
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 10, OCTOBER 2017 4101

Row-by-Row Coding Schemes for Inter-Cell
Interference in Flash Memory

Sarit Buzaglo and Paul H. Siegel, Fellow, IEEE

Abstract— Inter-cell interference (ICI) is a significant cause of
errors in flash memories. In single-level cell (SLC) flash memory,
ICI arises when 1 0 1 patterns are programmed either in the
horizontal or vertical directions. Since data pages are written
sequentially in horizontal wordlines, one can mitigate the effects
of horizontal ICI by applying conventional constrained codes
that forbid the 1 0 1 pattern. This approach does not address
the problem of vertical ICI, however. In this paper, a row-
by-row coding technique that eliminates vertical 1 0 1 patterns
while preserving the sequential wordline programming order is
presented. This scheme, though efficient, necessarily suffers a
rate loss of almost 20%. We therefore propose another coding
scheme, combining a weak constraint on vertical 1 0 1 patterns
with a systematic error-correcting code, that can mitigate vertical
ICI errors while achieving a higher overall coding rate, provided
that the vertical ICI error probability is sufficiently small. Some
extensions for multi-level cell (MLC) flash memory are discussed
as well.

Index Terms— Decoding, encoding, error-correction coding,
Markov processes, memories.

I. INTRODUCTION

FLASH memories are, by far, the most important type of
non-volatile memory (NVM) in use today. Their low cost

and steadily increasing storage capacity make them attractive
for many NVM applications. As memory cell size decreases,
inter-cell interference (ICI) can severely degrade the device
performance. In the simplest model of ICI, parasitic capaci-
tance can cause an undesirable increase in the voltage level
of a victim cell when high voltages are applied to some of its
neighboring cells [21]. This phenomenon occurs in single-level
cell (SLC) flash memory, where each cell stores one bit, and is
particularly severe when programming multi-level cell (MLC)
flash memory [9], [21], in which a cell level is represented by
two bits that are stored in two logical units of programming
called pages. It becomes even more pronounced in the recent
designs of 3-dimensional flash [20], [27], [34].

ICI-induced errors are data dependent and correlated with
the data patterns in the neighborhood of the victim cell,

Manuscript received October 6, 2016; revised February 27, 2017; accepted
April 9, 2017. Date of publication April 24, 2017; date of current ver-
sion October 16, 2017. This work was supported in part by NSF Grants
CCF-1405119 and CCF-1619053, the ISEF Foundation, and the Weizmann
Institute of Science-National Postdoctoral Award Program for Advancing
Women in Science. This paper was presented at the 2015 IEEE International
Symposium on Information Theory, Hong Kong, June 2015. The associate
editor coordinating the review of this paper and approving it for publication
was L. Dolecek. (Corresponding author: Sarit Buzaglo.)

The authors are with the Center for Memory and Recording Research,
University of California, San Diego, La Jolla, CA 92093-0401 USA
(e-mail: sbuzaglo@ucsd.edu; psiegel@ucsd.edu).

Digital Object Identifier 10.1109/TCOMM.2017.2696530

in both the horizontal (wordline) and vertical (bitline) direc-
tions [2], [3], [33]. In fact, experimental results in [33] indicate
that bitline ICI can be even more detrimental than wordline
ICI in MLC flash, due in part to the row-by-row programming
protocol which requires wordlines to be programmed in a
sequential order.

A number of approaches have been proposed to combat
ICI effects, including the use of constrained codes that pre-
vent the appearance of ICI-prone cell-level patterns in both
one-dimensional (1D) and two-dimensional (2D) configura-
tions; see, for example [2], [3], [6], [18], [19], [28]. Whereas
the implementation of 1D constrained codes in wordline pages
to address wordline ICI is relatively straightforward, for 2D
constraints it remains a challenge to design efficient, fixed-rate
encoding and decoding algorithms that are compatible with
the conventional sequential programming and reading of inde-
pendent wordlines. One notable example of 2D row-by-row
constrained coding for flash memories appears in [3], but the
encoding is variable-rate.

The main goal of this work is the design of row-by-row
bitline ICI-mitigating coding techniques for flash memory.
This is accomplished by allowing the encoding and decoding
algorithms to read the previous two wordlines when writ-
ing or reading a particular wordline. For SLC flash memory,
we present a row-by-row coding scheme which eliminates the
ICI-inducing vertical 1 0 1 patterns along bitlines, while still
asymptotically achieving the capacity of the corresponding
ICI constraint, CI C I ≈ 0.8114. The proposed scheme is an
embodiment of the design method in [15] and [31], where
M-track parallel encoding for general 1D constraints is consid-
ered. The method is extended for MLC flash memory, as well,
to produce coding schemes which prevent a certain ICI error-
prone pattern from appearing horizontally, vertically, or in both
directions, and which are compatible with the independent
programming of pages protocol.

The rate loss incurred by eliminating all 1 0 1 patterns
in the vertical direction reduces storage capacity. We there-
fore propose an alternative coding approach, in the spirit of
weakly constrained codes, suggested in [16] and also studied
in [10] and [11], that allows a nonzero probability of occur-
rence of vertical 1 0 1 patterns and uses a systematic error-
correcting code to correct the resulting ICI errors. The rate
of this scheme can be much higher than the capacity of the
1D ICI constraint, provided that the probability of bitline
ICI-induced errors is not too large. On top of its potential
to increase capacity, the suggested scheme becomes handy
when other types of errors may occur, since it combines a

0090-6778 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4102 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 10, OCTOBER 2017

Fig. 1. Structure of an SLC flash memory block.

bitline ICI mitigating coding scheme with an error-correcting
code.

The rest of this paper is organized as follows. In Section II
we introduce basic notations and definitions used throughout
the paper. In Section III we present a row-by-row coding
scheme that forbids the vertical 1 0 1 pattern along bitlines
for SLC flash memory. This coding scheme is combined
with error-correcting codes in Section IV to mitigate ICI
errors and achieve higher rates. The frame-error-rate (FER) of
this approach is estimated via a simulation result. Extensions
for MLC flash are discussed in Section V. We conclude
in Section VI.

II. PRELIMINARIES

In this section we present some of the basic definitions
and notations used throughout the paper for the design of
coding schemes that mitigate the inter-cell interference error
mechanism in SLC flash memory. In subsection II-A we intro-
duce the relevant notation and definitions regarding coding
schemes for flash memory. In subsection II-B we present
notation and definitions for the ICI constraint that avoids the
pattern 1 0 1.

A. Coding Schemes for Flash Memory

Denote by [n] the set of n integers {1, 2, . . . , n}. For two
integers a, b ∈ Z, where a < b, denote by [a, b] the set of
b−a+1 integers {a, a+1, . . . , b}. We use upper-case letters to
denote random variables and lower-case letters to denote their
realizations. Moreover, we use boldface to denote vectors, both
of random variables and of deterministic values. For example,
X = X1 X2 is a vector of two random variables X1 and X2,
and its realization x = x1x2 is a vector of two deterministic
values x1 and x2, which are the realizations of X1 and X2,
respectively.

We represent a block of SLC flash memory as an m×n array
of cells, composed of m wordlines of length n (see Figure 1),
where each cell stores a symbol in {0, 1}. For i ∈ [m] and
j ∈ [n], the cell in the i th row and the j th column of the
array is denoted by Wi, j . We consider Wi, j as a binary random
variable, where its realization, denoted by wi, j , is the symbol
stored in the cell. The programming state of Wi, j , denoted by

w
(ps)
i, j , is the (binary) symbol to which Wi, j was programmed.

In the event of an error in the cell Wi, j , the stored symbol and
the programming state of the cell do not agree, i.e., wi, j �=
w
(ps)
i, j . The i th wordline is the i th row of the array and it

is denoted by Wi
def=Wi,1Wi,2 . . .Wi,n , while its realization is

denoted by wi
def=wi,1wi,2 . . . wi,n and its programming state

is denoted by w(ps)
i

def=w(ps)
i,1 w

(ps)
i,2 . . . w

(ps)
i,n . Similarly, the j th

bitline is the j th column of the array and it is denoted by

B j
def=W1, j W2, j . . .Wm, j , while its realization is denoted by

b j
def=w1, jw2, j . . . wm. j and its programming state is denoted

by b(ps)
j

def=w(ps)
1, j w

(ps)
2, j . . . w

(ps)
m. j .

Given a vector X = X1 X2 . . . X� of random vari-
ables (respectively, a vector x = x1x2 . . . x�) and a set of
indices J = { j1, j2, . . . , jk}, where 1 ≤ j1 < j2 < · · · <
jk ≤ �, denote the restriction of X to J (respectively, of x to J)

by X|J def= X j1 X j2 . . . X jk (respectively, by x|J def= x j1 x j2 . . . x jk).
In particular, for every i ∈ [m] and for every set of indices
J = { j1, j2, . . . , jk}, where 1 ≤ j1 < j2 < · · · < jk ≤ n, the
restriction of Wi to J is defined as Wi |J def=Wi, j1 Wi, j2 . . .Wi, jk .

