
Persistent Spiral Storage
Wenyu Peng

Engineering Science Joint Doctoral Program
San Diego State University

San Diego, USA
wpeng@sdsu.edu

Tao Xie
Computer Science

San Diego State University
San Diego, USA

txie@sdsu.edu

Paul H. Siegel
Electrical and Computer Engineering

University of California, San Diego
La Jolla, USA

psiegel@ucsd.edu

Abstract—The advent of byte-addressable persistent memory
(PM) has led to a resurgence of interest in adapting existing
dynamic hashing schemes to PM. Compared with its two well-
known peers (extendible hashing and linear hashing), spiral stor-
age has received little attention due to its limitations. After an in-
depth analysis, however, we discover that it has a good potential
for PM. To show its strength, we develop a persistent spiral
storage called PASS (Persistence-Aware Spiral Storage), which
is facilitated by a group of new/existing techniques. Further,
we conduct a comprehensive evaluation of PASS on a server
equipped with Intel Optane DC Persistent Memory Modules
(DCPMM). Experimental results demonstrate that compared
with two state-of-the-art schemes it exhibits better performance.

Index Terms—dynamic hashing, persistent memory, spiral
storage, key-value store, indexing data structure

I. INTRODUCTION

In the past decade, various persistent memory (PM) tech-
nologies such as 3D-XPoint [1] have been proposed. They nor-
mally offer near-DRAM performance plus byte-addressability
as well as disk-like persistence and capacity. Researchers hope
that these PM devices can either eventually replace the long-
lasting volatile DRAM so that the dream of a large-scale
persistent main memory comes true, or at least they can be
inserted into an appropriate place in the current memory hier-
archy to further mitigate the performance gap between DRAM
and storage. After Intel started shipping Optane DCPMM in
2018, part of this dream has been realized, as a server with
a DRAM-PM hybrid memory system where PM is connected
directly to a CPU now becomes a commercial product. To
reap the full benefits of Optane DCPMM, a question naturally
arises: How to adapt a hash table that was originally designed
for disk/DRAM to PM?

Hashing schemes can be categorized into two camps: static
hashing [2] and dynamic hashing [3]–[5]. Unlike static hash-
ing, a dynamic scheme can adjust the size of its hash table
on demand without the need to rehash the entire table. This
expansion-on-demand feature makes it an attractive indexing
data structure. For example, extendible hashing [3] and linear
hashing [4], two popular dynamic hashing schemes, have been
widely used in file systems (e.g., IBM GPFS [6]) and databases
(e.g., SQL Server Hekaton [7]) on disk/DRAM-based systems.
They became natural candidates for the recent development of
PM-oriented dynamic hashing schemes such as CCEH [8] and
Dash [9]. While CCEH [8] focused on extendible hashing only,

Dash [9] targeted both extendible hashing and linear hashing.
The two adapted dynamic hashing schemes perform well on
PM [8], [9].

Unlike its two popular peers, spiral storage [5], [10] has
received little attention as it has some inherent limitations.
Two address mapping operations are needed to search a key k.
The first one leads to the calculation of a power function (see
Equation 1), whereas the second one requires the computing
of a recursive function (see Algorithm 1). Both are time-
consuming. Besides, spiral storage employs a directoryless
mode. Thus, it demands periodically reallocating a contiguous
memory region to perform an expansion, which is very expen-
sive on PM. However, after an in-depth study, we found that
spiral storage also possesses a desirable feature. It performs
each hash table expansion through address remapping, and
thus, leads to fewer rehashing operations compared with its
two peers. As a result, multiple PM reads and writes can be
avoided. We speculate that spiral storage has a potential for
PM.

To confirm our speculation, we propose several techniques
to upgrade the original spiral storage to a persistent spiral
storage called PASS (Persistence-Aware Spiral Storage). First,
we design a new structure for PASS on PM (see Section III-B).
Second, we propose an approximation method to accelerate
the calculation of the power function (see Section III-C) and a
look-up table to replace the recursive logical-physical address
mapping function (see Section III-D). The two strategies
combined turn the two-step address mapping into one quick
mapping table access, which solves an inherent limitation
of spiral storage (see Section III-E). PASS also adopts a
group of existing optimization techniques including stashing,
fingerprinting [11], optimistic concurrency control [9], and
bucket load balancing [9].

