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Abstract—Shaping codes are used to generate code sequences
in which the symbols obey a prescribed probability distribution.
They arise naturally in the context of source coding for noiseless
channels with unequal symbol costs. Recently, shaping codes have
been proposed to extend the lifetime of flash memory and reduce
DNA synthesis time. In this paper, we study a general class of
shaping codes for noiseless finite-state channels with cost and
i.i.d. sources. We establish a relationship between the code rate
and minimum average symbol cost. We then determine the rate
that minimizes the average cost per source symbol (total cost).
An equivalence is established between codes minimizing average
symbol cost and codes minimizing total cost, and a separation
theorem is proved, showing that optimal shaping can be achieved
by a concatenation of optimal compression and optimal shaping
for a uniform i.i.d. source.

I. INTRODUCTION

Shaping codes are used to encode information for use
on channels with symbol costs under an average cost
constraint. They find application in data transmission with
a power constraint, where constellation shaping is achieved
by addressing into a suitably designed multidimensional
constellation or, equivalently, by incorporating, either explicitly
or implicitly, some form of non-equiprobable signaling. More
recently, shaping codes have been proposed for use in data
storage applications: coding for flash memory to reduce
device wear [17], and coding for efficient DNA synthesis in
DNA-based storage [14]. Motivated by these applications, [18]
investigated information-theoretic properties and design of
rate-constrained fixed-to-variable length shaping codes for
memoryless noiseless channels with cost and general i.i.d.
sources. In this paper, we extend the results in [18] to rate-
constrained shaping codes for finite-state noiseless channels
with cost and general i.i.d. sources.

Finite-state noiseless channels with cost trace their
conceptual origins to Shannon’s 1948 paper that launched
the study of information theory [23]. In that paper, Shannon
considered the problem of transmitting information over a
telegraph channel. The telegraph channel is a finite-state graph
and the channel symbols – dots and dashes – have different time
durations, which can be interpreted as integer transmission
costs. Shannon defined the combinatorial capacity of this
channel and gave an explicit formula. He also determined the
symbol probabilities that maximize the entropy per unit cost,
and showed the equivalence of this probabilistic definition of
capacity to the combinatorial capacity. In [4], this result was
then generalized to arbitrary non-negative symbol costs. In
[11], a new proof technique for deriving the combinatorial
capacity was introduced for non-integer costs and another
proof of the equivalence of combinatorial and probabilistic
definitions of capacity was given. In [2] and [3], a generating
function approach was used to extend the equivalence to a
larger class of constrained systems.

We refer to the problem of designing codes that achieve
the capacity, i.e., that maximize the information rate per unit
cost, or, equivalently, that minimize the cost per information
bit, as the type-II shaping problem. Several researchers have
considered this problem. In [4], modified Shannon-Fano codes,
based on matching the probability of source and codeword
sequences, were introduced, and they were shown to be
asymptotically optimal. A similar idea was used in [22], where
an arithmetic coding technique was introduced. Several works
extend coding algorithms for memoryless channels to finite-
state channels. In [2], a finite-state graph was transformed to
its memoryless representation M and a normalized geometric
Huffman code was used to design a asymptotically capacity
achieving code on M. In [8], the author extended the dynamic
programming algorithm introduced in [7] to finite-state
channels. The proposed algorithm finds locally optimal codes
for each starting state, but the algorithm does not guarantee
global optimality. In [6], an iterative algorithm that can find
globally optimal codes was proposed.

The concepts of combinatorial capacity and probabilistic
capacity can be generalized to the setting where there is
a constraint on the average cost per transmitted channel
symbol. The probabilistic capacity was determined in [20]
and [9], where the entropy-maximizing stationary Markov
chain satisfying the average cost constraint was found. The
relationship between cost-constrained combinatorial capacity
and probabilistic capacity was also addressed in [10]. The
equivalence of the two definitions of cost-constrained capacity
was proved in [25], and an alternative proof was recently given
in [15], where methods of analytic combinatorics in several
variables were used to directly evaluate the cost-constrained
combinatorial capacity.