We assume throughout that wordlines are programmed
sequentially in a monotone increasing order, i.e., for every
1 ≤ i1 < i2 ≤ m, Wi1 is programmed before Wi2 .
We will refer to a coding scheme in which the wordlines are
programmed in such a monotone order as a row-by-row coding
scheme. A binary row-by-row coding scheme C has a fixed rate
R if every row can store any message out of 2Rn possible
messages. In Section III we will design a fixed-rate row-by-
row coding scheme1 such that the pattern 1 0 1 does not appear
along bitlines. This constraint on the bitlines is motivated by
the ICI phenomenon, and therefore is called the bitline ICI
constraint. In general, a binary sequence x = x1x2 . . . x� is
said to satisfy the ICI constraint if xi−2xi−1xi �= 1 0 1, for all
i ∈ [3, �]. We denote by S the set of all binary sequences of
finite length that satisfy the ICI constraint. A coding scheme C
for an SLC flash memory is called a wordline ICI constrained
code if for every i ∈ [m], w(ps)

i ∈ S. Similarly, a coding
scheme C for an SLC flash memory is called a bitline ICI
constrained code if for every j ∈ [n], b(ps)

j ∈ S. A wordline
ICI error in the cell Wi, j is the event that the cells Wi, j−1,
Wi, j , and Wi, j+1 were programmed to 1, 0, and 1, respectively,
and due to the ICI phenomenon, Wi, j stores the symbol 1, i.e.,
w
(ps)
i, j−1w

(ps)
i, j w

(ps)
i, j+1 = 1 0 1, while wi, j−1wi, jwi, j+1 = 1 1 1.

Similarly, a bitline ICI error in the cell Wi, j is the event
that the cells Wi−1, j , Wi, j , and Wi+1, j were programmed to
1, 0, and 1, respectively, and due to the ICI phenomenon,

Wi, j stores the symbol 1, i.e., w(ps)
i−1, jw

(ps)
i, j w

(ps)
i+1, j = 1 0 1,

while wi−1, jwi, jwi+1, j = 1 1 1. We will assume throughout
the paper that the only sources of errors are wordline ICI or
bitline ICI, and specify in each section the sources of errors
in consideration. Notice that, under the assumption that only
bitline ICI errors may occur, bitline ICI constrained codes
prevent the occurrence of errors entirely.

1The first two rows of our row-by-row coding scheme may have different
rate than the others, yet for the ease of terminology, we refer to it as a fixed-
rate coding scheme.

BUZAGLO AND SIEGEL: ROW-BY-ROW CODING SCHEMES FOR INTER-CELL INTERFERENCE IN FLASH MEMORY 4103

Fig. 2. (a) The edge-labeled graph G representing the ICI constraint. (b)
The edge in G from xy to yz is represented by xyz, where z is also its label.

B. The ICI Constraint

The rate of a bitline ICI constrained code is clearly upper
bounded by the capacity of the ICI constraint defined by

Cap(IC I)
def= lim

n→∞
log2 |S ∩ {0, 1}n|

n
.

There is a one-to-one correspondence between S and the
sequences produced by reading the labels of paths in the
directed edge-labeled graph G(V , E, L) shown in Fig. 2 (a),
where V = {0, 1}2, E = {0, 1}3 \ {1 0 1}, and for every edge
e = xyz ∈ E , e is an edge from xy to yz (see Fig. 2 (b))
labeled by z. The adjacency matrix of the graph G is given by

A =

⎛
⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 0 0
0 0 1 1

⎞
⎟⎟⎠,

where Ai, j represents the number of edges from the vertex
u = xy to the vertex v = wz in the graph G, i = 2x + y
and j = 2w + z. Let λ1, λ2, λ3, λ4 be the eigenvalues of A.
Notice that A2x+y,2w+z = 0 if y �= w. The spectral radius

of A is defined by λ
def= max{|λ1|, |λ2|, |λ3|, |λ4|}. The spectral

radius λ is an eigenvalue of A and it admits a positive right
eigenvector as well as a positive left eigenvector, as guaranteed
by the Perron-Frobenius Theorem [13, Ch. 8].

There is a simple expression for the capacity of this con-
straint in terms of λ, namely Cap(IC I) is equal to log2 λ ≈
0.8114 (see, for example [23]). Alternatively, Cap(IC I) can
be represented in terms of stationary Markov chains on the
graph G. A Markov chain on G is simply a probability
mass function P on the edges of G, i.e., a mapping P :
E → R such that P(xyz) ≥ 0, for all xyz ∈ E , and∑

xyz∈E P(xyz) = 1. The state probability vector πT =
(π0, π1, π2, π3) of the Markov chain P on G is defined
by π2x+y

def=π(xy), where π(xy) is the marginal proba-
bility

∑
z: xyz∈E P(xyz), for all xy ∈ V . The transition

matrix associated with P is the 4 × 4 matrix Q, such
that Q2x+y,2y+z

def=Q(z|xy), where Q(z|xy) is the conditional

probability defined by Q(z|xy)
def=P(xyz)/π(xy) if π(xy) > 0

and Q(z|xy)
def=0, otherwise. As for the adjacency matrix A,

Q2x+y,2w+z
def=0 if y �= w. We will use the notations

Q2x+y,2y+z and Q(z|xy) (respectively, π2x+y and π(xy))
interchangeably. A Markov chain P is called stationary if

πT Q = πT , or equivalently if π(xy) =∑
z: xyz∈E P(xyz) =∑

z: zxy∈E P(zxy), for all xy ∈ V . The entropy rate of P is
defined by

H (P) = −
∑

xyz∈E

P(xyz) log2 Q(z|xy).

Note that if Q(z|xy) = 0 then P(xyz) = 0 and we regard
0 log2 0 as zero.

From [23] we have that

Cap(IC I) = sup
P

H (P),

where the supremum is taken over all the stationary Markov
chains on G. Moreover, a capacity-achieving stationary
Markov chain P̂ on G can be obtained as follows. Let vT and u
be positive left and right eigenvectors of A associated with λ,
respectively, normalized such that vT u = 1. For all xyz ∈ E ,

P̂(xyz)
def= u jvi Ai, j

λ
, i = 2x + y, j = 2y + z. (1)

The state probability vector for P̂ , π̂ , is given by

π̂i
def=uivi , i ∈ [0, 3], (2)

and the transition matrix for P̂ , Q̂, is given by

Q̂i, j
def= Ai, j u j

λui
, ∀ i, j ∈ [0, 3]. (3)

For our coding schemes, we need one more definition on
Markov chains. A Markov chain P on G is called n-integral
if, for all xyz ∈ E , we have that P(xyz)n is an integer.

III. ROW-BY-ROW BITLINE ICI CONSTRAINED CODES

The goal of this section is to design a row-by-row bitline ICI
coding scheme with a fixed rate. As mentioned above, the rate
of such a coding scheme is upper bounded by Cap(IC I).
The presented construction produces coding schemes of rates
that are arbitrarily close to Cap(IC I), provided that the
block dimensions n and m are large enough. The key idea
behind the construction is simply that, when programming
a given wordline, the encoder takes into account the two
previously programmed wordlines. This approach is consistent
with the practical requirement for wordlines to be programmed
sequentially, in a row-by-row manner. It is also compatible
with the usual practice of programming all the cells of a word-
line simultaneously. We remark that the design methodology
described in this section is closely related to the approach
proposed in [15] and [31] for constructing row-by-row coding
schemes for general constraints. It was shown in [15] that
there exist such coding schemes that achieve the capacity of
a constraint, and an explicit construction, based on constant-
weight codes, was given in [31]. We essentially apply the basic
ideas of the construction in [31] to the ICI constraint, with
some simplifications.

Specifically, our code design procedure uses an n-integral
stationary Markov chain P , i.e., P(xyz)n is an integer, for
all xyz ∈ E , to construct a code C (wl) of asymptotic rate
H (P). A simple technique to obtain an n-integral stationary
Markov chain on G from an arbitrary stationary Markov chain

4104 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 10, OCTOBER 2017

on G with a negligible loss in the entropy rate is described
in Appendix A. The code C (wl) is a cartesian product of
constant-weight codes with parameters that are determined by
the Markov chain P . Our coding scheme C will program every
wordline (with the exception of the first two wordlines) to a
codeword of C (wl). Moreover, it will have the property that
|{ j : w(ps)

i−1, jw
(ps)
i, j = xy}| = π(xy)n, for every i ∈ [2,m],

and xy ∈ V . This stationarity property of the code will be
crucial for the encoding process. The code will also imitate the
statistics of patterns of the form xyz ∈ E in a sequence that is
created by reading the labels of a random path in G, according
to the Markov chain P . Concretely, it will satisfy the equality
|{ j : w(ps)

i−2, jw
(ps)
i−1, jw

(ps)
i, j = xyz}| = P(xyz)n, for every i ∈

[3,m] and xyz ∈ E . In particular, |{ j : w(ps)
i−2, jw

(ps)
i−1, jw

(ps)
i, j =

1 0 1}| = 0, for every i ∈ [3,m].
Let p(x) = π(x0)+ π(x1) be the probability of an initial

state to be of the form x∗, where ∗ stands for an arbitrary
symbol in {0, 1}, according to the stationary Markov chain P .
A binary constant-weight code of length n and weight w
is a subset of {0, 1}n which consists only of codewords of
Hamming weight w, where the Hamming weight of x =
x1x2 . . . xn ∈ {0, 1}n is defined by

wH (x)
def=|{ j : x j �= 0}|.

Concretely, wH (x) counts the number of ones in x. Denote
by C(n, w) the set of all binary sequences of length n and
Hamming weight w, i.e.,

C(n, w)
def={x ∈ {0, 1}n : wH (x) = w}.