We conducted a comprehensive experimental study on a 24-
core server equipped with Intel DCPMM. Our experimental
results show that PASS outperforms the state-of-the-art PM-
oriented hashing schemes. Overall, we make the following
contributions. First, we investigate spiral storage on a modern
computing platform and discover its potential for PM. To the
best of our knowledge, this is the first research in adapting
spiral storage to PM. Second, we propose several techniques
so that PASS can deliver a similar or even better performance
than the state-of-the-art approaches. Finally, we provide a
comprehensive empirical evaluation of PASS.

256

2024 IEEE 42nd International Conference on Computer Design (ICCD)

2576-6996/24/$31.00 ©2024 IEEE
DOI 10.1109/ICCD63220.2024.00046

20
24

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r D
es

ig
n

(IC
CD

) |
 9

79
-8

-3
50

3-
80

40
-8

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CD

63
22

0.
20

24
.0

00
46

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 12,2025 at 18:22:45 UTC from IEEE Xplore. Restrictions apply.

(a) Graph of bG versus G (b) An example of table expansion (c) Logical-physical address mapping

Fig. 1: Conventional spiral storage.

II. SPIRAL STORAGE

A. Conventional Spiral Storage

Conventional spiral storage is a directoryless mode dynamic
hashing [5], [10]. To search a key k, it requires two address
mapping operations: k → hash(k) → logical address, and
then, logical address → physical address. In its original
design, buckets are deleted at the left side of the table and
added at the right side. A simple optimization is to reuse the
space deleted, which requires a logical to physical address
mapping operation [5]. A hash function that returns a hash
value between [0, 1] is needed for the first address mapping
operation. A logical address can be calculated by Equation 1

logical =
⌊
bG

⌋
. (1)

While b is called growth factor, G is computed by Equation 2

G = ⌈c− hash(k)⌉+ hash(k). (2)

An increase of c causes an expansion [5]. The value of G
ranges from c to c + 1. To expand the logical address space, a
new value of c is chosen to eliminate the current first logical
bucket. The new value c′ is obtained by Equation 3

c′ = logb(first+ 1), (3)

where first is the logical address of the current leftmost bucket,
which can be computed as first = ⌊bc⌋. The relationship among
b, c, and G is shown in Figure 1a. As the interval (c, c+1) is
moved to the right along the x axis, the size of the interval (bc,
bc+1) on the y axis will increase accordingly. Since the number
of newly added buckets is more than the number of buckets
deleted, an expansion is achieved. Records from the deleted
buckets are then spread across the newly added buckets.

The example shown in Figure 1b explains how spiral storage
expands its logical address space. Initially, the growth factor b
is set to 2, and c is configured to 0. Thus, the range of logical
address space is [1, 2] based on Equation 1 and Equation 2.
Now, there are only two logical buckets as shown in the
left side of Figure 1b(I). The mapping on the right side of
Figure 1b(I) shows how all records within the interval (0, 1) on
the x axis map into these two logical buckets. When the logical
address space expands, a new c is calculated by Equation 3

where first is 1 and b is 2. Thus, the new c is log2(1 + 1) = 1.
Now the range of logical address space becomes [2, 4]. While
the logical bucket 1 is deleted, two new logical buckets are
added as shown in Figure 1b(II). A further expansion is shown
in Figure 1b(III). The logical-physical mapping algorithm is
shown in Algorithm 1.

Figure 1c shows an example of expansion from size 2 to size
5 with the mapping of a logical bucket to a physical bucket
without deleting any bucket. The numbers within the buckets
are the logical addresses of the buckets, whereas the numbers
below the buckets are the physical addresses of the buckets.
In the first expansion, when logical bucket 1, which resides in
physical bucket 0, is mapped into logical buckets 3 and 4, the
physical bucket 0 is reused for the logical bucket 3 as shown
in Figure 1c(II). Logical bucket 4 (physical bucket 2) is then
added to the end of the table.

