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Abstract—Defined through a certain 2 × 2 matrix called
Arikan’s kernel, polar codes are known to achieve the symmetric
capacity of binary-input discrete memoryless channels under
the successive cancellation (SC) decoder. Yet, for short block-
lengths, polar codes fail to deliver a compelling performance
under the low complexity SC decoding scheme. Recent studies
provide evidence for improved performance when Arikan’s
kernel is replaced with larger kernels that have smaller scaling
exponents. However, for �×� kernels the time complexity of the
SC decoding increases by a factor of 2�.

In this paper we study a special type of kernels called
permuted kernels. The advantage of these kernels is that the
SC decoder for the corresponding polar codes can be viewed as
a permuted version of the SC decoder for the conventional polar
codes that are defined through Arikan’s kernel. This permuted
successive cancellation (PSC) decoder outputs its decisions on
the input bits according to a permuted order of their indices.
We introduce an efficient PSC decoding algorithm and show
simulations for two 16× 16 permuted kernels that have better
scaling exponents than Arikan’s kernel.

Index Terms—Large kernels, polar codes, successive cancel-
lation decoding, scaling exponent.

I. INTRODUCTION

Introduced by Arikan [1], polar codes are the first codes

that were proved to achieve the symmetric capacity of

a binary-input discrete memoryless channel (B-DMC) W .

Polar codes can be viewed as part of a much larger family

of codes that are generated according to the 2× 2 matrix

F2
def
=

(
1 0
1 1

)
.

These length n = 2m codes are cosets of a linear subspace

that is spanned by some k rows of F⊗m
2 , the mth Kronecker

power of F2. One important example of such codes are Reed-

Muller codes, for which the spanning k rows correspond to

the k rows of F⊗m
2 that have maximum Hamming weight.

The genius of Arikan’s construction lies in the fact that the

selection of the k spanning rows depends on the channel.

Each row of F⊗m
2 is associated with a synthesized channel

called a bit channel, which is defined through F2 and the

channel W . The selected k rows correspond to the k least

noisy bit channels, where the noisiness of the channel is

measured by its Bhattacharyya parameter (see [1] for more

information on the Bhattacharyya parameter). A remarkable

property of F2 is that as n grows, the bit channels exhibit a

polarization phenomenon: some of the bit channels become

very noisy, while the rest of the bit channels become almost

noiseless. Moreover, the fraction of channels that are almost

noiseless approaches the symmetric capacity of the channel,

I(W). As a result, for every R < I(W) and for sufficiently

large n there exists a rate R polar code for which the frame

error rate (FER) under a successive cancellation (SC) decoder

is O(n−
1

2+ε ), where ε > 0 is arbitrarily small.

Despite their impressive asymptotic behavior, empirical

results indicate less impressive performance of the SC de-

coder for polar codes of short block-lengths, e.g., compared

to LDPC codes [13]. To improve performance, different de-

coders were suggested, e.g., belief propagation decoding [2],

[6], [9], improved SC decoding [5], and list successive can-

cellation decoding [13]. Combined with cyclic redundancy

check (CRC) pre-coding, the list successive cancellation

decoder provides the best performance for polar codes to

date. Meanwhile, a series of works pursued the same goal

by replacing F2 with larger matrices called kernels that may

induce a faster polarization of the bit channels [7], [8], [10],

[11], [12], [15].

To estimate how polarizing a kernel is, two figures of merit

were proposed. The first is the error exponent [3], [12] which

quantifies the exponential decay of the error probability with

respect to the block-length n, for a fixed rate R. The second

is the scaling exponent [7], [10], [16] which reflects the

dependence between the length of the code and its rate, for

a fixed probability of error Pe. More precisely, a scaling

exponent μ is a constant that depends only on the kernel

K and the channel W for which n = Θ((I(W)−R)−μ),
where the sum of the Bhattacharyya parameters of the nR
least noisy bit channels is at most Pe. No method is known

