
Shaping Codes for Structured Data
Yi Liu∗ and Paul H. Siegel∗

∗Electrical and Computer Engineering Dept., University of California, San Diego, La Jolla, CA 92093 U.S.A
{yil333, psiegel}@ucsd.edu

Abstract—In this work, we study data shaping codes for
flash memory. We introduce data shaping codes for SLC flash
memory. It reduces wear by minimizing the average fraction
of programmed level. Then we extend this algorithm to MLC
flash memory. It makes use of a page-dependent cost model and
is designed to be compatible with the standard procedure of
row-by-row, page-based, wordline programming. We also give
simulation results demonstrating the performance of the direct
shaping method when applied to English language text. Finally,
we use random walk model to analysis its performance and error
propagation property.

I. INTRODUCTION

NAND flash memory has become a widely used data
storage technology. It uses floating-gate transistor (commonly
referred to as a cell) to store information. As mentioned
in [1], NAND flash memory cells gradually wear out with
program/erase (P/E) cyclling, but the damage caused by P/E
cycling is dependent on the level programmed to the cell.
The author then proposed a coding technique called Adaptive
Endurance Coding which increases the number of P/E cycles
that a Flash device and endure. In SLC flash memory, each
cell has two different states, representing ’1’ or ’0’. It is shown
that storing ’1’ causes less damage than storing ’0’ in the cell.
In order to increase the lifetime of the flash memory, one can
reduce the average fraction of ’0’ in the encoded sequence.
Data shaping for structured data can be viewed as a technique
for combining lossless compression and endurance coding
into a single encoding operation. The intent is to efficiently
transform the structured data sequence directly into a sequence
that induces less wear when programmed into a NAND flash
memory. For binary (SLC) flash, this would translate into
reducing the average fraction of symbols corresponding to
the higher programmed cell level. (We will follow the usual
convention of associating 1 with the erased level and 0 with
the programmed level.)

In this paper, we consider the problem of finding data
shaping codes for SLC and MLC Flash memory. In section
II we introduce a shaping codes especially designed for SLC
flash memory (Direct Shaping Codes). A simulation result is
given using English Novel Gone with the Wind. In section
III, we introduce the structure of MLC flash memory and we
build a content-dependent cost model to reveal the damage of
each level. Based on this, we extend shaping codes introduced
in section II to MLC flash memory. Then in section IV,
we analysis the error propagation property of Direct Shaping
Codes. We find out if a sufficiently large number of words
have been read correctly, we may avoid error propagation.

II. SHAPING CODES FOR SLC FLASH

A. Encoder and Decoder

change some ’mathbf’ in this section to ’mathcal’ Shaping
Codes for SLC flash memory, or Direct shaping codes was
first introduced by Sharon et al. [2]. It makes use of an
adaptive encoding dictionary D with length m. D contains
two lists, input list X and output list Y. X is consist of
data words wk ∈ {0, 1}m and its count nk in previous data
sequence, denoted by xk = {wk, nk}, k = 1, 2, . . . , 2m. X is
dynamically ordered according to nk. Output list is consist of
codewords yk ∈ {0, 1}m and is ordered by increasing cost
of yk (i.e., increasing number of 0 symbols in yk). When a
data words w of length m is encountered in the sequence, it
is mapped to the binary length-m output word y that occupies
the same position in output list Y. Then the frequency count
n of the word w is increased by 1 and the ordering of input
list is updated accordingly.
Example 1. Consider encoding dictionary D with parsing
length m = 2. The ordered output list Y is {11, 10, 01, 00}.
After data sequence W = 101100101110, which contain 3
w1 = 10, 2 w2 = 11 and 1 w3 = 00. The dictionary is shown
in Table I(a). The next data words w = 00, which is mapped
to y3 = 01 in Table I(a). Then we add 1 to the count n3 and
update the dictionary, as shown in Table I(b).