We refer to the problem of designing codes that achieve
the cost-constrained capacity, i.e., that minimize average cost
per symbol for a given code rate, as the type-1 shaping
problem. This problem has also been addressed by several
authors. In [10], an asymptotically optimal block code was
introduced by considering codewords that start and end at
the same state. In [12], the authors construct fixed-to-fixed
length and variable-to-fixed length codes based on state-splitting
methods [1] for magnetic recording and constellation shaping
applications. Other constructions can be found in [13], [24]
and [26].

In this paper, we address the problem of designing shaping
codes for noiseless finite-state channels with cost and general
i.i.d. sources. We systematically study the fundamental
properties of these codes from the perspective of symbol
distribution, average cost, and entropy rate using the theory of
finite-state word-valued sources. We derive fundamental bounds
relating these quantities and establish an equivalence between
optimal type-I and type-II shaping codes. A generalization
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of Varn coding [28] is shown to provide an asymptotically
optimal type-II shaping code for uniform i.i.d. sources. Finally,
we prove separation theorems showing that optimal shaping
for a general i.i.d. source can be achieved by a concatenation
of optimal lossless compression with an optimal shaping code
for a uniform i.i.d. source.

In Section II, we define finite-state channels with cost and
review the combinatorial and probabilistic capacities associated
with the type-I and type-II shaping problems. In Section III,
we define finite-state variable length codes for channels with
cost and characterize properties of the codeword process using
the theory of finite-state word-valued sources. In Section IV,
we analyze codes for the type-I shaping problem. We develop
a theoretical bound on the trade-off between the rate – or more
precisely, the corresponding expansion factor – and the average
cost of a type-I shaping code. We then study codes for the
type-II shaping problem. We derive the relationship between
the code expansion factor and the total cost and determine the
optimal expansion factor. In Section V, we consider the problem
of designing optimal shaping codes. We prove an equivalence
theorem showing that both type-I and type-II shaping codes
can be realized using a type-II shaping code for a channel with
modified edge cost. Using a generalization of Varn coding [28],
we propose an asymptotically optimal type-II shaping code
on this modified channel for a uniform i.i.d. source. We then
extend our construction to arbitrary i.i.d. sources by introducing
a separation theorem, which states that optimal shaping can
be achieved by a concatenation of lossless compression and
optimal shaping for a uniform i.i.d. source.

Due to space constraints, we must omit many detailed proofs,
which can be found in [16]. However, we remark that several
new proof techniques are required to extend the results on block
shaping codes for memoryless channels with cost in [18] to the
corresponding results on finite-state shaping codes for finite-
state channels with cost in this paper.

II. NOISELESS FINITE-STATE COSTLY CHANNEL

Let H = (V , E) be an irreducible finite directed graph,
with vertices V and edges E . Each edge e has an initial
state σ(e) ∈ V and a terminal state τ(e) ∈ V . A finite-
state costly channel is a noiseless channel with cost associated
with H, where each edge e ∈ E is assigned a non-negative
cost w(e) ≥ 0. We assume that between any pair of vertices
(v, v′) ∈ V × V , there is at most one edge. If not, we can
always convert it to another graph that satisfies this condition
by state splitting [19]. An example of such a channel is given
in Example 1.

Example 1. In SLC NAND flash memory, cells are arranged
in a grid and programming a cell affects its neighbors. One
example of this phenomenon is inter-cell inference (ICI) [27].
Cells have two states: programmed, corresponding to bit 1, and
erased, corresponding to bit 0. Due to ICI, programming a cell
will damage its neighbors cells. Each length-3 sequence has a
cost associated with the damage to the middle bit, as shown in
Table I. We can convert this table into a directed graph with
vertices V={00, 01, 10, 11}, as shown in Fig. 1, where the the
edge from vertex ab to vertex bc corresponds to sequence abc.