The procedure of finding the physical address of a logical
bucket is as follows: If the logical bucket resides in the first
instantiation of the physical bucket (i.e., the logical bucket
stays in a newly created physical bucket), its physical address
is the distance between the last logical bucket and the current
first logical bucket (Line 10 of Algorithm 1). For example, the
physical address for the logical bucket 8 is 4 (i.e., 8 - 4 = 4)
as shown in Figure 1c(IV). To find the physical address of a
reused bucket such as where logical bucket 7 resides, spiral
storage has to backtrack the logical instantiations to find when
the physical bucket was instantiated (Line 7 of Algorithm 1).
Logical bucket 7 is in physical bucket 0 in Figure 1c(IV).

Algorithm 1 Logical-Physical Address Mapping

1: function PhysicalAddress(logical address):
2: high = ⌊(1 + logical address)/b⌋
3: low = ⌊logical address/b⌋
4: if low < high then
5: physical address = PhysicalAddress(low)
6: else
7: physical address = logical address - low
8: end if
9: return physical address

10: end function

257

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 12,2025 at 18:22:45 UTC from IEEE Xplore. Restrictions apply.

III. THE DESIGN OF PASS

A. Design Overview

Motivated by the insights stated in the introduction, we
develop some optimization techniques for spiral storage. First,
an approximation method (see Section III-C) is proposed to
avoid the calculations of a power function with a floating-
point exponent (see Equation 1). Next, we found that the
mapping between a logical address and its associated physical
address is fixed, which is a property of spiral storage. Thus, a
predetermined look-up table is proposed to replace the time-
consuming recursive function shown in Algorithm 1. The
comparison of address mapping is shown in Table I.

B. Structure of PASS

Similar to CCEH [8] and Dash [9], PASS employs a
three-level structure (i.e., directory → segment → bucket).
The directory contains some metadata items and a group of
directory entries. Each entry points to an array of segments,
which contains one or multiple segments. PASS splits at
the segment level. Like Dash-LH [9], PASS expands a hash
table by several fixed-size segments before triggering a double
expansion. For example, each of the first 4 entries points to a
one-segment array. Each of the next 4 entries points to a two-
segment array, and so on. Each segment is composed of a fixed
number of normal buckets and stash buckets (for overflow
records). If the number of overflow records is more than the
capacity of the stash buckets, a newly allocated stash bucket
chain will be added to the segment. PASS borrows the layout
of a regular bucket of Dash-EH [9]. The size of a bucket is set
to 256 bytes to match the block size of Optane DCPMM [1].

TABLE I: Performance comparisons of address mapping

Address Mapping Operation Server
Murmur hash function 163 MOPS

Spiral Storage (SS) 68 MOPS
SS with power table only 56,244 MOPS

SS with look-up table only 1,823 MOPS
PASS 90,332 MOPS

C. An Approximation Method

Since the logical address of a key k is the largest integer
that is smaller than bG, we do not have to calculate the exact
value of bG as long as we can quickly discover this integer.
For a particular key k, we can obtain the value of its corre-
sponding G based on Equation 2 after c is initialized. Based
on Equation 1, we know that logical ≤ bG < logical + 1,
which leads to logb(logical) ≤ G < logb(logical+1) (called
Inequality 1). The growth factor b is a fixed value once the
design of a hash table is completed. In our implementation,
b is set to 2. Therefore, we can calculate log2 for a group of
consecutive integers starting from 1 in advance.

However, scanning such a table to find out the integer
logical that satisfies Inequality 1 is a slow process. Thus, we
augment G to a large integer represented by ⌊scalar × G⌋
where scalar is a large integer constant. Based on Inequality
1, we have ⌊scalar × logb(logical)⌋ ≤ ⌊scalar × G⌋ <

⌊scalar× logb(logical+1)⌋. Thus, we can use ⌊scalar×G⌋
as the index to directly obtain the corresponding value of
logical, which can be calculated beforehand, and then, stored
in a table called power table. The algorithm of power table
construction is shown in Algorithm 2 where c max is the
value of c when the size of the table reaches its maximum.
PASS constructs the power table offline and stores it in PM.
When the system crashes, the power table will still be valid,
and thus does not need to be recalculated. Now, we use an
example to illustrate how the method works. Suppose that
G = 6.21, scalar = 256, c max = 16, we can quickly obtain
the value of the logical address (i.e., 74) from Table II because
table[⌊scalar × G⌋] = table[1589] = 74 (see Table II).
Equation 1 also gives us ⌊26.21⌋ = 74.