TABLE I: Length-2 dictionary when encoding data words
w = 00

(a) Before Encoding

w y n

10 11 3
11 10 2
00 01 1
01 00 0

(b) After Encoding

w y n

10 11 3
00 10 2
10 01 2
01 00 0

The decoder will dynamically reconstructs the dictionary
and inverts the encoder mapping. When a codeword y is
encountered in the encoded sequence, it is mapped to the
binary length-m data words w that occupies the same position
in input list X. Then the frequency count n of the word w
is increased by 1 and the ordering of input list is updated
accordingly. This rate-1 shaping code incurs no rate penalty
and can be implemented with low complexity.
B. Simulation Results

We now present simulation results quantifying the en-
durance gain which can be achieved by the use of SLC data
shaping codes. The structured data we used was English Novel
Gone with the Wind. It was written in ASCII Code and had size
about 224 bits. We chose the parsing length of encoder to be
4 and 8. Fig. 1 shows the fraction of 0 symbols corresponding
to the first 2m bits in the original file and in the encoded files.
The fraction of 0’s in the original file is approximately 0.52.
With parsing length equal to 4 bits, the fraction of 0’s reduces
to about 0.28, and with parsing length of 8 bits, the fraction



Fig. 1: Direct Shaping Codes applied to Gone with the Wind

is reduced to about 0.15. For data that is large enough, direct
shaping codes is a optimal coding algorithm that can reach
least cost.

III. DATA SHAPING CODES FOR MLC FLASH

A. Cost Model for MLC Flash
Every cell in MLC flash memory can be charged to 4

different levels (2 bits/cell respectly.) They are denoted by
0, 1, 2, 3 from lowest to highest and the corresponding binary
representations in terms of lower-page and upper-page bits
are ’11’, ’10’, ’00’, ’01’. To program the MLC flash cell, the
controller first charges the cell based on lower-page bit, then
it charges the cell again for upper-page bit, as shown in Fig.
2

Programming MLC �ash cells

0
Initial State

Vth

0 I
Lower Bit Program

VI

11 01 Vth

0 1 2 3
Upper Bit Program

VA VB VC

11 10 00 01 Vth

Padovani Lecture Siegel Coding for Flash Memories 21

Fig. 2: Schematic of MLC flash cell programming.
To characterize and quantify the damage caused by different

level in MLC Flash, we perform a experiment in which we
repeatedly program MLC flash to a constant level. After every
100th P/E cycles, we program MLC flash with pseudo-random
data and record its bit error rate. The result is shown in Fig.
3. From Fig. 3, we see that cell damage caused by content
’11’, ’10’, ’00’ and ’01’ monotonically increase. We now
introduce cost model, in the form of a vector of cell-level
costs [c0, c1, c2, c3], to quantifies the relative amount of device
wear associated with each of the cell levels. In practice, these
costs will satisfy c0 6 c1 6 c2 6 c3, reflecting the increased
damage induced by higher programmed levels.

A proper way to to calculate ci,which was proposed by Li
et al. in [3], is by measuring number of cycles it takes for

Fig. 3: Bit Error Rate of MLC Flash for different programming
levels, while repeatedly programming a constant level

a certain level to reach the maximum tolerable bit error rate.
Assume the designed lifetime for a MLC Flash Memory to be
T0 cycles. The maximum tolerable bit error rate BERmax is
defined as the bit error rate after we program random data
to flash memory for T0 cycles. Let Φi(T) denote the bit
error rate after we keep programming flash memory with the
same content i ∈ [0, 1, 2, 3]. Let Ti

max denote the P/E cycle
number under which the Φi(T) equals to BERmax. Hence
we can estimate that the damage caused by programming
i is proportional to 1/Ti

max and the damage caused by
programming random content is proportional to 1/T0. So we
can set the cost of each level to be

ci =
T0

Ti
max

(1)

Example 2. We calculate the cost model given by Fig. 3.
Assuming designed lifetime T0 = 4000 cycles. The bit error
rate of erasure state stays the same, so we can set c0 = 0.
Based on this Fig., we find that T1

max = 6800, T2
max = 4300

and T3
max = 2800. So the cost model is [0, 0.59, 1.07, 1.43]

