary 3).
In stethering encoders, the subsets in (3) have a particular

structure which we describe next. For b ∈ [2⟩ and u ∈ V (G),
assume some ordering on the elements of Σb(u). For a ∈
Σb(u), define ϕb(u; a) by

ϕb(u; a) =
∑

b∈Σb(u) : b<a xub
,

and for i ∈ [xu⟩, let

∆
(i)
b (u) =

{
(a, j) : a ∈ Σb(u) , j ∈

[
xτ(u;a)

⟩
,

and i nb ≤ ϕb(u; a) + j < (i+1)nb

}
. (4)

2018 IEEE International Symposium on Information Theory (ISIT)

1807

(b,0) (b,1) ... (b,nb−1) (b,0) (b,1) ... (b,nb−1) (b,0) (b,1) ... (b,nb−1)

(u, 0) · · · (u, xu−1)
↓ a ↓ a ↓ a ↓ a ↓ a′ ↓ a′ ↓ a′ ↓ a′′ ↓ a′′

(v,0) (v,1) · · · (v,xv−1) (v′,0) · · · (v′,xv′−1) (v′′,0) (v′′,1) · · ·
(a,0) (a,1) · · · (a,xv−1) (a′,0) · · · (a′,xv′−1) (a′′,0) (a′′,1) · · ·
←− ∆

(0)
b (u) −→ ←− · · · −→ ←− ∆

(xu−1)
b (u) −→

Fig. 3. Descendants of a G-state u in a subgraph Eb of a stethering encoder.

This construction is illustrated in Figure 3, for a given G-
state u and parity b ∈ [2⟩. The boxes in the top row in
the figure represent the “descendants” of state u, namely, the
states (u, i), for i ∈ [xu⟩, and the width of each box in the
top row is one unit. The outgoing edges from each state (u, i)
are shown as downward arrows, along with their labels, and
an assignment of input tags, (b, 0), (b, 1), . . . , (b, nb−1), is
shown above the top row. The boxes at the bottom row are
1/nb units wide and represent the terminal states of the edges.
The respective elements of ∆b(u) are written just below
the bottom row, where we have also shown their grouping
into the subsets (3) defined by (4). The double vertical lines
group the edges according to their labels. So, for example,
according to the figure, there is an outgoing edge labeled a′

and tagged by (b, 0) from (u, xu−1) to (v′, xv′−1), and that
edge corresponds to the element (a′, xv′−1) ∈ ∆b(u).

Stethering encoders can have finite anticipation (and be
sliding-block decodable if G has finite memory), provided
that there is sufficient margin between the target encoder rate
p : q and the maximal coding ratio ρ(G, q) (as defined in (2)).
Specifically, suppose that x ∈ X (AG0 , AG1 , n0+1, n1+1)
(namely, we assume even and odd out-degrees larger by 1
than targeted). Using x, we first construct a stethering
(S(G), n0+1, n1+1)-encoder E∗ and assign the input tags
(b, 0), (b, 1), . . . , (b, nb) to the outgoing edges from each
state, as in Figure 3. Then, from E∗ we form a punctured
(S(G), n0, n1)-encoder E by deleting all edges in E tagged
by either (0, n0) or (1, n1).

We have the following result (compare the guaranteed upper
bound on A(E) to the lower bound in Corollary 4).

Theorem 6. Let G be a deterministic graph and let n0 and n1

be positive integers such that X (AG0 , AG1 , n0+1, n1+1) ̸= ∅.
Then, there is an (S(G), n0, n1)-encoder E , obtained by the
(punctured) stethering method, such that A(E) ≤ a, where

a = 1 + min
x∈X (AG0

,AG1
,n0+1,n1+1)

{
⌈logn+1 ∥x∥∞⌉

}
and n = min{n0, n1}. Furthermore, if G has finite memory µ,
then E is (µ, a)-definite, and hence any tagged (S(G), n0, n1)-
encoder based on E is (µ, a)-sliding-block decodable.

The proof is essentially the same as that of Proposition 3
in [2], with modifications to handle the parity-preserving
setting. We omit the details.

Recall that nmax(G, q) is the largest integer n for which
(S(Gq), n, n)-encoders exist. If we use the punctured stether-

ing method to construct rate p : q parity-preserving encoders,
then we need to have 2p +1 ≤ nmax(G, q). This inequality is
satisfied whenever

p

q
≤ log2 nmax(G, q)

q
− log2(1 + 2−p)

q
,

which, in turn, is satisfied whenever
p

q
≤ ρ(G, q)− log2 e

2pq

(see (2)). We conclude that finite anticipation (and sliding-
block decodability when G has finite memory) can be guar-
anteed with a rate penalty of (no more than) (log2 e)/(2

pq).
It is still an open problem whether finite anticipation can

be guaranteed whenever X (AG0 , AG1 , n0, n1) ̸= ∅.

REFERENCES

[1] R.L. Adler, L.W. Goodwyn, B. Weiss, “Equivalence of topological
Markov shifts,” Israel J. Math., 27 (1977), 49–63.

[2] J.J. Ashley, B.H. Marcus, R.M. Roth, “Construction of encoders with
small decoding look-ahead for input-constrained channels,” IEEE Trans.
Inf. Theory, 41 (1995), 55–76.

[3] K.A.S. Immink, Codes for Mass Data Storage Systems, Second Edition,
Shannon Foundation Publishers, Eindhoven, The Netherlands, 2004.

[4] J.A.H.M. Kalhman, K.A.S. Immink, “Device for encoding/decoding N -
bit source words into corresponding M -bit channel words, and vice
versa,” US Patent 5,477,222, 1995.

[5] D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, Springer,
New York, 2008.

[6] B.H. Marcus, R.M. Roth, “Bounds on the number of states in encoder
graphs for input-constrained channels,” IEEE Trans. Inf. Theory, 37
(1991), 742–758.

[7] B.H. Marcus, R.M. Roth, P.H. Siegel, An Introduction to Coding for
Constrained Systems, Lecture Notes (available online), 2001.

[8] T. Miyauchi, Y. Shinohara, Y. Iida, T. Watanabe, Y. Urakawa, H.
Yamagishi, M. Noda, “Application of turbo codes to high-density optical
disc storage using 17PP Code,” Jpn. J. Appl. Phys., 44 No. 5B (2005),
3471-3473.

[9] T. Narahara, S. Kobayashi, M. Hattori, Y. Shimpuku, G.J. van den
Enden, J.A.H.M. Kahlman, M. van Dijk, R. van Woudenberg, “Optical
disc system for digital video recording,” Jpn. J. Appl. Phys., 39 No. 2B
(2000), 912-919.

[10] M. Noda, H. Yamagishi, “An 8-state DC-controllable run-length-limited
code for the optical-storage channel,” Jpn. J. Appl. Phys., 44 No. 5B
(2005), 3462-3466.

[11] W.Y.H. Wilson, K.A.S. Immink, X.B. Xi, C.T. Chong, “A Compari-
son of two coding schemes for generating DC-free runlength-limited
sequences,” Jpn. J. Appl. Phys., 39 No. 2B (2000), 815-818.

2018 IEEE International Symposium on Information Theory (ISIT)

1808

		2018-08-07T10:01:25-0400
	Certified PDF 2 Signature