For the encoding process, we will need the following three
codes, defined in terms of constant-weight codes:

C (1) def= C(n, p(1)n)

C (2) def= C(p(0)n, π(01)n)×C(p(1)n, π(11)n)

C (wl) def= C(π(00)n, P(001)n)×C(π(01)n, P(011)n)

×C(π(10)n, P(101)n)×C(π(11)n, P(111)n). (4)

The first wordline will be programmed by the constant weight
code C (1). Then, the second wordline is partitioned into two
parts of sizes p(0)n and p(1)n, respectively. The first part
contains the cells below the p(0)n cells of the first wordline
that were programmed to 0. This part is programmed by
the C(p(0)n, π(01)n) portion of C (2). Similarly, the second
part contains the cells below the p(1)n cells of the first
wordline that were programmed to 1 and is programmed by the
C(p(1)n, π(11)n) portion of C (2). The remaining wordlines
are programmed by the code C (wl). For every i ∈ [3,m],
the cells of the i th wordline are partitioned into four parts,
according to the programmed states of the two cells above
them in Wi−2 and Wi−1. The stationarity of P guarantees
that the part that corresponds to cells for which the two cells
above them were programmed to xy is of size π(xy)n. This
part is programmed by the C(π(xy)n, P(xy1)n) portion of
the code C (wl). Figure 3 describes the architecture of this
encoding process. Notice that, since P(101) = 0, it follows
that C(π(10)n, P(101)n) = {0}, where 0 is the all-zero vector.

Fig. 3. The architecture of the encoding process. A codeword of C(p(x)n,
π(x1)n) is stored in the positions in which x appears in C(n, p(1)n).
Similarly, a codeword of C(π(xy)n, P(xy1)n) is stored in the positions in
which both x appears in C(n, p(1)n) and y appears in C(p(x)n, π(x1)n).

In the next section we will allow P(101) to be positive, in
which case the constant-weight code C(π(10)n, P(101)n) will
no longer be a trivial code.

For k ∈ {1, 2}, let E(k) : Z|C (k)| → C (k) be an encoder
for C (k) and let D(k) : C (k) → Z|C (k)| be the corresponding
decoder. Likewise, let E(wl) : Z|C (wl)| → C (wl) and D(wl) :
C (wl) → Z|C (wl) | be an encoder and its corresponding decoder
for C (wl).

Remark 1: We remark that encoders and decoders for
C (k), k ∈ {1, 2} and for C (wl) can be readily derived from
encoders and decoders of constant-weight codes. Encoders
and decoders for constant-weight codes were proposed in [17]
and later improved in [31]. Both these papers present efficient
encoders that are based on enumerative encoding [7] and
suffer from negligible loss in coding rates. In particular,
the running time of the encoding and decoding procedures
proposed in [31] is O(n log2

2 n), where n is the length of the
code.

The programming process is formulated in Algorithm 1.
Note that we assume no other error sources in this section
but the bitline ICI. To show that this programming process
produces a row-by-row bitline ICI constrained coding scheme
we first prove its validity in the next two lemmas that assume
no error sources, including the bitline ICI.

Lemma 1: If there are no error sources, including the
bitline ICI, then the programming process described in
Algorithm 1 is properly defined, i.e., the following hold.

1) For all x ∈ {0, 1}, the size of Jx , defined in line 10 of
Algorithm 1 is equal to the length of cx , p(x)n, where
cx is defined in line 8 of Algorithm 1.

2) For every i ∈ [3,m] and for all x, y ∈ {0, 1}, the size of
Jxy, defined in line 17 of Algorithm 1 for the program-
ming of the i th wordline, is equal to the length of cxy,
π(xy)n, where cxy is defined in line 15 of Algorithm 1.

Proof: To prove item (1), let x ∈ {0, 1}. Since we assume
no error sources, it follows that w1 = w(ps)

1 ∈ C(n, p(1)n)
and |Jx | = |{ j : w(ps)

1, j = x}| = p(x)n.

For ease of presentation we define J (i)xy = Jxy , where Jxy

is defined in line 17 of Algorithm 1 for the programming
of the i th wordline. We will prove item (2) by induction
on i . Since we assume no error sources, it follows that for all

BUZAGLO AND SIEGEL: ROW-BY-ROW CODING SCHEMES FOR INTER-CELL INTERFERENCE IN FLASH MEMORY 4105

Algorithm 1 Row-by-Row Bitline ICI Constrained Coding
Scheme: Programming Process
1: Initialize: i ← 1.
2: Input: A message M to be programmed into the current

wordline Wi .
3: if i = 1 then M ∈ Z|C (1)|
4: Set c← E(1)(M).
5: Program c into W1.
6: Set i ← 2.
7: else if i = 2 then M ∈ Z|C (2)|
8: Set (c0, c1)← E(2)(M).
9: for all x ∈ {0, 1} do

10: Set Jx ← { j ∈ [n] : w1, j = x}.
11: Program cx into W2|Jx .
12: end for
13: Set i ← 3.
14: else if i ≥ 3 then M ∈ Z|C (wl)|
15: Set (c00, c01, c10, c11)← E(wl)(M).
16: for all x, y ∈ {0, 1} do
17: Set Jxy ← { j ∈ [n] : wi−2, jwi−1, j = xy}.
18: Program cxy into Wi |Jxy .
19: end for
20: Set i ← i + 1.
21: end if

i ∈ [3,m], J (i)xy = { j ∈ [n] : w
(ps)
i−2, jw

(ps)
i−1, j = xy}. For

the basis of the induction, we will prove the case i = 3. Let
x, y ∈ {0, 1}. By the definition of J (3)xy it follows that J (3)xy =
{ j ∈ Jx : w(ps)

2, j = y} and from lines 8 and 11 of Algorithm 1

we have that w(ps)
2 |Jx ∈ C(p(x)n, π(x1)n). Hence, there are

exactly π(xy)n indices j for which w(ps)
1, j w

(ps)
2, j = xy.

For the induction hypothesis we assume that for every
i ∈ [3, k], |J (i)xy | = π(xy)n. We now prove the induction step
for i = k + 1. Let x, y ∈ {0, 1}. By the definition of J (i)xy ,
it follows that J (i)xy = { j ∈ J (i−1)

0x ∪ J (i−1)
1x : w(ps)

i−1, j = y}.
By the induction hypothesis, we have that |J (i−1)

ux | = π(ux)n,
for all u ∈ {0, 1} and from lines 15 and 18 of Algorithm 1 we
have that w(ps)

i−1 |J (i−1)
ux
∈ C(π(ux)n, P(ux1)n). Hence, there are

exactly
∑

u∈{0,1} P(uxy)n indices j for which w(ps)
i−2, jw

(ps)
i−2, j =

xy. By the stationarity of P it follows that
∑

u∈{0,1} P(uxy)
n = π(xy)n. �

Lemma 2: If there are no error sources, including the
bitline ICI, then the programming process described in
Algorithm 1 produces a bitline ICI constrained coding scheme.

Proof: Let j ∈ [n] and i ∈ [3,m] be such that
w
(ps)
i−2, jw

(ps)
i−1, j = 1 0. Then, j ∈ J (i)1 0 and since w(ps)

i |
J (i)1 0
∈

C(π(1 0)n, P(1 0 1)n) = {0}, we conclude that w(ps)
i, j = 0.

Thus, there does not exist a j ∈ [n] and i ∈ [3,m] for which
w
(ps)
i−2, jw

(ps)
i−1, jw

(ps)
i, j = 1 0 1. �

The proof of the next lemma can be found in Appendix B.
Lemma 3:

log2 |C (wl)|
n

−−−→
n→∞ H (P)

Fig. 4. Programming the first three wordlines, for n = 10, according to
P(xyz) = 0.2, for all xyz ∈ {0 0 0, 0 0 1, 1 0 0}, and P(xyz) = 0.1 for all
xyz ∈ {0 1 0, 0 1 1, 1 1 0, 1 1 1}. Although the rate of the code is approximately
0.458, the rate of the coding scheme for the Markov chain P approaches the
entropy rate H (P) = 0.8 as n goes to infinity. The color of a cell indicates both
the symbol it stores and to which constant-weight code it belongs, according
to the color index described in Figure 3. The gray cells, i.e., the cells bellow
the bitline pattern 1 0, must be programmed to 0.

Theorem 1: If there are no error sources, excluding the
bitline ICI, then the programming procedure described in
Algorithm 1 is properly defined and it produces a row-by-row
bitline ICI constrained coding scheme of fixed rate (starting
from the third wordline). The rate of the coding scheme is
given by

R = log2 |C (wl)|
n

−−−→
n→∞ H (P)

Proof: By Lemmas 1 and 2, it follows that the program-
ming procedure described in Algorithm 1 is properly defined
and that it produces a bitline ICI constrained coding scheme,
assuming that there are no error sources. Since the bitline
ICI error mechanism affects only patterns of the form 1 0 1
along bitlines, it follows that it cannot affect this programming
procedure. Otherwise, we will have that the pattern 1 0 1 must
appear along a bitline, before any error occurred, in contra-
diction to Lemma 2.

The last statement of the theorem follows from
Lemma 3. �

An example of programming the first three wordlines
according to Algorithm 1 is shown in Fig. 4.