B. Shaping Codes for MLC Flash
Application of the SLC shaping code independently to

lower and upper pages will not be effective in reducing the
average cost. This can be seen by referring to the schematic of
the MLC flash cell programming process in Fig. 2. As shown
in the schematic, the cost associated with an upper bit 1 or 0
depends on the value of the corresponding lower bit in the cell.
The proposed MLC shaping encoder achieves improved wear
reduction by using lower-page dependent dictionaries when
encoding the upper pages, as we now describe.

First, fix a parsing length m. Encoding and programming of
wordlines is done in a row-by-row, sequential manner. For the
lower pages, the encoder simply uses the direct shaping code
with parsing length n. When programming an upper page,
however, the encoder first reads the corresponding, previously
programmed lower page.

Now, suppose the lower page that has been programmed and
presumably correctly recovered by the encoder consists of the
sequence of length-m codewords y(k), k = 0, . . . , L. Consider
the sequence of length-m data words w(k), k = 0, . . . , L that
need to be encoded for the upper page. To encode the k th data



words w(k), we encode using a direct shaping code that is
based upon an adaptively-built dictionary that depends on the
corresponding lower page codeword v(k). The only difference
in the operation of each lower-page dependent shaping encoder
is that the ordering of the length-m encoder output words in
terms of increasing cost depends specifically on the lower-page
codeword v and the cost model [c0, c1, c2, c3].

To illustrate the design of the encoder, we will use the cost
model [c0, c1, c2, c3] = [0, 1, 1, 2]. This simple cost model is
motivated as follows. Consider the standard lower-upper page
binary representation of the cell levels: 0=11, 1=10, 2=00,
3=01. We assign a cost of 0 to lower bit value 1, and a cost
of 1 to a lower bit value of 0, in accordance with the MLC
cell programming schematic. When the lower bit value is 1,
we assign a cost of 0 to upper bit value of 1, and a cost of 1
to upper bit value of 0. On the other hand, when the lower bit
value is 0, we assign a cost of 0 to upper bit value of 0, and a
cost of 1 to upper bit value of 1. Again, these cost assignments
are consistent with the MLC cell programming schematic. The
cost associated with a cell level is then defined as the sum of
the corresponding lower bit and upper bit costs.

Choose parsing length n = 4 and assume the lower page
codeword is v = 1110. For the first three bits, where the
corresponding lower bit is a 1, programming the upper bit to
1 is better than to 0. For the last bit, where the corresponding
lower bit is a 0, programming the upper bit to 0 is better
than to 1. This implies that the lowest cost output word in
the dictionary is 1110, corresponding to cell level word 0002,
which has total cost 1. Similar reasoning leads to the ordered
list of output words shown in Table II. The corresponding list
of cell level words is given in Table III. It is easy to verify
that the costs of the corresponding cell level words are non-
decreasing: cost 2 for words 1 to 4, cost 3 for words 5 to 10,
cost 4 for words 11 to 14, and cost 5 for word 15. In general,
the encoder uses 2m direct shaping encoders operating in a
sequence determined by the sequence of lower page codewords
v(k), k = 0, . . . , L.
TABLE II: Ordered list of upper page words for lower page
codeword 1110.

index Output List index Output List

0 1110 8 1000
1 1111 9 0100
2 1100 10 0010
3 1010 11 1001
4 0110 12 0101
5 1101 13 0011
6 1011 14 0000
7 0111 15 0001

C. Encoding Algorithm for Shaping Codes

For a given length-m codewords y, we denote the cost of
every bit by ui ∈ [c0, c1, c2, c3], i = 1, 2, . . . , m. The total
cost is denoted by Uy = ∑

m
i=1 ui. The output words must

be ordered by increasing cost and easily indexed. This can be
done using enumerative coding introduced by [4]. In his paper,
Cover denoted by n(x1, x2, · · · xk) the number of codewords k
for which the first k coordinates are given by (x1, x2, · · · , xk).