TABLE II: A segment of a sample power table

1,583 1,584 ... 1,588 1,589 ... 1,593 1,594
72 73 ... 73 74 ... 74 75

Algorithm 2 Power-table construction

1: function Power table contruction(scalar, c max):
2: /* prepare an array in PM */
3: power = pm alloc(scalar × c max × 8 Bytes)
4: logical = 1
5: for i = 0; i < scalar × c max; i++ do
6: temp = log2(init)× scalar
7: if i >= ⌊temp⌋ then
8: logical ++
9: end if

10: power[i] = logical − 1
11: end for
12: end function

D. Look-up Table

Since the mapping between a logical address and its asso-
ciated physical address is fixed, we propose a predetermined
look-up table to replace the time-consuming recursive function
shown in Algorithm 1. The index of the table is the logical
address of a key and the value stored in the location indexed is
the corresponding physical address. Table III is a sample look-
up table. If the logical address is 8, then the physical address is
4 which can be easily found in the table. Like the power table,
PASS builds the look-up table offline and it is stored in PM.
PASS calculates the physical address of each logical address
beforehand and the size of the look-up table can be determined
in advance. In our experiments, a hash table that holds 200
million records requires a 16 MB look-up table. Experimental
results exhibit that after the look-up table is used the address
mapping performance of spiral storage can be improved by
26.94× on the server shown in the 4th row of Table I.

TABLE III: A segment of a sample look-up table

logical address 1 2 3 4 5 6 7 8
physical address 0 1 0 2 1 3 0 4

258

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 12,2025 at 18:22:45 UTC from IEEE Xplore. Restrictions apply.

E. Mapping table

For a key k, the power table stores the logical address
corresponding to hash(k), whereas the look-up table holds
its associated physical address. Apparently, the two tables
can be combined into one so that PASS can directly obtain
the physical address of k by accessing the combined table
once rather than accessing the two tables sequentially, which
further shrinks its address mapping time. The combined table
is called mapping table. Like its two peers, PASS now enjoys
a simple one-step address mapping for a basic operation like
a search. When a mapping table is employed, the address
mapping performance of PASS achieves a remarkable speedup
of 554.18× compared to the Murmur hash function (see the
last row of Table I). Although PASS only needs the mapping
table for a basic operation, a power table and a look-up table
are still indispensable as PASS needs the logical address of a
key to determine its rehashing process during an expansion.
Since the size of the mapping table is the same as that of
the power table (i.e., 83 MB), the total space overhead of
the three tables is 182 MB. Meanwhile, to accommodate 200
million records, PASS needs to allocate a 16GB memory pool,
which leads to a 1.13% PM utilization for the three tables
combined. All three tables are static as none of them changes
over expansions.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

All experiments are conducted on a server with an Intel
Xeon Gold 6252 CPU clocked at 2.1 GHz. It is equipped
with 192 GB of DRAM (6×32 GB DIMMs) plus 768GB of
Optane DCPMM (6×128 GB DIMMs on all six channels),
which is configured in the AppDirect mode. It has 24 cores (48
hyperthreads) and a L3 cache of 35.75 MB. The server runs
Arch Linux with kernel 5.10.11 and PMDK 1.7. All the code
is compiled using GCC 12.1.0 with all optimization enabled.