The decoding of wi is done by first reading the two previous
wordlines, Wi−2 and Wi−1, and then partitioning wi into four
subsequences, ĉ(i)xy , xy ∈ {0, 1}2, where wi, j belongs to ĉxy if
the two cells above it, Wi−2, j and Wi−1, j , store the symbols
x and y, respectively. The decoding of wi is the message
M̂ = D(wl)(̂c00, ĉ01, ĉ10, ĉ11). In the next theorem we for-
mulate the decoding process in Algorithm 2 and prove that it
correctly decodes every wordline.

Theorem 2: For i ∈ [m], let M be the message that was
programmed into Wi , according to Algorithm 1, and let M̃ be
the message that was read from Wi , according to Algorithm 2.
If there are no other error sources but bitline ICI then M̃ = M.

Proof: By Theorem 1 it follows that the programming
procedure that is described in Algorithm 1 produces a bitline
ICI constrained coding scheme. Since we assume no error
sources but the bitline ICI, it follows that wi = wps

i for
all i ∈ [m]. This implies that for all i ∈ [3,m] and for
all x, y ∈ {0, 1}, Jxy = Ĵxy (Jxy and Ĵxy are defined
in line 17 of Algorithm 1 and in line 12 of Algorithm 2,
respectively, when the i th wordline is to be programmed or to
be read) and that M̃ = D(wl)(wi | Ĵ00

,wi | Ĵ01
,wi | Ĵ10

,wi | Ĵ11
) =

4106 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 10, OCTOBER 2017

Algorithm 2 Row-by-Row Bitline ICI Constrained Coding
Scheme: Decoding Process
1: Input: An index i of the wordline to be read.
2: Output: A message M̃ .
3: if i = 1 then M̃ ∈ Z|C (1)|
4: Set M̃ ← D(1)(wi).
5: else if i = 2 then M̃ ∈ Z|C (2)|
6: for all x ∈ {0, 1} do
7: Set Ĵx ← { j : w1, j = x}.
8: end for
9: Set M̃ ← D(2)(w2| Ĵ0

,w2| Ĵ1
).

10: else if i ≥ 3 then M̃ ∈ Z|C (wl)|
11: for all x, y ∈ {0, 1} do
12: Set Ĵxy ← { j : wi−2, jwi−1, j = xy}.
13: end for
14: Set M̃ ← D(wl)(wi | Ĵ00

,wi | Ĵ01
,wi | Ĵ10

,wi | Ĵ11
).

15: end if

D(wl)(E(wl)(M)) = M . Similarly, the theorem holds for
i ∈ {1, 2}. �

As mentioned above, a technique to obtain an n-integral
stationary Markov chain on G from a stationary Markov chain
on G with close entropy rates is described in Appendix A.
Applying this technique on the Markov chain P̂ defined
in (1) for which H (P̂) = Cap(IC I), we obtain an
n-integral stationary Markov Chain on G, P , such that H (P) =
Cap(IC I) − O(1/n). Together with Theorems 1 and 2, this
implies the following corollary.

Corollary 1: For every ε > 0 and sufficiently large n, there
exists an n-integral stationary Markov chain on G, P , such that
the coding scheme described in Algorithms 1 and 2 produces
a row-by-row bitline ICI constrained coding scheme of rate at
least Cap(IC I)− ε.

IV. WEAKLY BITLINE ICI CONSTRAINED CODES

By preventing all bitline ICI errors, the coding scheme
suggested in Section III may impose a too severe rate penalty
if the probability of ICI-induced errors is not very large.
In this section we will adapt our coding scheme to Markov
chains P that allow P(101) to be positive. Immink [16] coined
the term weakly constrained code for codes that violate a
certain constraint with some fixed probability q . We thereby
define weakly bitline ICI constrained coding scheme for an
SLC flash memory to be a coding scheme in which the prob-
ability that the pattern 1 0 1 appears along a bitline is fixed,
whereas the probability of every other pattern in {0, 1}3 to
appear along a bitline is not restricted to a certain value.
We will design a row-by-row weakly bitline ICI constrained
coding scheme by combining the row-by-row coding scheme
from the previous section with an error-correcting code. The
rate of the resulting coding scheme may exceed Cap(IC I), if
the probability of bitline ICI errors is small. Moreover, this
approach can handle errors that are caused by other error
mechanisms as well.

Before we can present the encoding and decoding processes
for weakly bitline ICI constrained codes we need to slightly

modify the graph G. Since we wish to allow the appearance
of the pattern 1 0 1, we can no longer consider Markov chains
on the graph G, and we define the graph D that is obtained
from the graph G by adding the edge 1 0 1, which starts in 1 0,
terminates in 0 1, and is labeled by 1. Note that D is just the
binary 2-dimensional De-Bruijn graph [8]. Throughout this
section, a Markov chain should be understood as a Markov
chain on the graph D.

Our coding technique uses some part of the memory for
error-correction. Thus, every wordline is partitioned into two
parts. The first part, consisting of the first k ≤ n cells,
is called the systematic part of the wordline. The second part,
consisting of the last r = n−k cells, is called the parity check
part of the wordline. Specifically, we introduce the following
notations. For every i ∈ [m], denote the systematic part of
Wi by Si = Wi,1Wi,2 . . .Wi,k , and the parity check part of
Wi by Pi = Wi,k+1 Wi,k+2 . . .Wi,n . As before, we distinguish
between the current stored symbols and the programmed states
of the cells for the systematic part and use the notations

si
def=wi,1wi,2 . . . wi,k and s(ps)

i
def=w(ps)

i,1 w
(ps)
i,2 . . . w

(ps)
i,k to refer

to these sequences.
Let P be a Markov chain on D and let α be the probability

that a vertical occurrence of the pattern 1 0 1 changes to
1 1 1 due to a bitline ICI error (we assume α is a known
parameter of the flash memory device). Our coding technique
will produce a weakly bitline ICI constrained code with
|{ j : w(ps)

i−2, jw
(ps)
i−1, jw

(ps)
i, j = 1 0 1}| = P(1 0 1)n, for all

i ∈ [3,m] and j ∈ [k], and thus the probability of a bitline ICI
error in a cell becomes P(1 0 1)α. By choosing a suitable value
for P(1 0 1) we will be able to control this error probability
as we desire.

Let C (ec) ⊂ {0, 1}n be a code of dimension k, i.e.,
|C (ec)| = 2k . Assume that C (ec) admits a systematic encoder
E(ec) : {0, 1}k → {0, 1}n , i.e., E(ec)(u)|[k] = u, for all
u ∈ {0, 1}k , and that D(ec) : {0, 1}n → {0, 1}k is the
corresponding decoder of C (ec). The superscript (ec) in the
code’s notation stands for error-correction. The code C (ec)

will be used to correct bitline ICI-induced errors and may
be chosen to guarantee that the frame-error-rate (FER) does
not exceed a certain threshold in exchange for reduction in the
overall coding rate.

Let C (1), C (2), C (wl) be the length-k codes as defined in (4)
with respect to the Markov chain P . Notice that, since the
definition of these codes depends on the Markov chain P ,
changing the Markov chain P results in changing these codes
accordingly. In particular, since P(1 0 1) > 0, the code
C(π(1 0)k, P(1 0 1)k) is no longer trivial.

As before, we program Si according to the sequences that
were programmed into Si−2 and Si−1. However, before pro-
gramming Si , Si−2 may have suffered from bitline ICI errors
in cells Wi, j , j ∈ [3, k], for which w(ps)

i−3, jw
(ps)
i−2, jw

(ps)
i−1, j = 1 0 1

(as in Section III, we assume the bitline ICI-error mechanism
to be the only source of errors). Therefore, we use a side
memory (e.g. DRAM memory or a designated part of the
memory) which stores the information that was written on
the wordline Si−2 reliably. The sequence stored in the side
memory is denoted by v = v1v2 . . . vk . Upon programming

BUZAGLO AND SIEGEL: ROW-BY-ROW CODING SCHEMES FOR INTER-CELL INTERFERENCE IN FLASH MEMORY 4107

Wi , v stores the programming state of Si−2 (before any errors
had occurred) and once v is used to process the programming
state of Wi , v is reprogrammed to store the programming state
of Si−1.

To overcome errors we use the error-correcting code C (ec).
Hence, in each step we also encode Si by the systematic
encoder E(ec) and store the parity check bits of the resulting
codeword in Pi . This programming process is formulated in
Algorithm 3 and is proved to produce a weakly bitline ICI
constrained code in the next theorem.

Remark 2: The weakly bitline ICI constraint is enforced
only on the systematic part Si and not on the parity part Pi .
As a result, the probability of a bitline ICI error in the parity
part may be higher and the proposed coding scheme relies on
the error-correcting code to correct the corresponding errors.
This approach is commonly used in reverse concatenation
architecture for constrained systems [4], [5], [22].

Algorithm 3 Row-by-Row Weakly Bitline ICI Constrained
Coding Scheme: Programming Process
1: Initialize: i ← 1.
2: Input: A message M to be programmed into the current

wordline Wi .
3: if i = 1 then M ∈ Z|C (1)|
4: Program E(ec)(E(1)(M)) into W1 and v.
5: Set i ← 2.
6: else if i = 2 then M ∈ Z|C (2)|
7: Set (c0, c1)← E(2)(M).
8: for all x ∈ {0, 1} do
9: Set Jx ← { j ∈ [k] : w1, j = x}.