TABLE III: Corresponding list of cell level words for lower
page codeword 1110.

index Output List index Output List

0 0002 8 0112
1 0003 9 1012
2 0012 10 1102
3 0102 11 0113
4 1002 12 1013
5 0013 13 1103
6 0103 14 1112
7 1003 15 1113

To calculate n(x1, x2, · · · , xk), we can calculate the poly-
nomial (xc0 + xc1)n1(xc2 + xc3)n0 , where nb, b ∈ {0, 1}
is the number of bits equal to b in the remaining lower
page codeword v(k + 1, · · · , n). The possible costs and the
number of output words with each cost are given by the
exponents and coefficients. Example 3 shows how to calculate
n(x1, x2, · · · , xk) and algorithm for building the encoding
dictionary is given in algorithm 1.

Example 3. We want to calculate n(1, 1) given that lower page
codewords is v = 1110 and total cost is 2. The cost of first
two bits are 0 so the remaining cost is 2. We calculate the
polynomial (xc0 + xc1)n1(xc2 + xc3)n0 = (1 + x)(x + x2) =
x + 2x2 + x3. The coefficient of x2 is 2, meaning there are
two possible codewords whose total cost U = 2 and ther first
two bits are 11.

Algorithm 1 Building output list based on lower page code-
word
Require: Parsing length n and lower page codeword v0
Ensure: Encoding dictionary

1: Decide the number of 1’s and 0’s in the lower page,
denoted as n1 and n0

2: Calculate polynomial (xc0 + xc1)n1(xc2 + xc3)n0

3: Decide all possible weight wiand the number of codeword
that has this weight ni.

4: If index I > ∑
k−1
m=1 ni and I 6 ∑

k
m=1 ni, the codeword vI

has weight K.
5: If I > n(0) see x1 = 1 and set I = I − n(0), otherwise

see x1 = 0
6: For i th bit, if I > n(x1, · · · , xi − 1, 0) see xi = 1 and

set I = I − n(x1, · · · , xi − 1, 0), otherwise see xi = 0

D. Simulation Results
Fig. 5 can be used to assess the performance of the MLC

shaping encoder when applied to the English novel Gone with
the Wind. We first divided it into two consecutive pieces of size
223 bits; the first was used for lower page encoding and the
second for upper page encoding. We applied MLC shaping
encoders corresponding to the first 2m bits in both file. For
each file size, the plot in Fig. 5 shows the corresponding
fractions when the proposed MLC shaping encoder is applied.
Using these results, we see that for file size 224, the average
cost after MLC shaping is 0.53. In contrast, when no coding
is applied, as shown in Fig. ??, the average cost is 0.89,
and when SLC shaping is applied independently to lower and
upper pages, the average cost is 0.62. For more realistic cost
models in which level 2 is more costly than level 1, the relative
gain from MLC shaping will be even larger.



Fig. 4: Fractions of MLC cell levels for segments of Gone
with the Wind without MLC shaping code.

Fig. 5: Fractions of MLC cell levels for segments of Gone
with the Wind with MLC shaping code.

IV. PERFORMANCE AND ERROR PROPAGATION ANALYSIS

change all p in this section to P. To analysis the per-
formance and Error Propagation of direct shaping codes,
we consider a length-m dictionary with 2m symbols. We
denote by t the total number of data words been encoded.
Let N(t) = {n1(t), n2(t), n3(t), . . . , n2m(t)} be the word
counts and Ni(t) = ni(t) − ni+1(t) denotes the distance
between the counts for the ith and (i + 1)st words. Let P =
{P1, P2, . . . , P2n} be the true probability distribution of words,
and assume P1 > P2 > . . . > P2n . We denote by H(X ) the
entropy of the input words, H(X ) = −∑i pi log pi. We say
N(t) is stable if n1(t) > n2(t) > . . . > n2m(t). The cost of
codewords is U = [U1, U2, . . . U2m ] with U1 6 U2 6 . . . 6
U2m .
A. Performance Analysis