to compute the scaling exponent for general channels. In

fact, it is not even clear whether or not the scaling exponent

exists. Hassani et. al. [10] introduced a numerical method to

compute the scaling exponent of polar codes for the binary

erasure channel (BEC) and found that μ = 3.627, where

the kernel is F2. Fazeli and Vardy [7] presented an 8 × 8
kernel K8 with μ = 3.577 and showed that this is optimal

for kernels of size � ≤ 8. They also suggested a heuristic

construction through which they found a 16 × 16 kernel

K16 with μ = 3.356. However, the time complexity of a

SC decoding of polar codes with � × � kernels scales as

2�n log� n. In [11] a method to reduce the time complexity

of a SC decoding of polar codes with large kernels was

suggested. This method was shown to be efficient for certain

�× � kernels, with � ≤ 16.

In this paper we suggest a different approach towards polar

codes with high performance and efficient SC decoding. In

our approach we consider a special type of kernels called

permuted kernels. These kernels are formed by permuting

the rows of F⊗�
2 . One example of a permuted kernel is

the kernel K8 from [7]. On the other hand, the kernel K16

defined in [7] is not a permuted kernel. While a successive

cancellation decoder for a polar code with the kernel F2
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and dimension k decides on the n input bits u0u1 . . . un−1

(n − k of them are known to the decoder) one after the

other according to the sequential order from 0 to n − 1, a

SC decoder for polar codes with permuted kernels decides

on the input bits according to a permuted order of their

indices. Therefore, we call the SC decoder for a polar code

with a permuted kernel a permuted successive cancellation
(PSC) decoder. A PSC decoding algorithm was presented in

[4], however in this work we further exploit the connection

between permuted kernels and F⊗�
2 and introduce a more

efficient implementation of the PSC decoder, in terms of

both time and space complexity. Due to page limitations, we

only describe our PSC decoding algorithm for length-� polar

codes. A more detailed presentation of the algorithm will be

given in the full version of this paper. We also propose two

new 16 × 16 permuted kernels and show simulation results

for their performance.

The rest of this paper is organized as follows. In Section II,

we present notation and definitions that are used throughout

the paper and review the basic concepts of polar codes.

We also discuss the connection between the bit channels

of a permuted kernel and the bit channels of F⊗�
2 . Our

PSC decoding algorithm for block-length � is presented in

Section III. Time and space complexity of the algorithm are

discussed in Section IV along with some simulation results.

II. PRELIMINARIES

In this section we introduce notation and definitions used

throughout the paper and review the basic concepts for polar

codes.

For a positive integer n, denote by [n] the set of n integers

{0, 1, . . . , n− 1}. For a positive integer � and for all r ∈ [�],
denote by [n]r the set of all elements in [n] that are equal to r
modulo �, where � should be clear from the context. A binary

vector of length n is denoted by un−1
0 = u0u1 . . . un−1. For

A ⊆ [n], denote by uA the subvector of un−1
0 that is specified

according to indices from A. In particular, if � divides n and

r ∈ [�] then u[n]r = uru�+r . . . un−�+r. All operations on

vectors and matrices in this paper are carried out over the

field GF (2). The componentwise addition modulo-2 of two

binary vectors un−1
0 and vn−1

0 is denoted by un−1
0 ⊕ vn−1

0 .

For an �× � matrix K, denote by K⊗m the mth Kronecker

power of K.

Throughout this paper W : X → Y is a generic B-DMC

with input alphabet X = {0, 1}, output alphabet Y , and

transition probabilities W(y|x), where for all x ∈ X and

y ∈ Y , W(y|x) is the conditional probability that the channel

output is y given that the transmitted input is x.

For a positive integer n, denote by Wn : Xn → Yn the

channel that corresponds to transmission over n independent

copies of W .