TABLE I: Flash memory channel cost.

e 000 001 010 011 100 101 110 111

w(e) 1 2 4 4 2 3 4 4

00

01 10

11

1

2

4
4

2
3

4

4

Fig. 1: Flash memory channel

A. Channel capacity with average cost constraint

Given a length-n edge sequence en
1 , the cost of this sequence

is defined as W(en
1) = ∑

n
i=1 w(ei), and the average cost of

this sequence is defined as A(en
1) =

1
n W(en

1). If Kn(W) is the
number of sequences of length-n with average cost less than or
equal to W, then the combinatorial capacity for a given average
cost constraint [25], or cost-constrained capacity, is

CI,comb(W)
def
= lim sup

n→∞
1
n

log2 |Kn(W)|. (1)

We also refer to this definition as type-I combinatorial capacity.
Let E be a stationary Markov process with entropy rate

H(E) and average cost A(E). The type-I probabilistic capacity
for a given average cost constraint W, or cost-constrained
probabilistic capacity, is

CI,prob(W)
def
= sup

E:A(E)≤W
H(E). (2)

The maxentropic Markov chain for a given W was derived
in [9] and [20]. The result relies on the one-step cost-enumerator
matrix D(S), where S ≥ 0, with entries

dvv′(S) =

{
2−Sw(e), if ∃ s.t. σ(e)=v, τ(e)=v′,
0, otherwise.

(3)

Denote by λ(S) its Perron root and by vectors EL = [Pv/ρv]
and ER = [ρv]> the corresponding left and right eigenvectors
of D(S) such that ELER = 1. Given an average cost constraint
W(S) the maxentropic Markov chain has transition probabilities

Pe(S) =
1

ρσ(e)

2−Sw(e)

λ(S)
ρτ(e) (4)

such that

W(S) =
1

λ(S) ∑
e∈E

w(e)Pσ(e)2
−Sw(e) ρτ(e)

ρσ(e)
, (5)

and the type-I probabilistic capacity of this channel is
CI,prob(W(S)) = log2 λ(S) + SW(S). (6)

It was shown in [25], [15] that CI,comb(W) = CI,prob(W).

B. Channel capacity without cost constraint

Denote by K(W) the number of distinct sequences e∗ with
cost equal to W. The combinatorial capacity, or the type-II
combinatorial capacity, of this channel is defined as

CI I,comb
def
= lim sup

W→∞
1

W
log2 K(W). (7)

Similarly, the type-II probabilistic capacity of this channel is
defined as

CI I,prob
def
= sup

E

H(E)
A(E)

. (8)
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In [11], it was proved that the transition probabilities of the
maxentropic Markov process are Pe(S0), where S0 satisfies
λ(S0) = 1. It was also proved that

CI I,comb = CI I,prob = S0. (9)

In [2] and [3], the equivalence between CI I,comb and CI I,prob
was extended to a larger class of constrained systems.

III. FINITE-STATE VARIABLE-LENGTH CODES: A
WORD-VALUED SOURCE APPROACH

A. Finite-State Variable-Length Codes
Let X = X1X2 . . ., where Xi ∼ P(X) for all i, be an i.i.d.

source with a final size alphabet X . Let |X | denote the size
of the alphabet and P(x∗) denote the probability of any finite
sequence x∗. A finite-state variable-length code on graph H is
a mapping φ : V ×X q → E∗. For simplicity and without loss
of generality, we assume q = 1 and define its codebook as
Y = {y = φ(v, x)|v ∈ V , x ∈ X}. We also use σ(y) and
τ(y) to denote the initial and terminal states of y ∈ Y , and
denote its length by L(y). We assume this mapping has the
following two properties:
• The subcodebook Yv = {φ(v, x)|x ∈ X} is prefix-free

for all v ∈ V .
• Lmin≤L(y)≤Lmax for all y∈Y , for some 0<Lmin≤Lmax.