10: Set u|Jx ← cx . u ∈ {0, 1}k
11: end for
12: Program E(ec)(u) into W2.
13: Set i ← 3.
14: else if i ≥ 3 then M ∈ Z|C (3)|
15: Set (c00, c01, c10, c11)← E(wl)(M).
16: for all x, y ∈ {0, 1} do
17: Set Jxy ← { j ∈ [k] : v jwi−1, j = xy}.
18: Set u|Jxy ← cxy . u ∈ {0, 1}k
19: end for
20: v← si−1.
21: Program E(ec)(u) into Wi .
22: Set i ← i + 1.
23: end if

Theorem 3: If there are no error sources, excluding the
bitline ICI, then the programming procedure described in
Algorithm 3 is properly defined and it produces a row-by-row
weakly bitline ICI coding scheme of fixed rate (starting from
the third wordline). The rate of the coding scheme is given by

R = log2 |C (wl)|/n ≈ H (P)k
n

.

Proof: First, we must show that the programming process
defined in Algorithm 3 is properly defined. Since only the
programming of the systematic part is dependent on (the
systematic parts of) the two previous wordlines, it is sufficient
to show that the systematic part of the memory is properly

Fig. 5. Example of three consecutive wordlines that were programmed by
Algorithm 3 with P(xyz) = 0.125, for all xyz ∈ {0, 1}3. The color of a cell
indicates both its programmed states and to which constant-weight code it
belongs, according to the color index described in Figure 3. The white cells
represent the parity check part of the memory. The sixth cell in Wi−1 was
originally programmed to 0, but due to a bitline ICI error, it stores 1.

defined. Note that, Lemma 1 holds regardless of whether or not
P(1 0 1) = 0. Since at each step i ∈ [3,m], the programming
state of Si−2 is available through the side memory, occurrences
of bitline ICI errors do not affect the programming state of
Si and the validity of Algorithm 3 follows immediately from
Lemma 1.

The last statement of the theorem follows from
Lemma 3. �

An example of programming three wordlines according to
Algorithm 3 is shown in Fig. 5.

The decoding of wi is done by first reading Wi and
the two previous wordlines, Wi−2, Wi−1, and applying the
decoder of the error-correcting code on each of these three
wordlines. If the error-correcting code can correct all the
errors, then by doing so we obtain s(ps)

i−2 , s(ps)
i−1 , and s(ps)

i .

We then proceed with decoding s(ps)
i , similarly to the decoding

process described in Algorithm 2, i.e., we partition s(ps)
i to

four subsequences, ĉxy , xy ∈ {0, 1}2, where s(ps)
i, j belongs to

ĉxy if s(ps)
i−2, j s

(ps)
i−1, j = xy. The decoding of wi is the message

M̂ = D(wl)(̂c00, ĉ01, ĉ10, ĉ11). We formulate the decoding
process in Algorithm 4 and prove that it correctly decodes
w(i), given that D(ec) successfully decodes wi−2,w(i−1), and
w(i), in the next theorem.

Theorem 4: For i ∈ [3,m], let M be the message that was
programmed into Wi according to Algorithm 3 and let M̃ be
the message that was read from Wi according to Algorithm 4.
If D(ec) can correctly decode wi−2,wi−1,wi then M̃ = M.

Proof: Since D(ec) successfully decodes wi−2,wi−1,wi ,
it follows that ŝb = s(ps)

b , for all b ∈ {i − 2, i − 1, i}.
This implies that for all x, y ∈ {0, 1}, Jxy = Ĵxy

(Jxy and Ĵxy are defined in line 17 of Algorithm 3
and in line 16 of Algorithm 4, respectively, when the
i th wordline is to be programmed or to be read) and
that M̃ = D(wl)(s(ps)

i | Ĵ00
, s(ps)

i | Ĵ01
, s(ps)

i | Ĵ10
, s(ps)

i | Ĵ11
) =

D(wl)(E(wl)(M)) = M . �
To illustrate the usefulness of row-by-row weakly bitline

ICI constrained codes we consider the case where α = 0.05.
Again, we assume that the bitline ICI is the only error
mechanism. Fix a target coding rate R = 0.9 and a code
length n = 9102. A weakly bitline ICI constrained code uses
the first k bits to encode the information bits to the systematic
part of the memory while controlling the number of vertical

4108 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 10, OCTOBER 2017

Algorithm 4 Row-by-Row Weakly Bitline ICI Constrained
Coding Scheme: Decoding Process
1: Input: An index i of the wordline to be read.
2: Output: A message M̃ .
3: if i = 1 then M̃ ∈ Z|C (1)|
4: Set M̃ ← D(1)(D(ec)(wi)).
5: else if i = 2 then M̃ ∈ Z|C (2)|
6: Set ŝ1 ← D(ec)(w1) and ŝ2 ← D(ec)(w2).
7: for all x ∈ {0, 1} do
8: Set Ĵx ← { j : ŝ1, j = x}.
9: end for

10: Set M̃ ← D(2)(̂s2| Ĵ0
, ŝ2| Ĵ1

).
11: else if i ≥ 3 then M̃ ∈ Z|C (wl)|
12: for all b ∈ {i − 2, i − 1, i} do
13: Set ŝb ← D(ec)(wb).
14: end for
15: for all x, y ∈ {0, 1} do
16: Set Ĵxy ← { j : ŝi−2, j ŝi−1, j = xy}.
17: end for
18: Set M̃ ← D(wl)(̂si | Ĵ00

, ŝi | Ĵ01
, ŝi | Ĵ10

, ŝi | Ĵ11
).

19: end if

occurrences of the pattern 1 0 1 and it uses r = n − k parity
check bits to encode the systematic part using some systematic
error-correcting code. For this illustration we use a BCH code
as the systematic error-correcting code. Let Rsys = n R/k be
the rate of encoding the information into the systematic part
of the memory. Figure 6 illustrates the frame-error-rate as a
function of Rsys . For a given value of Rsys the corresponding
row-by-row weakly bitline ICI constrained code was designed
to minimize the probability of error in the first k bits by
minimizing the occurrence of the pattern 1 0 1. For the parity
check bits we assume the probability of error is α/8. In the
extreme case where Rsys = 0.9, i.e., n = k and no error-
correcting code is being used, the FER is close to one, since
even a single bit error leads to a frame error and the probability
of not observing any bit error is extremely small. On the
other extreme we have the case where Rsys = 1 and all the
parity check bits are dedicated to error correction. For every
0.9 < Rsys < 1 we have a non-trivial row-by-row weakly
bitline ICI constrained code that combines both the encoding
to the systematic part and error-correction using a BCH code.
Fig 6 indicates that in the range 0.94 ≤ Rsys < 1, the non-
trivial row-by-row weakly-bitline ICI constrained codes out-
perform the BCH code (the case where Rsys = 1). The
best FER was measured for Rsys = 0.98 and is equal to
0.00298 which is roughly 44 times lower than the FER for
the BCH code.

V. EXTENSIONS FOR MLC FLASH MEMORY

In this section we consider several extensions for MLC
flash memory, where the goal is to mitigate ICI errors in
the horizontal direction, in the vertical direction, or in both
directions. The suggested methods can also be extended for
3-dimensional three-level cell (TLC) flash memory for ICI
error mitigation in one or more of the three directions.

Fig. 6. Frame-error-rate (FER) as a function of Rsys for weakly bitline ICI
constrained code of length n = 9102 with a BCH code as the systematic
error-correcting code. The probability that a vertical occurrence of the pattern
1 0 1 changes to 1 1 1 due to a bitline ICI error is α = 0.05.

Fig. 7. Structure of a MLC flash memory block.

A cell in MLC flash memory stores one of the symbols
of the four-element alphabet � = {0, 1, 2, 3}. These symbols
are represented by two bits according to the gray mapping
ψ : � → {0, 1}2 defined by ψ(0) = 1 1, ψ(1) = 1 0,
ψ(2) = 0 0, and ψ(3) = 0 1. The two bits of a cell are
programmed into two logical units of programming that are
called the lower page and the upper page. The most significant
bit is programmed to the lower page while the least significant
bit is programmed to the upper page. The structure of a block
in a MLC flash memory is depicted in Figure 7.

The experimental studies in [33] indicate that the pattern
that is most likely to cause ICI errors (horizontally or verti-
cally) in MLC flash memory is of the form 3 0 3. We therefore
suggest methods to eliminate the pattern 3 0 3 horizontally,
vertically, or in both directions, while programming the lower
page and the upper page independently.