A kernel K is an invertible � × � matrix. Let n = �m

and let Rn be the permutation matrix for which un−1
0 Rn =

u[n]0u[n]1 . . . u[n]�−1
, for all un−1

0 ∈ Xn. For an �× � kernel

K, define the matrix Gm,K recursively by G1,K
def
=K and

Gm,K
def
=(In/� ⊗K)Rn(I� ⊗Gm−1,K). For a set A ⊂ [n] of

size k, and a vector fn−k−1
0 , let C be the code that encodes

a length n input vector un−1
0 , for which u[n]\A = fn−k−1

0 ,

to the codeword xn−1
0 = un−1

0 Gm,K . If i ∈ [n] \ A, then ui

is called a frozen bit. For all i ∈ [n], the ith bit channel with

respect to Gm,K , W(i)
m,K : X → Yn × X i, is defined by the

transition probabilities

W(i)
m,K(yn−1

0 , ui−1
0 |ui)

def
=∑

un−1
i+1 ∈Xn−i−1

1

2n−1
Wn(yn−1

0 |un−1
0 Gm,K).

A polar code C of length m and with kernel K is defined

by setting A to be the set of k indices corresponding to the

bit-channels with the lowest Bhattacharyya parameters1. A

successive cancellation (SC) decoder for C outputs a decision
vector ûn−1

0 in n steps, where at the ith step the decoder

decides on the value of ûi according to the following rule.

If i ∈ [n] \ A then ûi is set to the value of the frozen bit

ui. Otherwise, the decoder calculates the pair of transition

probabilities

W(i)
m,K(yn−1

0 , ûi−1
0 |ui = 0), W(i)

m,K(yn−1
0 , ûi−1

0 |ui = 1).
(1)

and sets ûϕ to the more likely value according to these

probabilities. Notice that, in general, the complexity of the

SC decoder may be exponential in n, since the calculation of

the transition probabilities requires a summation of 2n−i−1

terms.

The recursive structure of the matrix Gm,K induces recur-

sive formulas for the bit channels as follows.

Lemma 1. Let K = (Kr,s) be an �×� kernel. For all i ∈ [n],
if i = ϕ�+ j for some ϕ ∈ [n/�] and j ∈ [�] then

W(i)
m,K(yn−1

0 , ui−1
0 |ui) =

1

2�−1

∑
u
(ϕ+1)�−1
ϕ�+j+1

�−1∏
s=0

W(ϕ)
m−1,K(y

(s+1)n/�−1
sn/� , T (s)(u[ϕ�])| ⊕�−1

r=0 Kr,s · uϕ�+r),

where T (s)(u[ϕ�])
def
= ⊕�−1

r=0 Kr,s · u[ϕ�]r .

Notice that u[ϕ�]r is a vector of length ϕ and Kr,s ∈
GF (2), hence T (s)(u[ϕ�]) is a vector of length ϕ as re-

quired by the definition of the ϕth bit channel. The term

⊕�−1
r=0Kr,s · uϕ�+r is simply the inner product of u

(ϕ+1)�−1
ϕ�

with the sth column of K.

From Lemma 1, it follows that a SC decoding algorithm at

the kernel level, i.e., for a length-� polar code with kernel K,

that has time complexity t and space complexity s can be ex-

tended to a SC decoding algorithm for a length-n polar code

with kernel K that has time complexity O(tn log n/(� log �))
and space complexity O(sn/(� − 1)). In particular, there

exists an implementation for the SC decoder that runs in

O(2�n log n/(� log �)). In practice, this time complexity may

be too large even for relatively small values of �. For this

reason we propose to use a special type of kernel called

a permuted kernel that can simultaneously reduce the time

1By the definition of polar codes, the values of the frozen bits are also
required. If the channel is symmetric, then the frozen bits are all taken to
be zero. For asymmetric channels, an assignment of the frozen bits that
guarantees a vanishing probability of error is known to exist, however no
practical method that finds such an assignment is known.
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complexity of the SC decoder and achieve better scaling

exponents.

A permutation ρ of length � is a bijection ρ : [�] → [�].
For a permutation ρ, the permutation matrix corresponding

to ρ is denoted by Mρ and defined by

(Mρ)r,s
def
=

{
1, if s = ρ(r)
0, otherwise,

i.e., u�−1
0 Mρ = v�−1

0 , where vρ(r) = ur, for all r ∈ [�]. A

permuted kernel with respect to ρ is defined by Kρ
def
=MρGL,

where GL
def
=GL,F2

and � = 2L. For ease of notation, for all

i ∈ [n] we denote the ith bit channel with respect to Gm,Kρ

by W(i)
m,ρ and denote W(i)

m,F2
by W(i)

m .