Starting from vertex v0, and given an input sequence x1, x2, . . . ,
such that xi ∈ X , φ generates a sequence of of variable-
length codewords y1, y2, . . . , such that yi ∈ Y , that satisfies
the following constraints.

yi = φ(vi−1, xi),
vi = τ(yi) = σ(yi+1).

(10)

Define mappings F : Y × X → Y , and G : V × X → V
as F(y, x) = φ(τ(y), x), G(v, x) = τ(φ(v, x)), respectively.
From (10), we have yi = F(yi−1, xi) and vi = G(vi−1, xi),
suggesting the definition of codeword graph F0 and state graph
G0, as follows.
• Codeword graph F0 = (VF0 , EF0):

– Vertices VF0 = Y
– Edges EF0 = {e = (y, y′)|y′ = F(y, x), x ∈ X}.

• State graph G0 = (VG0 , EG0):
– Vertices VG0 = V .
– Edges EG0 = {e = (v, v′)|v′ = G(v, x), x ∈ X}.

We now choose irreducible subgraphs of F0 and G0. Let G ⊆
G0 be the irreducible component of G0 that contains v0. Its state
and edge sets are denoted by VG and EG , respectively. It can be
shown that, given an i.i.d. source X and mapping G, we obtain
a Markov chain with transition probabilities

tGvv′ = ∑
x:G(v,x)=v′

P(x). (11)

We denote by πG the stationary distribution of this Markov
chain. We define F ⊂ F0 as follows. Its vertex set VF is

VF = {y = φ(v, x) ∈ Y|v ∈ VG , x ∈ X} (12)

and its edge set EF is
EF = {(y, y′)|y′ = F(y, x), x ∈ X} ⊆ VF ×VF . (13)

We have the following lemma.

Lemma 1. The graph F is irreducible. Given a distribution
P(x) and mapping F, we obtain a Markov chain with transition
probabilities

P(y′|y) = P(x), s.t. F(y, x) = y′. (14)

The stationary distribution of this Markov chain is

πF (y) = πG(v)P(x), s.t. φ(v, x) = y. (15)

2

Using the law of large numbers for irreducible Markov
chains [5, Exercise 5.5], [19, Theorem 3.21] and the dominated
convergence theorem, we know that the expected length of the
codeword process Y is

E(L) def
= lim

n→∞ 1
n
E
(

n

∑
m=1

L(Ym)

)
= ∑

y∈VF
L(y)πF (y). (16)

Given an edge e ∈ E and codeword y = φ(v, x), we denote
by Ne(y) the total number of occurrences of e in y. We can
similarly prove that

E(Ne) = ∑
y∈VF

Ne(y)πF (y). (17)

B. Finite-State Word-Valued Source

Introduced in [21], a word-valued source is a discrete random
process that is formed by sequentially encoding the symbols of
an i.i.d. random process X into corresponding codewords over
an alphabet E . In this paper, the mapping is a function of both
input symbols and the starting state. We refer to the process E,
formed by an i.i.d. source process and mapping φ, as a finite-
state word-valued source.

Given an encoded sequence e1e2 . . ., the probability of
sequence en

1 is Q(en
1), and the number of occurrences of e

is Ne(en
1). The following properties of the process E are of

interest.
• The asymptotic symbol occurrence probability

P̂e = lim
n→∞ 1

n
E(Ne(En

1)). (18)

• The asymptotic average cost

A(φ) = lim
n→∞ 1

n
E(W(En

1)). (19)

• The entropy rate

H(E) = lim
n→∞ 1

n
H(En

1). (20)

We can prove the following lemmas.