Given the distribution P, we want to know the minimum
cost we can get with rate-1 codes. This can be achieved by
applying data compression and endurance codes. We have the
following Theorem.
Theorem 1. Given the distribution P and cost of codewords U ,
the minimum cost we can get with rate-1 codes is ∑i P̄iUi/m.
Where P̄i =

1
Z e−µUi , µ is a positive constant selected such that

−∑i P̄i log P̄i = H(X ) and Z is a normalization constant.
Proof: First we do a data compression and get the

unstructured source, the compression ratio is H(X )/m.
Then we do a endurance codes with expansion factor

f = m/H(X ). From [1], we know the optimal distribution is
P̄i =

1
z e−µci where µ is a positive constant selected such that

− f ∑i p̄i log p̄i = m, which means −∑i P̄i log P̄i = H(X ),
and Z is a normalization constant. So the best endurance gain
we can get is ∑i P̄iUi/m
Theorem 2. Given the distribution P and cost of codewords
U , the average cost we can get from direst shaping codes is
∑i PiUi/m

Proof: For any two symbols i j in the dictionary, first we
assume Pi > Pj. Consider a sequence of i.i.d random variables
Xi j

1 , Xi j
2 , . . . with P(Xi j

1 = 1) = pi, P(Xi j
1 = −1) = p j and

P(Xi j
1 = 0) = 1 − pi − p j. The expected value of Xi j

1 is
µi j = pi − p j Consider Si j

t = ∑
t
k=1 Xi j

k . Si j
t > 0 means

ni(t) > n j(t). By law of large numbers, Si j
t /t − µi j → 0

almost surely. This means for any ε > 0, {Si j
t /t}∞0 is within

ε of pi − p j > 0 all but finitely many times. This means for
any 2 symbols i > j, ni(t) > n j(t) for all but finitely many
times. So the dictionary is stable for all but finitely many times.
Since we want to calculate the average cost, we only need to
consider the situation when the dictionary is stable.

Consider a sequence of i.i.d random variables Y1, Y2, . . .
with P(Y1 = Uk) = pk. The total cost after t steps is Wt =
∑

t
i=1 Yi, by law of large numbers, Wt/t − ∑

2m

i=1 UkPk → 0
almost surely. So the average cost is ∑

2m

i=1 UkPk/m. It is easy
to check that this statement is still true when Pi = Pj.

From theorem 1 and 2, we can find out that direct shaping
codes are sub-optimal. When m = 1, direct shaping codes can
achieve minimum cost. When m > 2, direct shaping codes can
achieve minimum cost only if Ui

log pi
= const.

B. Error Propagation Property
The shaping decoder reproduces the dynamic construction

of the encoding table. Errors in reading the flash memory can
lead to incorrect word frequency counts that, in turn, can cause
decoding errors if word counts are not sufficiently separated.
We now consider the dictionary that contains only 2 symbols.

Choosing parsing length m = 1, the input word will be
1 or 0. P = {P1, P2} is the true probability distribution of
words 1 and 0, and P1 > P2.. Suppose that, at time t0, the
count of input words n1(t0) 6= n2(t0). Since there are only
2 symbols, the dictionary after steps t can be represented by
the symbol that has more counts, denoted by s(t) ∈ {0, 1},
and the distance N(t) = n1(t) − n2(t). N(t) acts like a
one dimension random walk, shown in Fig. 6. Blue line
denotes encoding process starting at t0. If an error happens
when reading the flash memory, for example at point A.
The codeword is 0 and distance is NA(6) = 3. Because of
the error, the decoder reads the wrong codeword 1 and its
distance becomes NA′(6) = 5. After point A, the decoding
dictionary, presented by red dash line, is separated from
the encoding dictionary. The following three codewords is
decoded correctly. After point B, the status of the encoder
has changed, sB

e (t) = 0, but the decoder stays the same,
sB′

d (t) = 1. The next input word is 0 and codeword is 1,
but the decoded word is 1. This means every point after
point D will be decoded incorrectly. This example shows
that we want to avoid the situation when N(t) = 0 because



Fig. 6: Random walk in two symbols’ dictionary

it may cause error propagation. For a length-m dictionary,
at time t0 ni(t0) 6= n j(t0) for some symbols i and j. We
say a recurrence occurs if, at some future time t > t0,
ni(t) = n j(t).