Let Cρ be the polar code with kernel Kρ and length n = �.
For i ∈ [�], let Di = {ρ(0), ρ(1), . . . , ρ(i− 1), ρ(i)} and let

di = max{Di}.

Lemma 2. For all i ∈ [�], the ith bit channel with respect
to Kρ is equal to

W(i)
L,ρ(y

�−1
0 , ui−1

0 |ui) =
∑

v[di+1]\Di

W(di)
L (y�−1

0 , vdi−1
0 |vdi

),

where v�−1
0 = u�−1

0 Mρ, i.e., for all r ∈ [�], vρ(r) = ur.

Lemma 2 provides a connection between bit channels with

respect to Kρ and bit channels with respect to F2, which will

be useful for our SC decoding algorithm for Cρ, presented in

Section III .

III. FORMALIZATION OF SC DECODER FOR PERMUTED

KERNELS

In this section we formalize our SC decoder for a length-

� = 2L code Cρ defined by a permuted kernel Kρ. As

mentioned above, SC decoding for Cρ is equivalent to SC

decoding of a length-� polar code with kernel F2 that decides

on the input bits in a permuted order according to ρ. For this

reason, we call our SC decoding scheme permuted successive
cancellation (PSC) decoding. We present an implementation

of PSC decoding for any permutation ρ, which requires sig-

nificantly less computational power and memory compared

to the conventional SC decoder at the kernel level2. Analysis

of time and space complexity is also presented.

The PSC decoding algorithm is similar to the list SC

decoding from [13] in the sense that it computes many pairs

of transition probabilities for some bit channels. Therefore,

we will adapt some of the notation and terminology from

[13]. In particular, for all 0 ≤ λ ≤ L define Λ
def
=2λ. For

0 ≤ ϕ < Λ/2 we have

W(2ϕ)
λ (zΛ−1

0 , b2ϕ−1
0 |bϕ) =∑

b2ϕ+1

1

2
W(ϕ)

λ−1(z
Λ/2−1
0 , b[2ϕ]0 ⊕ b[2ϕ]1 |b2ϕ ⊕ b2ϕ+1)

· W(ϕ)
λ−1(z

Λ−1
Λ/2 , b[2ϕ]1 |b2ϕ+1),

(2)

2Our proposed algorithm admits better time complexity only when ρ is not
the identity permutation. For the identity permutation the algorithm coincides
with the conventional SC decoder.

and

W(2ϕ+1)
λ (zΛ−1

0 , b2ϕ0 |b2ϕ+1) =

1

2
W(ϕ)

λ−1(z
Λ/2−1
0 , b[2ϕ]0 ⊕ b[2ϕ]1 |b2ϕ ⊕ b2ϕ+1)

· W(ϕ)
λ−1(z

Λ−1
Λ/2 , b[2ϕ]1 |b2ϕ+1).

(3)

Notice that, for r ∈ {0, 1}, [2ϕ]r is the set of all elements

in [2ϕ] that are equal to r modulo-2. The index ϕ is called

a phase and λ is called a layer. Thus, the pair of transition

probabilities in phase i and layer λ is determined by two pairs

of transition probabilities in phase ϕ = 	i/2
 and layer λ−1;

one corresponds to the output (z
Λ/2−1
0 , b[2ϕ]0⊕b[2ϕ]1) and the

other to the output (zΛ−1
Λ/2 , b[2ϕ]1). From the recursive formu-

las above we obtain a binary tree of pairs of transition prob-

abilities where the root of this tree is W(i)
L (y�−1

0 , vi−1
0 |vi),

for some i ∈ [n]. Each pair of transition probabilities in this

tree is associated with a branch number 0 ≤ β < 2L−λ. For

λ = L the branch number of W(i)
λ (y�−1

0 , vi−1
0 |vi) (the root

of the tree) is 0. If the branch number of W(i)
λ (zΛ−1

0 , bi0|bi)
is β then W(ϕ)