For all hash tables, we first pre-load with 10 million records.
Next, an insert-only benchmark with 190 million records is
run. After insertion, we then execute 190 million records of
positive search and negative search. Finally, we measured 190
million deletions on the table with 200 million records. The
two Dash schemes employ MurMur hash, which is fast and can
offer high-quality hashes. We use uniformly distributed keys
for all the experiments. The fixed-length keys and their values
are both set to 8 bytes. Pointers are used for the variable-length
keys whose keys are set to 16 bytes and values are set to 8
bytes. Each result is the average of five independent runs. The
code is available at https://github.com/CASL-Wpeng/PASS.

B. Single-thread Performance

Figure 2a shows that when fixed-length keys are used the
positive search performance of PASS is 1.03×, 1.08× of that
of Dash-EH, Dash-LH, respectively. This is mainly because
assisted by the mapping table the speed of address mapping
of PASS is higher than the hash function used by the existing
schemes. In insertion, PASS achieves a speedup of 1.18×,
1.12× compared with Dash-EH, and Dash-LH, respectively.

Fig. 2: Single-thread performance under (a) fixed-length keys
(left) and (b) variable-length keys (right).

The main reason is that PASS rarely needs to perform
rehashing after a segment is split, which saves many PM
reads and writes. Figure 2b illustrates the results of variable-
length key experiments. The positive search performance of
PASS is 1.11×, 1.31× of that of Dash-EH, and Dash-LH,
respectively. In insertion, PASS achieves a speedup of 1.24×,
1.31× compared with Dash-EH, and Dash-LH, respectively.
In summary, PASS performs best in all basic operations under
both fixed-length and variable-length keys.

V. CONCLUSION

Spiral storage was proposed several decades ago. Since
then, it has been rarely applied to any real-world applications
due to its limitations. In this research, we show that an
optimized spiral storage could become a competent dynamic
hashing scheme for PM just like its two peers. Although Intel
discontinued the future development of Optane memory in
2022, researchers are still exploring new techniques for PM.

VI. ACKNOWLEDGEMENT

We thank Kaisong Huang and Tianzheng Wang at Simon
Fraser University for providing us with the server equipped
with Intel DCPMM. This work was partially supported by the
US National Science Foundation under grant CNS-1813485.

REFERENCES

[1] J. Yang, J. Kim, M. Hoseinzadeh et al., “An empirical guide to the
behavior and use of scalable persistent memory,” in 18th USENIX FAST,
2020, pp. 169–182.

[2] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance hash-
ing index scheme for persistent memory,” in 13th USENIX Symposium
on Operating Systems Design and Implementation, 2018, pp. 461–476.

[3] R. Fagin, J. Nievergelt, N. Pippenger et al., “Extendible hashing—a
fast access method for dynamic files,” ACM Transactions on Database
Systems (TODS), vol. 4, no. 3, pp. 315–344, 1979.

[4] W. Litwin, “Linear hashing: a new tool for file and table addressing.”
in VLDB, vol. 80, 1980, pp. 1–3.

[5] R. J. Enbody and H.-C. Du, “Dynamic hashing schemes,” ACM Com-
puting Surveys (CSUR), vol. 20, no. 2, pp. 850–113, 1988.

[6] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large
computing clusters,” in 1st USENIX FAST, 2002.

[7] J. Levandoski, D. Lomet, S. Sengupta et al., “Indexing on modern
hardware: Hekaton and beyond,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2014, pp. 717–720.

[8] M. Nam, H. Cha, Y.-r. Choi et al., “Write-optimized dynamic hashing
for persistent memory,” in 17th USENIX FAST, 2019, pp. 31–44.

[9] B. Lu, X. Hao, T. Wang et al., “Dash: Scalable hashing on persistent
memory,” arXiv preprint arXiv:2003.07302, 2020.

[10] J. K. Mullin, “Spiral storage: Efficient dynamic hashing with constant
performance,” The Computer Journal, vol. 28, no. 3, pp. 330–334, 1985.

[11] I. Oukid, J. Lasperas, A. Nica et al., “FPTree: A hybrid SCM-DRAM
persistent and concurrent b-tree for storage class memory,” in Proceed-
ings of the SIGMOD, 2016, pp. 371–386.

259

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 12,2025 at 18:22:45 UTC from IEEE Xplore. Restrictions apply.