We start with the horizontal direction. Since the pattern 3 0 3
is represented by the pattern 0 1 0 in the lower page and
1 1 1 in the upper page, the pattern 3 0 3 can be eliminated
horizontally by preventing the appearance of the pattern 1 1 1
along wordlines in the upper page and applying no coding
on the lower page. Hence, we program the upper page with
a length-n constrained code in which no codeword contains the
pattern 1 1 1. Such a constrained code is known as a (d, k)-

BUZAGLO AND SIEGEL: ROW-BY-ROW CODING SCHEMES FOR INTER-CELL INTERFERENCE IN FLASH MEMORY 4109

RLL (run-length-limited) code for the parameters d = 0 and
k = 2 (see [12] and references therein). A run in a codeword
is a maximum substring (a sequence of consecutive entries)
of a repeated symbol. For example, the runs in the codeword
0 0 1 1 0 1 0 0 are 0 0, 1 1, 0, 1, and 0 0. In a (d, k)-RLL code,2

every codeword satisfies the property that the run length of 1 is
at least d and at most k. For d = 0 and k = 2, this is equivalent
to the property that no codeword contains the pattern 1 1 1.
The capacity of the (0, 2)-RLL constraint is approximately
0.8791. Adler et al. [1] presented an algorithm for generating
rate-p/q (d, k)-RLL codes with arbitrary parameters p, q ,
d , and k, where p/q is upper bounded by the capacity of
the (d, k)-RLL constraint. Hence, for large n, we achieved a
method for preventing the pattern 3 0 3 horizontally with rate
approximately 0.8791+ 1 = 1.8791.

Remark 3: In the suggested method the pattern 3 0 3 is
eliminated horizontally by preventing the pattern 1 1 1 along
wordlines in the upper page entirely, when in fact this pattern
should not appear horizontally in the upper page only if the
pattern 0 1 0 appears in the lower page simultaneously. Such
a scenario in which two sources operate independently but
never transmit a certain pair of patterns simultaneously was
studied in [24], where numerical methods to estimate the
sum rate capacity of the system were presented. Using one
of these methods, we computed the sum rate capacity when
1 1 1 and 0 1 0 never appear simultaneously and found it to
be 1.8791. Thus, the suggested method is an optimal scheme
to prevent 3 0 3 horizontally while programming the two pages
independently.

For the vertical direction, we use a row-by-row program-
ming method as in Section III to avoid the pattern 1 1 1
along bitlines in the upper page. When n and m are large,
this method again achieves a rate which is approximately
0.8791 + 1 = 1.8791, only this time the pattern 3 0 3 is
prevented along bitlines.

To prevent 3 0 3 from appearing both horizontally and
vertically we apply the row-by-row programming method from
Section III on the lower page to prevent the pattern 0 1 0 along
bitlines and use a length-n (0, 2)-RLL code for the upper page
to prevent the pattern 1 1 1 from appearing along wordlines.
For large n and m, this method prevents the pattern 3 0 3
both horizontally and vertically and has rate approximately
0.8791+ 0.8114 = 1.6905.

Another method to prevent the pattern 3 0 3 from appearing
both horizontally and vertically is by applying a 2-dimensional
(0, 2)-RLL constrained code on the upper page, which pre-
vents the pattern 1 1 1 from appearing both horizontally
and vertically. Despite the extensive study of 2-dimensional
(d, k)-RLL constrained codes [14], [25], [26], [29], [30], [32],
the capacity of these codes remains an open problem for
most values of d and k and in particular for 2-dimensional
(0, 2)-RLL constrained codes. The best known 2-dimensional
(0, 2)-RLL constrained code was given in [30] and its rate
is 0.816. Thus, by applying this code on the upper page

2Conventionally, in a (d, k)-RLL code every run length of 0 must be at
least d and at most k. For convenience, we choose to apply the run length
limitation on the symbol 1 instead of 0, where the two definitions are obviously
equivalent.

and apply no coding on the lower page, we can eliminate
the pattern 3 0 3 in both directions with rate 1.816. However,
this 2-dimensional (0, 2)-RLL constrained code may be inap-
plicable for flash memory programming and the reason for
this is twofold. One aspect is that it induces a variable-rate
coding as opposed to a fixed-rate. The second aspect is that
the encoding cannot be conducted in a row-by-row fashion.
Hence, for future work it will be interesting to design a fixed
rate row-by-row coding scheme that avoids the pattern 1 1 1
both horizontally and vertically.

Finally, we remark that all the patterns of the form 3 x 3,
where x ∈ {0, 1, 2, 3}, can be avoided in the vertical direction
by excluding the patterns 1 0 1 and 1 1 1 along the bitlines of
the lower page. The row-by-row coding technique presented in
this paper can be applied for any constraint, given an n-integral
stationary Markov chain on the corresponding graph. The
simple technique for obtaining an n-integral stationary Markov
chain with high entropy rate, presented in Appendix A, can be
adapted for the graph associated with avoiding the two patterns
1 0 1 and 1 1 1. The rate in this case is approximately 1.6942.
Alternatively, one can apply the row-by-row coding technique
on the set of wordlines of odd index and the set of wordlines of
even index, independently, to guarantee that wi−2, jwi, j �= 1 1
for all i ∈ [3,m] and j ∈ [n]. While this approach will result
in the same rate, the row-by-row coding scheme in this case
is simpler and its programming requires the reading of only
one wordline.

VI. CONCLUSION

In this paper, row-by-row coding schemes were suggested
to handle bitline ICI errors in flash memories. The first coding
scheme adapts the technique from [31] to eliminate the pattern
1 0 1 along bitlines and the resulting coding rate asymptotically
attains the capacity of the ICI constraint. The second coding
scheme maintains a nonzero probability of vertical occurrence
for the pattern 1 0 1 and in addition uses a systematic error-
correcting code. This scheme is useful when the overall
designated coding rate exceeds the ICI capacity as well as
in the scenario that other error sources apply. A simulation
result which depicted a significant performance improvement
using this approach was presented. Extensions for MLC flash
memory were also discussed where the objective is to design a
fixed rate row-by-row coding scheme that mitigates the pattern
3 0 3 horizontally, vertically, or in both directions, and yet
programs the lower and upper pages independently.

APPENDIX A
OBTAINING n-INTEGRAL STATIONARY MARKOV CHAINS

In this subsection we will describe a simple process that
takes as an input a stationary Markov chain on D and an
integer n and outputs an n-integral stationary Markov chain on
D, with a very close entropy rate.3 Recall that D is the graph
obtained from the graph G by adding the edge 1 0 1, which
starts in 1 0, terminates in 0 1, and is labeled by 1. The same
process works also for stationary Markov chains on G and

3We remark that a general and more complicated process that achieves this
goal for general graphs was given in [31].

4110 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 10, OCTOBER 2017

achieves a similar result, namely, that the difference between
the entropy rates of the two Markov chains is bounded (in
absolute value) by c

n , for some positive constant c and for
sufficiently large n.

A Markov chain P on D (or on G) can be represented by a

4× 4 matrix, also denoted by P , where P2x+y,2y+z
def=P(xyz)

and P2x+y,2w+z
def=0, if y �= w (in the same way that the

transition matrix is obtained from the conditional probability
Q(z|xy) in subsection II-B).

Lemma 4: A mapping P : E → R is a stationary Markov
chain on D if and only if the matrix P satisfies the following
properties.

(a) Pi, j ≥ 0 for all i, j ∈ [0, 3].
(b) Pi, j = 0 if i = 2x + y and j �∈ {2y, 2y + 1}.
(c)

∑3
i=0

∑3
j=0 Pi, j = 1.

(d) For all i ∈ [0, 3], ∑3
j=0 Pi, j =∑3

j=0 P j,i .
Notice that P is a stationary Markov chain on G if and only

if P2,1 = 0 (in addition to the four properties of Lemma 4).
Proof: Items (a), (b), and (c) of Lemma 4 state the

necessary and sufficient conditions for P to be a Markov chain
on D. By definition, P is stationary if and only if item (d) of
the lemma is satisfied. �

Construction 1: Let n ≥ 1 be an integer and let P (1) be
a stationary Markov chain on D. Define the 4 × 4 matrix

M(1)def=�nP (1)�, i.e., M(1)
i, j

def=�nP (1)i, j �, for all i, j ∈ [0, 3], and
define

s
def=M(1)

0,1 + M(1)
2,1 − M(1)

1,2 − M(1)
1,3

Let

ñ
def=

3∑
i=0

3∑
j=0

M(1)
i, j + |s| and d

def=n − ñ.

Define the 4× 4 matrix M(2) as follows. If s ≥ 0 then,

M(2)def=

⎛
⎜⎜⎜⎝

M(1)
0,0 +

⌈ d
2

⌉
M(1)

0,1 0 0

0 0 M(1)
1,2 + s M(1)

1,3

M(1)
2,0 M(1)

2,1 0 0

0 0 M(1)
3,2 M(1)

3,3 +
⌊ d

2

⌋

⎞
⎟⎟⎟⎠.

and if s < 0 then,

M(2)def=

⎛
⎜⎜⎜⎝

M(1)
0,0 +

⌈ d
2

⌉
M(1)

0,1 0 0

0 0 M(1)
1,2 M(1)

1,3

M(1)
2,0 M(1)

2,1 − s 0 0

0 0 M(1)
3,2 M(1)

3,3 +
⌊ d

2

⌋

⎞
⎟⎟⎟⎠.

Finally, define P (2) by the 4× 4 matrix n−1 M(2), i.e., for all
x, y, z ∈ {0, 1},

P (2)(xyz)
def= M(2)

2x+y,2y+z

n
.

Theorem 5: For every stationary Markov chain P (1) on the
graph D (or G) and for every integer n ≥ 1, the mapping P (2)

that is obtained from n and P (1) according to Construction 1
is an n-integral stationary Markov chain on D (respectively,
on G).

Moreover, there exists a constant c, depending only on P (1),
such that |H (P (2))− H (P (1))| ≤ c/n for sufficiently large n.