λ−1(z
Λ/2−1
0 , b[2ϕ]0 ⊕ b[2ϕ]1 |b2ϕ ⊕ b2ϕ+1) and

W(ϕ)
λ−1(z

Λ−1
Λ/2 , b[2ϕ]1 |b2ϕ+1), ϕ = 	i/2
, have branch numbers

2β and 2β + 1, respectively. With this terminology, we

can refer to each pair of transition probabilities by a triple

(ϕ, λ, β) and denote

Pλ,β [b
ϕ
0 ]

def
=W(ϕ)

λ (zΛ−1
0 , bϕ−1

0 |bϕ).
We assign the same triple (ϕ, λ, β) to the output and input

of each pair of transition probabilities in the tree and denote

Bλ,β [ϕ]
def
= bϕ.

Remark 1. We use the notations (zΛ−1
0 , bϕ−1

0 ) and bϕ for the
output and input of the bit channel W (ϕ)

λ of branch number
β, whereas the notations (y�−1

0 , vϕ−1
0 ) and vϕ are used only

for W (ϕ)
L . The values of (zΛ−1

0 , bϕ−1
0 ) and bϕ are determined

recursively from (y�−1
0 , vϕ−1

0 ) and vϕ.

For i ∈ [�], let ûi−1
0 be the bits decoded so far by the

PSC decoding algorithm. Recall that in the ith step, the SC

decoder calculates the pair of transition probabilities defined

in (1). Denote these transition probabilities by

Qi[b]
def
=W(i)

1,ρ(y
�−1
0 , ûi−1

0 |ui = b).

Recall that Di = {ρ(0), ρ(1), . . . , ρ(i)} and di is the

maximum over Di. The decoding window in the ith step

is denoted by DWi = [di + 1] \Di. By Lemma 2,

Qi[b] =
∑

vs: s∈DWi

PL,0[v
i
0], (4)

where vρ(i) = ui = b and for all r ∈ [i], vρ(r) = ûr. If j ∈
DWi then vj was not determined yet and is therefore called

an unknown bit. As with every SC decoder for polar codes,

for every i ∈ [�], the PSC decoding algorithm processes the

ith step of the decoding by two stages:

1) Recursive transition probabilities computations.

2) Recursive decision making.

Next, we will describe these two stages.
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1) Recursive transition probabilities computations:

In the beginning of the algorithm, where i = 0, d0 = ρ(0),
and DW0 = [d0 + 1], the algorithm recursively computes

PL,0[v
d0
0 ], for every choice of vd0−1

0 . Thus, for every layer λ
and any branch number β it calculates and stores the pair of

transition probabilities that are required for the calculation

of PL,0[v
d0
0 ]. Figure 1 illustrates the execution of this stage

for i = 0 and a length-four permutation ρ = (2, 0, 3, 1). For

every 0 < i ≤ �, if di = di−1, then PL,0[v
di
0 ] was already

computed, for every choice of vDWi , and the algorithm

does not need to compute anything new. Otherwise, it

must recursively calculate and store PL,0[v
di
0 ], for every

choice of vDWi . The recursive calculation of Pλ,β [b
j
0] is

carried out through equations (2) and (3) (depending on

the parity of j) using Pλ−1,2β [b[2ϕ+1]0 ⊕ b[2ϕ+1]1 ] and

Pλ−1,2β+1[b[2ϕ+1]1 ], where ϕ = 	j/2
. Notice, that if the

algorithm needs to calculate Pλ,β [b
j
0] it will never make use

of Pλ,β [b
r
0], for r < j and it can remove any such transition

probability from the memory. Thus the algorithm stores∑L
λ=0 2

L−λ = 2L+1 − 1 = 2� − 1 vectors of transition

probabilities pairs with various lengths.

2) Recursive decision making:

For every 0 ≤ i < �, after computing all the relevant pairs

of transition probabilities in the previous stage, the algorithm

computes Qi[b] according to (4) and decides on the value of

ûi = vρ(i) according to the SC decoding decision rule, i.e.