Lemma 2. For a finite-state code φ : V × X q → E∗ associated
with graph H and input distribution P(x) such that E(Ne) <∞ for all e ∈ E and E(L) < ∞, the asymptotic probability of
occurrence P̂e of this mapping is

P̂e = E(Ne)
1

E(L)
. (21)

The asymptotic average cost A(φ) of this mapping is

A(φ) = ∑
e

P̂ew(e). (22)

2

Lemma 3. For a finite-state code φ : V × X q → E∗ associated
with graphH and input distribution P(X) such that H(X) < ∞
and E(L) < ∞, the entropy rate of this finite-state word-valued
source is

H(E) =
qH(X)
E(L)

=
H(X)

f
. (23)

Here f = E(L)/q is the expansion factor of the mapping φ. 2
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C. Asymptotic normalized KL-divergence
Similar to the definition of P̂e, the asymptotic probability of

occurrence of state v ∈ V is defined as

P̂v = lim
n→∞ 1

n
E(Nv(En

1)), (24)

and we can prove that
P̂v = ∑

e:σ(e)=v
P̂e (25)

Consider a finite-order Markov process Ê associated with graph
H and transition probabilities

tHvv′ = P̂e/P̂v. v = σ(e), v′ = τ(e) (26)

Denote by P̂(en
1) the probability of a length-n sequence

generated by this process. To measure the difference between
Ê and E, we define the asymptotic normalized KL-divergence

lim
n→∞ 1

n
D(En

1 ||Ên
1) = lim

n→∞ ∑
en

1∈En
Q(en

1) log2
Q(en

1)

P̂(en
1)

. (27)

The relationship between processes E and Ê is summarized in
the following lemma.
Lemma 4. The asymptotic normalized KL-divergence between
processes E and Ê satisfies

lim
n→∞ 1

n
D(En

1 ||Ên
1) = H(Ê)− H(E) = H(Ê)− H(X)

f
. (28)

2

Remark 1. When H(Ê) = H(E), limn→∞ 1
n D(En

1 ||Ên
1) = 0.

Therefore, the codeword process E approximates the stationary
Markov process Ê, in the sense that the asymptotic normalized
KL-divergence between E and Ê converges to 0.

IV. OPTIMAL SHAPING CODE CHARACTERIZATION

In this section, we first analyze finite-state codes that
minimize the average cost with a given expansion factor. We
refer to these as optimal type-I shaping codes. We solve the
following optimization problem for the optimal asympototic
probabilities.

minimize
P̂e

∑
e

P̂ew(e)

subject to H(Ê) = −∑
e

P̂e log2
P̂e

P̂σ(e)
≥ H(X)

f

∑
σ(e)=v

P̂e = ∑
τ(e′)=v

P̂e′ and ∑
e

P̂e = 1.

(29)

In [15], the authors discuss cost-diverse and cost-uniform
graphs. A graph is cost-diverse if it has at least one pair of
equal-length paths with different costs that connect the same
pair of vertices. Otherwise, it is called cost-uniform. It can be
proved that the edge costs w(e) of a cost-uniform graph can
be expressed as w(e) = −µ(σ(e)) +µ(τ(e))−α, where α is
a constant. The following theorem, whose proof uses the KKT
conditions, relates to the minimum achievable average cost of
a finite-state code.

Theorem 5. On a cost-diverse graph, the average cost of a finite-
state code φ : V × X q → E∗ with expansion factor f is lower
bounded by

Amin( f ) = ∑
e

P̂ew(e) =
H(X)

S f
−

log2 λ(S)
S

(30)

where P̂e =
P̂σ(e)
ρσ(e)

2−Sw(e)

λ(S) ρτ(e), λ(S) is the Perron root of

the matrix D(S), EL = [P̂v/ρv] and ER = [ρv]> are the

corresponding eigenvectors such that ELER = 1, and S is the
constant such that

H(Ê) = −∑
e

P̂e log2
P̂I

e

P̂σ(e)
= H(E) =

H(X)
f

. (31)

On a cost-uniform graph, the average cost for any shaping code
is a constant −α. 2