Proof: First, we use Lemma 4 to show that P (2) is a
stationary Markov chain on D. Items (b) and (c) of Lemma 4
are immediate. Since P (1) is stationary, we have that P (1)0,1 +
P (1)2,1 = P (1)1,2 + P (1)1,3 and therefore, s ∈ {−1, 0, 1}. Clearly,

ñ − |s| = ∑3
i=0

∑3
j=0 M(1)

i, j ≤ n. If ñ − |s| < n then since
ñ−|s| ≤ n−1 and |s| ≤ 1, it follows that d ≥ 0. If ñ−|s| = n
then M(1) = P (1)n and therefore s = 0 and d = 0. In any
case, 0 ≤ d . This shows item (a) of Lemma 4. Since P (1)

is stationary it follows that M(1)
0,1 = M(1)

2,0, M(1)
1,3 = M(1)

3,2.
Together with the definitions of s and M(2), we have that
P (2) also satisfies item (d) of Lemma 4. Thus, P (2) is a
stationary Markov chain on D. Moreover, if P (1) is a stationary
Markov chain on G then M(1)

2,1 = 0 and therefore s �= −1 and

M(2)
2,1 = 0. Hence, P (2) is a stationary Markov chain on G.
Since all the entries of the matrix M(2) are integers, it fol-

lows that P (2)(xyz)n is an integer, for all x, y, z ∈ {0, 1}.
It remains to show that |H (P (2)) − H (P (1))| ≤ c/n for

some constant c and for sufficiently large n. Notice that
since d + |s| = ∑

i, j nP (1)i, j −
⌊

nP (1)i, j

⌋
, d + |s| is strictly

less than the number of positive entries in P (1) and therefore
d ≤ 7− |s| ≤ 7. Since 0 ≤ d ≤ 7 and by the definition
of M(2), it follows that

⌊
P (1)(xyz)n

⌋
≤ P (2)(xyz)n ≤

⌊
P (1)(xyz)n

⌋
+ 4.

Therefore,

|P (2)(xyz)− P (1)(xyz)| ≤ 4

n
. (A.1)

For r ∈ {1, 2}, let π(r) and Q(r) be the state probability vector
and the transition matrix of P (r), respectively. Then for all
x, y ∈ {0, 1}
|π(2)(xy)− π(1)(xy)| = |P (2)(xy0)+ P (2)(xy1)

− (P (1)(xy0)+ P (1)(xy1))| ≤ 8

n
.

(A.2)

Inequality (A.1) implies that for sufficiently large n,
P (1)(xyz) > 0 if and only if P (2)(xyz) > 0. Moreover,
if P (2)(xyz) > 0 then π(2)(xy) > 0 and π(1)(xy) > 0.
In particular, π(1)(xy) > 8

n , for sufficiently large n and hence,
by inequality A.2 it follows that π(2)(xy) ≥ π(1)(xy)− 8

n > 0.
Then, for sufficiently large n and for all x, y, z ∈ {0, 1} for
which P (1)(xyz) �= 0, we have that

Q(2)(z|xy) = P (2)(xyz)

π(2)(xy)
≤ P (1)(xyz)+ 4

n

π(1)(xy)− 8
n

= Q(1)(z|xy)

⎛
⎝1+ 4

P (1)(xyz)n

1− 8
π(1)(xy)n

⎞
⎠

≤ Q(1)(z|xy)
(

1+ c1

n

)
,

for some constant c1 > 0, depending only on P (1). The last
inequality follows from the fact that if a and b are two positive

BUZAGLO AND SIEGEL: ROW-BY-ROW CODING SCHEMES FOR INTER-CELL INTERFERENCE IN FLASH MEMORY 4111

constants and n is sufficiently large then n − b ≥ n/2 and
1+a/n
1−b/n = 1+ a+b

n−b ≤ 1+ c
n , for c = 2(a + b). Similarly,

Q(2)(z|xy) = P (2)(xyz)

π(2)(xy)
≥ P (1)(xyz)− 4

n

π(1)(xy)+ 8
n

= Q(1)(z|xy)

⎛
⎝1− 4

P (1)(xyz)n

1+ 8
π(1)(xy)n

⎞
⎠

≥ Q(1)(z|xy)
(

1− c2

n

)
,

for some constant c2 > 0, depending only on P (1). As before,
the last inequality follows from the fact that if a and b are
two positive constants and n is sufficiently large then 1−a/n

1+b/n =
1− a+b

n−b ≥ 1− c
n , for c = 2(a + b).

Then,

H (P (2)) = −
∑

x,y,z∈{0,1}:
P (2)(xyz)>0

P (2)(xyz) log2 Q(2)(z|xy)

≤ −
∑

x,y,z∈{0,1}:
P (1)(xyz)>0

(
P (1)(xyz)+ 4

n

)
log2 Q(1)(z|xy)

−
∑

x,y,z∈{0,1}:
P (1)(xyz)>0

(
P (1)(xyz)+ 4

n

)
log2

(
1− c2

n

)

≤ H (P (1))− 4

n

⎛
⎜⎜⎜⎝

∑
x,y,z∈{0,1}:
P (1)(xyz)>0

log2 Q(1)(z|xy)

⎞
⎟⎟⎟⎠

+ (1+ 32

n
)
ln(2)c2

n
,

where the last inequality follows from the fact that the sum of
P (1)(xyz) over all x, y, z ∈ {0, 1} for which P (1)(xyz) > 0 is
one and from log2(1− u) ≥ − ln (2)u, for u > 0. Then,

H (P (2)) ≤ H (P (1))+ c3

n
,

for sufficiently large n and for some constant c3 > 0. Similarly,

H (P (2)) = −
∑

x,y,z∈{0,1}:
P (2)(xyz)>0

P (2)(xyz) log2 Q(2)(z|xy)

≥ −
∑

x,y,z∈{0,1}:
P (1)(xyz)>0

(
P (1)(xyz)− 4

n

)
log2 Q(1)(z|xy)

−
∑

x,y,z∈{0,1}:
P (1)(xyz)>0

(
P (1)(xyz)− 4

n

)
log2

(
1+ c1

n

)

≥ H (P (1))+ 4

n

⎛
⎜⎜⎜⎝

∑
x,y,z∈{0,1}:
P (1)(xyz)>0

log2 Q(1)(z|xy)

⎞
⎟⎟⎟⎠

−(1− 32

n
)
ln(2)c1

n
,

where in the last inequality we used the inequality
log2(1+ u) ≤ ln(2)u, that holds for all u > 0. Then,

H (P (2)) ≥ H (P (1))− c4

n
,

for sufficiently large n and for some constant c4. �
Example 1: Let n = 100 and let P (1) be the ICI constraint

capacity-achieving stationary Markov chain, P̂ , defined in (1).
Then4

P (1) =

⎛
⎜⎜⎝

0.2345 0.177 0 0
0 0 0.0761 0.1009

0.177 0 0 0
0 0 0.1009 0.1336

⎞
⎟⎟⎠.

and

M(1) =

⎛
⎜⎜⎝

23 17 0 0
0 0 7 10
17 0 0 0
0 0 10 13

⎞
⎟⎟⎠.

Since M(1)
0,1 = M(1)

1,2 + M(1)
1,3 it follows that s = 0 and

d = 100−∑3
i=0

∑3
j=0 M(1)

i, j = 3. Then,

M(2) =

⎛
⎜⎜⎝

25 17 0 0
0 0 7 10
17 0 0 0
0 0 10 14

⎞
⎟⎟⎠

and

P (2) =

⎛
⎜⎜⎝

0.25 0.17 0 0
0 0 0.07 0.1

0.17 0 0 0
0 0 0.1 0.14

⎞
⎟⎟⎠

The entropy rate of P (2), H (P (2)), is equal to 0.8103,
i.e., H (P̂)− H (P (2)) ≤ 0.0011.

APPENDIX B
PROOF OF LEMMA 3

In this appendix we prove Lemma 3 which states that

log2 |C (wl)|
n

−−−→
n→∞ H (P).

Proof: Recall that

C (wl) def= C(π(00)n, P(001)n)×C(π(01)n, P(011)n)

×C(π(10)n, P(101)n)×C(π(11)n, P(111)n)

and therefore

|C (wl)| =
(

nπ(00)

nP(001)

)(
nπ(01)

nP(011)

)(
nπ(10)

nP(101)

)(
nπ(11)

nP(111)

)
.

Since (
n

αn

)
≈ 2nH(α),

where H (α) = −α log2 α− (1− α) log2(1− α), we have that(
nπ(xy)

nP(xy1)

)
≈ 2nπ(xy)H(Q(1|xy))

4The matrix P̂ was computed using MATLAB and hence its entries are
slightly rounded.

4112 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 10, OCTOBER 2017

and hence

log2 |C (wl)|
n

−−−→
n→∞ −

∑
xy1∈E

π(xy)Q(1|xy) log2 Q(1|xy)

−
∑

xy0∈E

π(xy)Q(0|xy) log2 Q(0|xy))

= −
∑

xyz∈E

P(xyz) log2 Q(z|xy) = H (P).

�

ACKNOWLEDGEMENT

The authors would like to thank Osamu Torii for his
useful suggestions regarding the simulation of the row-by-row
weakly bitline ICI coding scheme. They would also like to
thank the anonymous reviewers for many insightful comments
which contributed to the discussion in the paper.