ûi = ui if ui is a frozen bit and otherwise it is set to the

more likely value based on Qi[b], b ∈ {0, 1}. Once the value

of vρ(i) is determined, the algorithm recursively updates the

values of the outputs/inputs for any other layers and branch

numbers if these values are available. The recursive update of

the inputs is carried out as follows. If Bλ,β [j] was updated

and j is odd then Bλ+1,2β+1[ϕ] = Bλ,β [j], ϕ = 	j/2
,

and the transition probabilities in layer λ + 1 and branch

number 2β+1, associated with Bλ+1,2β+1[ϕ] �= Bλ,β [j] are

removed. If both Bλ,β [2ϕ] and Bλ,β [2ϕ + 1] are available

then Bλ+1,2β [ϕ] = Bλ,β [2ϕ]⊕Bλ,β [2ϕ+1] and the transition

probabilities in layer λ+1 and branch number 2β associated

with Bλ+1,2β [ϕ] �= Bλ,β [2ϕ]⊕Bλ,β [2ϕ+ 1] are removed.

An execution of this stage for i = 0 and the permutation

ρ = (2, 1, 3, 0) will result in only removing transition prob-

abilities in layer 2. If, for example, the algorithm decision

on the value of vρ(0) was vρ(0) = 0, then the probabilities

that are stored in layer 2 are P2,0[000], P2,0[010], P2,0[100],
and P2,0[110]. Repeating the recursive transition probabilities

computation stage for i = 1 does not require any new

transition probabilities computation since d1 = d0 = 2.

Assuming the decision for vρ(1) is 0 as well, at the decision-

making stage the algorithm removes from layer 0 the tran-

sition probabilities associated with vρ(1) = 1. It then com-

putes B1,1[0] = 0 and removes the transition probabilities

associated with B1,1[0] = 1 from layer 1 and branch number

1. Since ρ(1) is odd and ρ(1) − 1 was not yet calculated,

it cannot make a decision for layer 1 and branch number

0. Figure 2 shows the result of propagating the decision

vρ(1) = 0 to the layers and branch numbers that are affected

by this decision.

λ = 0, β =0

Pλ,β[0] Pλ,β[1]

λ = 0, β =1

Pλ,β[0] Pλ,β[1]

λ = 0, β =2

Pλ,β[0] Pλ,β[1]

λ = 0, β =3

Pλ,β[0] Pλ,β[1]

0 1 0 1 0 1 0 1

λ = 1, β =0

Pλ,β[00] Pλ,β[01] Pλ,β[10] Pλ,β[11]

λ = 1, β =1

Pλ,β[00] Pλ,β[01] Pλ,β[10] Pλ,β[11]

0 1 0 1

0 1 0 1 0 1 0 1

λ = 2, β = 0

Pλ,β[000] Pλ,β[001] Pλ,β[010] Pλ,β[011] Pλ,β[100] Pλ,β[101] Pλ,β[110] Pλ,β[111]

0 1

0 1

0 1 0 1

0 1

0 1 0 1

Fig. 1: Transition probabilities computations for each of the layers
at step i = 0 and for ρ = (2, 1, 3, 0).

λ = 2, β = 0 λ = 1, β = 1

Pλ,β[000] Pλ,β[100] Pλ,β[00] Pλ,β[10]

ϕ = 0 ϕ = 1
0 1 0 1

Fig. 2: The remaining transition probabilities in the affected layers
and branch numbers at the end of step i = 1, after propagating the
decisions v2 = 0 and v1 = 0, where ρ = (2, 1, 3, 0).

IV. SIMULATION RESULTS

In this section, we discuss the time and space complexity

of our algorithm and compare the performance and decoding

complexity of some polar codes with permuted kernels.

A. Time and Space Complexity

Both space complexity and time complexity of the algo-

rithm are highly dependent on the permutation and therefore

we express them as O(sρn) and O(tρn log n), respectively,

where sρ and tρ are constants that depend only on the

permutation ρ. To compute tρ, we count the total number

of pairs of transition probabilities that were calculated by the

algorithm using equations (2) and (3), and divide this number

by �. Similarly, to compute sρ, we find the maximum number

of transition probabilities pairs that were simultaneously

stored in the memory and divide this number by �.