Remark 2. When the minimum average cost is achieved, we
have H(Ê) = H(E). As shown in Remark 1, the codeword
sequence approximates a finite-order stationary Markov process
with transition probabilities {P̂e/P̂σ(e)}. 2

The total cost of a finite-state code is

T(φ) = lim
n→∞ E(W(φ(Xnq)))

nq
= f ∑ P̂ew(e). (32)

We refer to codes that minimize the total cost as optimal type-
II shaping codes. The optimization problem for the optimal
asymptotic probabilities and expansion factor is as follows.

minimize
P̂e , f

f ∑
e

P̂ew(e)

subject to H(Ê) ≥ H(E) =
H(X)

f

∑
σ(e)=v

P̂e = ∑
τ(e′)=v

P̂e′ and ∑
e

P̂e = 1.

(33)

We have the following theorem that determines the minimum
achievable total cost of a finite-state code.

Theorem 6. If a cost-0 cycle does not exist, the minimum total
cost of a finite-state code φ : V ×X q → E∗ is given by

Tmin = f ∑
e

P̂ew(e) = H(X)/S (34)

where P̂e =
P̂vσ(e)
ρσ(e)

2−Sw(e)ρτ(e), S is a constant such that λ(S) =

1, and EL = [P̂v/ρv] and ER = [ρv]> are the corresponding
eigenvectors such that ELER = 1. The optimal expansion factor
f is

f =
H(X)

−∑ P̂e log2
P̂e

P̂vσ(e)

=
H(X)

S ∑ P̂ew(e)
. (35)

If there is a cost-0 cycle in H, the total cost is a decreasing
function of f . 2

V. OPTIMAL SHAPING CODE DESIGN

In this section, we consider the problem of designing optimal
type-I and type-II shaping codes.

A. Equivalence Theorems
The next two theorems establish equivalences between type-I

and type-II shaping codes.

Theorem 7. Given a noiseless finite-state costly channel with
edge costs {w(e)}, consider a modified channel with edge costs

w′(e)=− log2
P̂◦e

P̂◦
σ(e)

=S◦w(e)+ log2 ρ
◦
σ(e)− log2 ρ

◦
τ(e)+ log2 λ(S◦)

(36)

where P̂◦e , P̂◦
σ(e), ρ

◦
e and S◦ are calculated in Theorem 5.

For any γ, η > 0, there exists a δ > 0 such that if finite-state
codeφ : V ×X q → E∗ with expansion factor f ′ and asymptotic
probabilities P̂′e satisfies

f ′∑ P̂′ew′(e)− H(X) < δ, (37)
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then the average cost of this code is upper bounded by

∑ P̂′ew(e)−
(

H(X)
S◦ f

−
log2 λ(S◦)

S◦

)
< γ (38)

and the expansion factor of this code f ′ satisfies | f ′ − f | < η.
Theorem 8. Given a noiseless finite-state costly channel that
does not contain a cost-0 cycle. Let S? and f ? be the constant and
expansion factor calculated in Theorem 6. For any γ > 0, there
exist δ, η > 0 such that if a finite-state code φ : V × X q → E∗
with expansion factor f ′ and asymptotic probabilities P̂′e satisfies

∑ P̂′ew(e)− Amin( f ′) < δ, | f ′ − f ?| < η (39)

then the total cost of this code satisfies

f ′∑ P̂′ew(e)− H(X)
S?

< γ. (40)

B. Generalized Varn Code
We now describe an asymptotically optimal type-II shaping

code for uniform i.i.d. sources based on a generalization of Varn
coding [28]. We consider the channel with modified edge costs

w′(e) = − log2 P̂?
e /P̂?

σ(e)

= S?w(e) + log2 ρ
?
σ(e) − log2 ρ

?
τ(e)

(41)

where P̂?
e , P̂?

σ(e), S?, and ρ?e are given in Theorem 6. It is easy to
show that the symbol occurrence probabilities of optimal type-II
shaping codes on the channel with costs {w′(e)} are identical
to those on the original channel with costs {w(e)}.