REFERENCES

[1] R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding
block codes—An application of symbolic dynamics to information
theory,” IEEE Trans. Inf. Theory, vol. 29, no. 1, pp. 5–22, Jan. 1983.

[2] A. Berman and Y. Birk, “Constrained flash memory programming,” in
Proc. IEEE Symp. Inf. Theory, St. Petersburg, Russia, Jul./Aug. 2011,
pp. 2128–2132.

[3] A. Berman and Y. Birk, “Low-complexity two-dimensional data encod-
ing for memory inter-cell interference reduction,” in Proc. 27th Conv.
IEEE Israel (IEEEI), Eilat, Israel, Nov. 2012, pp. 1–5.

[4] W. G. Bliss, “Circuitry for performing error correction calculations on
baseband encoded data to eliminate error propagation,” IBM Tech. Discl.
Bull., vol. 23, pp. 4633–4634, 1981.

[5] A. Bhatia, S. Yang, and P. H. Siegel, “Precoding mapping optimization
for magnetic recording channels,” IEEE Trans. Mag., vol. 50, no. 11,
Nov. 2014, Art. no. 3102304.

[6] S. Buzaglo, E. Yaakobi, and P. H. Siegel, “Coding schemes for inter-
cell interference in flash memory,” in Proc. IEEE Symp. Inf. Theory,
Hong Kong, Jun. 2015, pp. 1736–1740.

[7] T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory,
vol. 19, no. 1, pp. 73–77, Jan. 1973.

[8] N. G. deBruijn, “A combinatorial problem,” Roy. Netherlands Acad. Sci.,
vol. 49, pp. 758–764, Jun. 1946.

[9] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and
predistortion to tolerate cell-to-cell interference in MLC NAND flash
memory,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10,
pp. 2718–2728, Oct. 2010.

[10] O. Elishco, T. Meyerovitch, and M. Schwartz, “Semiconstrained sys-
tems,” in Proc. IEEE Symp. Inf. Theory, Hong Kong, Jun. 2015,
pp. 246–250.

[11] O. Elishco, T. Meyerovitch, and M. Schwartz, “Semiconstrained sys-
tems,” IEEE Trans. Inf. Theory, vol. 62, no. 4, pp. 1688–1702, Apr. 2016.

[12] P. A. Franaszek, “Sequence-state methods for run-length-limited cod-
ing,” IBM J. Res. Develop., vol. 14, pp. 376–383, Jul. 1970.

[13] F. R. Gantmacher Matrix Theory, Vol. 2. New York, NY, USA: Chelsea,
1960.

[14] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved
bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. Inf.
Theory, vol. 50, no. 5, pp. 824–838, May 2004.

[15] S. Halevy and R. M. Roth, “Parallel constrained coding with application
to two-dimensional constraints,” IEEE Trans. Inf. Theory, vol. 48, no. 5,
pp. 1009–1020, May 2002.

[16] K. A. S. Immink, “Weakly constrained codes,” Electron. Lett., vol. 33,
no. 23, pp. 1943–1944, Nov. 1997.

[17] K. A. S. Immink, “A practical method for approaching the channel
capacity of constrained channels,” IEEE Trans. Inf. Theory, vol. 43,
no. 8, pp. 1389–1399, Sep. 1997.

[18] S. Kayser and P. H. Siegel, “Constructions for constant-weight ICI-
free codes,” in Proc. IEEE Symp. Inf. Theory, Honolulu, HI, USA,
Jun./Jul. 2014, pp. 1431–1435.

[19] Y. Kim et al., “Modulation coding for flash memories,” in Proc. IEEE
Int Conf. Comput. Netw. Commun., San Diego, CA, USA, Jan. 2013,
pp. 961–967.

[20] Y. Kim, R. Mateescu, S. H. Song, Z. Bandic, and B. V. K. V. Kumar,
“Coding scheme for 3D vertical flash memory,” in Proc. IEEE Int. Conf.
Commun., London, U.K., Jun. 2015, pp. 264–270.

[21] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron Device
Lett., vol. 23, no. 5, pp. 264–266, May 2002.

[22] M. Mansuripur, “Enumerative modulation coding with arbitrary con-
straints and post-modulation error correction coding and data storage
systems,” Proc. SPIE vol. 1499, pp. 72–86, Jul. 1991.

[23] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrained systems
and coding for recording channels,” in Handbook of Coding Theory,
V. Pless and W. Huffman, Eds. Amsterdam, The Netherland: Elsevier,
1998, pp. 1635–1764.

[24] B. E. Moision, A. Orlitsky, and P. H. Siegel, “On codes with local joint
constraints,” Linear Algebra Appl., vol. 422, pp. 442–454, Apr. 2007.

[25] Z. Nagy and K. Zeger, “Bit-stuffing algorithms and analysis for run-
length constrained channels in two and three dimensions,” IEEE Trans.
Inf. Theory, vol. 50, no. 12, pp. 3146–3169, Dec. 2004.

[26] E. Ordentlich and R. M. Roth, “Capacity lower bounds and approximate
enumerative coding for 2-D constraints,” in Proc. IEEE Symp. Inf.
Theory, Nice, France, Jun. 2007, pp. 1681–1685.

[27] K. T. Park et al., “Three-dimensional 128Gb MLC vertical NAND flash-
memory with 24-WL stacked layers and 50MB/s high-speed program-
ming,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap., Feb. 2014,
pp. 334–335.

[28] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE
J. Sel. Areas Commun., vol. 32, no. 5, pp. 836–846, May 2014.

[29] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes
for the hard-square model,” IEEE Trans. Inf. Theory, vol. 47, no. 3,
pp. 1166–1176, Mar. 2001.

[30] A. Sharov and R. M. Roth, “Two-dimensional constrained coding based
on tiling,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1800–1807,
Apr. 2010.

[31] I. Tal, T. Etzion, and R. M. Roth, “On row-by-row coding for 2-D
constraints,” IEEE Trans. Inf. Theory, vol. 55, no. 8, pp. 3565–3576,
Aug. 2009.

[32] I. Tal and R. M. Roth, “Bounds on the rate of 2-D bit-stuffing encoders,”
in Proc. IEEE Symp. Inf. Theory, Toronto, ON, Canada, Jul. 2008,
pp. 1463–1467.

[33] V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-
cell interference mitigation in multi-level cell flash memories,” in Proc.
IEEE Int. Conf. Commun., Jun. 2015, pp. 1868–1873.

[34] Y. Wang, L. A. D. Bathen, Z. Shao, and N. D. Dutt, “3D-FlashMap:
A physical-location-aware block mapping strategy for 3D NAND flash
memory,” in Proc. DATE, Mar. 2012, pp. 1307–1312.

Sarit Buzaglo was born in Israel in 1983. She
received the B.Sc. and M.Sc. degrees from the
Department of Mathematics, Technion–Israel Insti-
tute of Technology, Haifa, Israel, in 2007 and
2010, respectively, and the Ph.D. degree from the
Department of Computer Science, Technion–Israel
Institute of Technology. She is currently a Post-
Doctoral Researcher with the Center for Memory
and Recording Research, at University of California,
San Diego. Her research interests include coding
theory, algebraic error-correction coding, coding for

advanced storage devices and systems, and combinatorics. She received an
award from the Weizmann Institute of Science–National Postdoctoral Award
Program for Advancing Women in Science, in 2014.

BUZAGLO AND SIEGEL: ROW-BY-ROW CODING SCHEMES FOR INTER-CELL INTERFERENCE IN FLASH MEMORY 4113

Paul H. Siegel (M’82–SM’90–F’97) received the
S.B. and Ph.D. degrees in mathematics from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 1975 and 1979, respectively. He held a
Chair Weizmann Post-Doctoral Fellowship with the
Courant Institute, New York University, New York,
NY, USA. He was with the IBM Research Division,
San Jose, CA, USA, from 1980 to 1995. He joined
the Faculty, University of California at San Diego,
La Jolla, CA, USA, in 1995, where he is currently
a Professor of Electrical and Computer Engineering

with the Jacobs School of Engineering. He is currently with the Center for
Memory and Recording Research, where he holds an Endowed Chair and
served as the Director from 2000 to 2011. His research interests include
information theory and communications, particularly coding and modulation
techniques, with applications to digital data storage and transmission. He is

a member of the National Academy of Engineering. He was a member of the
Board of Governors of the IEEE Information Theory Society from 1991 to
1996 and from 2009 to 2014. He was a recipient of the 2007 Best Paper
Award in Signal Processing and Coding for Data Storage from the Data
Storage Technical Committee of the IEEE Communications Society. He was
the co-recipient of the 1992 IEEE Information Theory Society Paper Award
and the 1993 IEEE Communications Society Leonard G. Abraham Prize
Paper Award. He was the 2015 Padovani Lecturer of the IEEE Information
Theory Society. He served as a Co-Guest Editor of the 1991 Special Issue on
Coding for Storage Devices of the IEEE TRANSACTIONS ON INFORMATION
THEORY. He served as an Associate Editor of Coding Techniques of the
IEEE TRANSACTIONS ON INFORMATION THEORY from 1992 to 1995, and
as Editor-in-Chief from 2001 to 2004. He was also a Co-Guest Editor of the
2001 two-part issue on The Turbo Principle: From Theory to Practice and the
2016 issue on Recent Advances in Capacity Approaching Codes of the IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