Now we examine the recurrence property between these
words 1 and 2. Assuming at some time t0 the distance between
words 1 and 2 is N(t0) = n1(t0)− n2(t0) 6= 0, we want to
know the probability that a recurrence occurs in the future.
We use the theorem from [5].

Theorem 3. If P1 > P2 and N(t0) 6= 0 at some time t0, the
probability that a recurrence involving two words 1 and 2 will
occur in the future is

P =

{
P2
P1

N(t0) if N(t0) > 0
1 if N(t0) 6 0

(2)

From theorem 3, we know that if we make sure N(t0)
for some t0 is large enough (the dictionary is stable), the
probability that N(t) = 0 in the future is small and we
can avoid the error propagation. We therefore need to know
how many input words it takes for a dictionary to achieve
stability, as well as the probability that the dictionary will
subsequently become unstable. To study this problem, we
reformulated the problem in terms of recurrence properties
of a multidimensional random walk.

C. Recurrence of a multidimensional random walk

If the dictionary is not stable, theorem 3 tells that there
must be a recurrence in the future. So in this part, we first
assume that N(t0) is stable for some t0. Using theorem 3,
we can build the upper bound of the recurrence probability
of the whole dictionary. We denote by {i, i + 1} the event
symbol i, i + 1 ever meet, and by {i, i + 1} its compliment.
Notice that i, i + 1 and i + 1, i + 2 is not independent, but
{i, i + 1} and {i + 2, i + 3} are independent. The probability
that a recurrence involving any two adjacent symbols in the

dictionary is P
{
(
⋃2m−1−1

i=1 {i, i + 1})C
}

.

Lemma 4. Let D be a direct shaping dictionary with parsing
length m. Assume it is stable at some t, (N(t) is stable).
The probability that a recurrence involving any two symbols
in the dictionary, denoted as PW , is equal to the probability

that a recurrence involving any two adjacent symbols in the
dictionary.

PW = P
{
(

2m−1−1⋃
i=1

{i, i + 1})C
}

(3)
Proof: We want to proof these two events are the

same. Any recurrence condition is a permutation of set
{1, 2, . . . , 2m}. So the set of all possible recurrence condition
is the symmetric group S2m . Using cycle notation shown in [6]
to represent the element in S2m , any recurrence between two
adjacent symbols is (i, i + 1). Since S2m can be generated by
〈(1, 2), (2, 3), . . . , (k, k + 1), . . . , (2m − 1, 2m)〉. These two
events are the same, both are S2m/{1}, where 1 is the identity
element.
Lemma 5. The probability recurrence happens between any
symbols is bound by:

PW 6 2−
2m−1

∏
i=1

(1− P2i
P2i−1

N2i−1(t)
)−

2m−1−1

∏
i=1

(1− P2i+1

P2i

N2i(t)
)

(4)
Proof: Since {i, i + 1} and {i + 1, i + 2} are not inde-

pendent and {i, i + 1} and {i + 2, i + 3}, we can separate⋃2m−1−1
i=1 {i, i + 1} into two events.

PW = P
{ 2m−1⋃

i=1

{i, i + 1}
}

= P
{
(

2m−1⋃
i=1

{2i− 1, 2i})
⋃
(

2m−1−1⋃
i=1

{2i, 2i + 1})
}

6 P
{ 2N−1⋃

i=1

{2i− 1, 2i}
}
+ P

{ 2m−1−1⋃
i=1

{2i, 2i + 1}
}

(5)

Since {i, i + 1} and {i + 2, i + 3} are independent.