Given a uniform i.i.d. input source X , a generalized Varn
code on the noiseless finite-state costly channel is a collection
of tree-based variable-length mappings, φ : V × X q → E∗.
The codewords in Yv are generated according to the following
steps.

1) Set state v ∈ V as the root of the tree.
2) Expand the root node. The cost of a leaf node is the cost

of the edge from the root node to the leaf node, where the
edge costs are the modified costs {w′(e)} defined in (41).

3) Expand the leaf node that has the lowest cost. The cost
of a leaf node in the resulting tree is the cost of the path
from the root node to the leaf node, where the edge costs
are {w′(e)} defined in (41).

4) Repeat step 3 until the total number of leaf nodes
M≥|X |q. Delete the leaf nodes that have the largest cost
until the number of leaf nodes equals |X |q. Each path
from the root node v to a leaf node represents a codeword
in Yv.

The following lemma gives an upper bound on the total cost of
a generalized Varn code.

Lemma 9. The total cost of a generalized Varn code φ : V ×
X q → E∗ is upper bounded by

T(φ) ≤
log2 M

q
+

maxe{w′(e)}
q

=
q→∞ log2 |X |. (42)

2
Remark 3. By extending some leaf nodes to states that are not
visited by the original code, we can make graph G0 a complete
graph. Then we can choose any state as the starting state. This
operation only adds a constant to the cost of a codeword and
therefore does not affect the asymptotic performance of the
generalized Varn code.

When combined with Lemma 9, the following lemma proves
that a generalized Varn code is an asympotically optimal type-II
shaping code on the channel with costs {w(e)}.

Lemma 10. Given a noiseless finite-state costly channel
{w(ei j)}. Let {w′(e)} be the modified costs defined in (41). If
there is a finite-state code φ : V ×X q → E∗ such that

f ∑ P̂ew′(e)− H(X) < δ (43)

for some δ > 0, then the total cost of this code satisfies

f ∑ P̂ew(e)− H(X)
S?

<
δ

S?
. (44)

2
Example 2. For the channel introduced in Example 1, the
optimal symbol distributions that minimize the total cost are
shown in Table II. Based on the distribution, we can design a
generalized Varn code on the channel with modified edge costs
shown in Table III. The total cost as a function of codebook
size is shown in Fig. 2.

TABLE II: Probabilities for SLC flash channel that minimize
total cost.

e 000 001 010 011 100 101 110 111

P̂e 0.4318 0.1323 0.1135 0.0593 0.1323 0.0405 0.0593 0.0310

TABLE III: Modified cost for flash memory channel.

e 000 001 010 011 100 101 110 111

w′(e) 0.3805 2.0923 0.6068 1.5423 0.3855 2.0923 0.6068 1.5423

Fig. 2: The total cost of a generalized Varn code on the SLC
flash channel.

C. Separation Theorem
We now present a separation theorem for shaping codes.

It states that the minimum total cost can be achieved by a
concatenation of optimal lossless compression with an optimal
shaping code for a uniform i.i.d. source.

Theorem 11. Given an i.i.d. source X and a noiseless finite-
state costly channel with edge costs {w(e)}, the minimum total
cost can be achieved by a concatenation of an optimal lossless
compression code with a binary optimal type-II shaping code for
a uniform i.i.d. source.

Theorem 12. Given the i.i.d. source X, the noiseless finite-state
costly channel with edge costs {w(e)}, and the expansion factor
f , the minimum average cost can be achieved by a concatenation
of an optimal lossless compression code with a binary optimal
type-I shaping code for uniform i.i.d. source and expansion factor
f ′ = f

H(X) .

By Theorem 8, the optimal type-I shaping code for uniform i.i.d.
source in Theorem 12 can be replaced by a suitable optimal
type-II shaping code for uniform i.i.d. source.
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