Remark 2. In the computation of the time complexity we
ignore the computation of Qi[b], i ∈ [�], by equation (4),
given the transition probabilities pairs PL,0[v

i
0], since this

requires at most 2tρ� operations. Similarly, for the computa-
tion of the space complexity we ignored the extra space used
by the algorithm to store the phases of the unknown bits for
each layer and branch number, as well as values of some
known bits that are still being used. The space for this extra
information is o(sρ�).

Unfortunately, there is no simple formula to compute sρ
and tρ. Yet, we will show how to derive these quantities

by considering a more complex example of a length-8

permutation ρ = (1, 4, 0, 2, 7, 3, 6, 5). At step 0 the algorithm

computes P3,0[v0v1]. To this end it needs to compute the 16

pair of transition probabilities Pλ,β [b0], for every 0 ≤ λ < 3
and 0 ≤ β < 23−λ. At step 1 it needs to compute P3,0[v

4
0 ]

when v1 is known, i.e., 23 new pairs of transition proba-

bilities. To this end it must compute P2,0[b
2
0] and P2,1[b

2
0],
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where B2,1[0] = v1. Thus, it must compute 4 + 2 = 6
new pairs of transition probabilities at layer 2. At layer 1
it needs to compute P1,β [b

1
0], for every 0 ≤ β < 4, i.e.,

2 ·4 = 8 new pairs. Overall it computes 22 pairs at this step.

The algorithm will only compute new probabilities at step 4,

where it computes 16 new pairs of transition probabilities.

Overall it computes 54 pairs of transition probabilities and

the decoding computation complexity of a length-n polar

code with kernel Kρ is O(tρn log n), where tρ = 2.25. The

maximum number of transition probabilities pairs that were

stored in the memory at the same time is 30 and hence the

space complexity of the algorithm in this example is O(sρn),
where sρ = 4.286.

B. Simulation Results

Figure 3 depicts the performance comparison of three polar

codes of length n = 28 over binary erasure channels. Two

of these codes are constructed via Kσ , where

σ = (0, 1, 2, 3, 4, 6, 8, 10, 5, 9, 7, 11, 12, 13, 14, 15)

and Kπ , where

π = (0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 15).

The other polar code is the conventional Arikan’s polar

code, constructed from the 2 × 2 kernel F2. We chose

these permuted kernels since they have relatively low scaling

exponents, μ(Kσ) = 3.541 and μ(Kπ) = 3.479. The time

complexity of the PSC decoding algorithm for length-n
polar codes with kernels Kσ and Kπ is O(tσn log n) and

O(tπn log n), respectively, where tρ = 1.907 and tπ =
2.407. The space complexity for these codes is O(sσn) and

O(sπn), respectively, where sσ = 9.143 and sπ = 11.429.

It is observed that the polar code constructed from Kπ

and decoded with PSC outperforms both the conventional

polar code and the code constructed by Kσ . The latter also

outperforms the conventional polar code. The results are in

agreement with the convention that the smaller the scaling

exponent, the better the polar code performance. Notice that

for some erasure channels the frame-error-rate of the polar

code constructed from Kπ is lower than the ML bound.

Since the actual performance of the ML decoder can only

be worse than the ML bound, the polar code constructed

from Kπ outperforms Arikan’s polar code even when the

latter is decoded by the ML decoder. It is to be noted that

the conventional construction algorithms such as [14] cannot

be applied directly for the kernels with � ≥ 4 due to the

exponential increase in the number of bit channel outputs.

In this paper, we utilized a Monte-Carlo construction algo-

rithm, which may be improved by using a larger number of

iterations. We leave the study of low-complexity construction

algorithms for future work.
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Fig. 3: FER comparison of three polar codes over binary erasure
channels. The tree codes are constructed with F2, Kσ , and Kπ ,
respectively, at code length n = 28, and decoded with SC and PSC
algorithms. All codes are optimized for the channel BEC(0.2) and
rate R = 3

5
. The ML bound on performance of the F2 polar code

is also given, based upon methods in [13].
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