P
{
(

2m−1⋃
i=1

{2i− 1, 2i})C
}

= P
{
(

2m−1⋂
i=1

{2i− 1, 2i})
}

=
2m−1

∏
i=1

P{2i− 1, 2i} =
2m−1

∏
i=1

(1− P2i
P2i−1

N2i−1(t)
)

(6)

P
{
(

2m−1−1⋃
i=1

{2i, 2i + 1})C
}

= P
{
(

2m−1−1⋂
i=1

{2i, 2i + 1})
}

=
2m−1−1

∏
i=1

P{2i, 2i + 1} =
2m−1−1

∏
i=1

(1− P2i+1

P2i

N2i(t)
)

(7)

Combine (5), (6), (7), we have

PW 6 P
{ 2m−1⋃

i=1

{2i− 1, 2i}
}
+ P

{ 2m−1−1⋃
i=1

{2i, 2i + 1}
}

= 2− P
{
(

2m−1⋃
i=1

{2i− 1, 2i})C
}
− P

{
(

2m−1−1⋃
i=1

{2i, 2i + 1})C
}

= 2−
2m−1

∏
i=1

(1− P2i
P2i−1

N2i−1(t)
)−

2m−1−1

∏
i=1

(1− P2i+1

P2i

N2i(t)
)

(8)



Fig. 7: An example of upper bound of P(t) when P =
{0.4, 0.3, 0.2, 0.1}

We denote by A(N(t)) the right side of equation (8).
Notice that A(N(t)) will decrease if Ni(t) increase, i =
1, 2, . . . , 2m − 1. P(N(t)) denotes the probability that after
t steps the word counts is N(t). Clearly

P(N(t)) =
(

t
n1(t), . . . , n2m(t)

)
Pn1(t)

1 . . . Pn2m (t)
2m (9)

Combine Lemma 5 and law of total probability, we have
the following theorem.

Theorem 6. After t data words be encoded, the probability that
the recurrence occurs in the future is

P(t) 6 ∑
N(t) is
stable

A(N(t))P(N(t)) + ∑
N(t) is not

stable

P(N(t)) (10)

Fig 7 shows the upper bound of P(t) when we set m = 2
and P = {0.4, 0.3, 0.2, 0.1}. From this figure we can find
out P(t) will decrease when t increase. This tells us that if
we make sure the first t data words is decoded correctly, for
example combining error correction codes with shaping codes,
we can reduce the likelihood of decoder’s error propagation.

V. CONCLUSION

In this paper, we first introduce a data shaping codes for
SLC flash memory. Based on the structure of MLC flash
memory, we build the cost model and expand this algorithm to
MLC flash. Then we examine the error propagation property
for direct shaping codes. Future work may contains simulation
on different types of data on flash memory and combining
shaping codes with error correction codes.

REFERENCES

[1] Jagmohan, Ashish, et al. ”Adaptive endurance coding for NAND Flash.”
GLOBECOM Workshops (GC Wkshps), 2010 IEEE. IEEE, 2010.

[2] E. Sharon, et al.,“Data Shaping for Improving Endurance and Reliability
in Sub-20nm NAND,” presented at Flash Memory Summit, Santa Clara,
CA, August 4-7, 2014.

[3] Li, Jiangpeng, et al. ”How much can data compressibility help to
improve nand flash memory lifetime.” Proceedings of 13th USENIX
Conference on File and Storage Technologies (FAST). 2015.

[4] T.M. Cover, “Enumerative source encoding,” IEEE Trans. Inform.
Theory, vol. 19, no. 1, pp. 73-77, Jan. 1973.

[5] Doyle, Peter G., and J. Laurie Snell. ”Random walks and electric
networks.” Carus mathematical monographs 22 (2000).

[6] Dummit, David Steven, and Richard M. Foote. Abstract algebra. Vol.
1999. Englewood Cliffs: Prentice Hall, 1991.


